Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Potent Antihyperglycemic Effect of an Endemic Plant from Morocco (Matthiola Maroccana Coss.) on Normal and Streptozotocin-Induced Diabetic Rats

Author(s): Ayoub Amssayef, Nadia Lahrach and Mohamed Eddouks*

Volume 21, Issue 3, 2021

Published on: 20 May, 2020

Page: [434 - 440] Pages: 7

DOI: 10.2174/1871530320666200520095305

Price: $65

Abstract

Background: Matthiola maroccana (Coss.) belongs to the Brassicaceae family and it is an endemic plant from Morocco.

Objective: The objective of the study was to evaluate the effect of aqueous extract of Matthiola maroccana (Coss.) on blood glucose levels in normal and diabetic rats.

Methods: The effect of single dose (6 hours) and daily oral administration for seven days of the Aerial Part Aqueous Extract (A.P.A.E) of Matthiola maroccana (Coss.) (M. maroccana) at a dose of 20 mg/kg body weight on blood glucose levels in normal and streptozotocin(STZ)-induced diabetic rats was observed. Furthermore, body weight, oral glucose tolerance test, liver histopathological examination, phytochemical screening, and in vitro antioxidant activity of A.P.A.E were evaluated in this study.

Results: The results showed that M. maroccana A.P.A.E exerts potent hypoglycemic and antihyperglycemic effects on normal and STZ-induced diabetic rats (p<0.0001). Also, it was able to restore body weight in diabetic rats (p<0.05). Furthermore, the aqueous extract has been shown to regenerate hepatic tissues in diabetic rats. Besides, A.P.A.E revealed the presence of several phytochemical constituents (polyphenols, flavonoids, tannins, saponins, alkaloids, sterols and terpenoids), and possessed antioxidant activity.

Conclusion: In conclusion, our findings showed that A.P.A.E of M. maroccana (A.P.A.E MM) possesses significant antihyperglycemic and hypoglycemic activities.

Keywords: Matthiola maroccana (Coss.), streptozotocin, diabetes, aqueous extract, antihyperglycemic activity, histopathology, antioxidant.

Graphical Abstract

[1]
International Diabetes Federation (IDF). Diabetes Atlas, 9th Ed.; , 2019.
[2]
Clark, P.; McDonald, T. Diabetes Mellitus; The immunoassay handbook, 2013, pp. 783-794.
[3]
International Diabetes Federation (IDF). Diabetes Atlas, 6th Ed.; , 2017.
[4]
Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol. Res., 2018, 130, 451-465.
[http://dx.doi.org/10.1016/j.phrs.2018.01.015] [PMID: 29395440]
[5]
Raut, N.A.; Dhore, P.W.; Saoji, S.D.; Kokare, D.M. Selected Bioactive Natural Products for Diabetes Mellitus; Studies in Natural Products Chemistry, 2016, pp. 287-322.
[http://dx.doi.org/10.1016/B978-0-444-63602-7.00009-6]
[6]
Yalamanchili, C.; Chittiboyina, A.G.; Haider, S.; Vasquez, Y.; Khan, S.; do Carmo, J.M.; da Silva, A.A.; Pinkerton, M.; Hall, J.E.; Walker, L.A.; Khan, I.A. In search for potential antidiabetic compounds from natural sources: docking, synthesis and biological screening of small molecules from Lycium spp. (Goji). Heliyon, 2019, 6(1)e02782
[http://dx.doi.org/10.1016/j.heliyon.2019.e02782] [PMID: 31909232]
[7]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens Ehrh in normal and streptozotocininduced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[8]
Hebi, M.; Eddouks, M. Glucose lowering activity of the aqueous extract of Warionia saharae in normal and diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16(1), 66-72.
[http://dx.doi.org/10.2174/1871525716666180425125057] [PMID: 29737263]
[9]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[http://dx.doi.org/10.1016/j.biopha.2016.12.111] [PMID: 28061406]
[10]
Ajebli, M.; Eddouks, M. Buxus sempervirens L improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[11]
Lamela, M.; Cadavid, I.; Gato, A.; Calleja, J.M. Effects of Lythrum salicaria in normoglycemic rats. J. Ethnopharmacol., 1985, 14(1), 83-91.
[http://dx.doi.org/10.1016/0378-8741(85)90032-7] [PMID: 3910965]
[12]
Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules, 2018, 23(1)E105
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[13]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on diabetes mellitus and its complications: a systematic review. Curr. Diab. Rep., 2018, 18(10), 72.
[http://dx.doi.org/10.1007/s11892-018-1042-0] [PMID: 30105479]
[14]
SubashBabu. P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde - a potential antidiabetic agent. Phytomedicine, 2007, 14(1), 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[15]
Kanter, M.; Coskun, O.; Korkmaz, A.; Oter, S. Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004, 279(1), 685-691.
[http://dx.doi.org/10.1002/ar.a.20056] [PMID: 15224410]
[16]
West, K.M.; Ahuja, M.M.S.; Bennett, P.H.; Czyzyk, A.; De Acosta, O.M.; Fuller, J.H.; Grab, B.; Grabauskas, V.; Jarrett, R.J.; Kosaka, K. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care, 1983, 6(4), 361-369.
[http://dx.doi.org/10.2337/diacare.6.4.361] [PMID: 6617413]
[17]
Arison, R.N.; Ciaccio, E.I.; Glitzer, M.S.; Cassaro, J.A.; Pruss, M.P. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes, 1967, 16(1), 51-56.
[http://dx.doi.org/10.2337/diab.16.1.51] [PMID: 6015682]
[18]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[19]
Mishra, S.B.; Raoch, C.H.V.; Ojha, S.K.; Vijayakumar, M.; Verma, A. An analytical review of plants for anti diabetic activity with their phytoconstituent and mechanism of action. Int. J. Pharm. Sci. Res., 2010, 1(1), 29-46.
[20]
Ighodaro, O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother., 2018, 108, 656-662.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy