Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Antitumor Effects of Britanin on Hepatocellular Carcinoma Cells and its Real-Time Evaluation by In Vivo Bioluminescence Imaging

Author(s): Hanrui Li, GeTao Du, Lu Yang, Liaojun Pang and Yonghua Zhan*

Volume 20, Issue 9, 2020

Page: [1147 - 1156] Pages: 10

DOI: 10.2174/1871520620666200227092623

Price: $65

Abstract

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma.

Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin.

Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size.

Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment.

Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.

Keywords: Britanin, antitumor effect, bioluminescence imaging, nuclear factor kappa B, p65, hepatocellular carcinoma.

« Previous
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Hrkach, J.; Von Hoff, D.; Mukkaram Ali, M.; Andrianova, E.; Auer, J.; Campbell, T.; De Witt, D.; Figa, M.; Figueiredo, M.; Horhota, A.; Low, S.; McDonnell, K.; Peeke, E.; Retnarajan, B.; Sabnis, A.; Schnipper, E.; Song, J.J.; Song, Y.H.; Summa, J.; Tompsett, D.; Troiano, G.; Van Geen Hoven, T.; Wright, J.; LoRusso, P.; Kantoff, P.W.; Bander, N.H.; Sweeney, C.; Farokhzad, O.C.; Langer, R.; Zale, S. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med., 2012, 4(128), 128ra39
[http://dx.doi.org/10.1126/scitranslmed.3003651] [PMID: 22491949]
[5]
Wang, X.Q.; Ongkeko, W.M.; Chen, L.; Yang, Z.F.; Lu, P.; Chen, K.K.; Lopez, J.P.; Poon, R.T.P.; Fan, S.T. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology, 2010, 52(2), 528-539.
[http://dx.doi.org/10.1002/hep.23692] [PMID: 20683952]
[6]
Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[7]
Xin, J.; Zhan, Y.; Liu, M.; Hu, H.; Xia, L.; Nie, Y.; Wu, K.; Liang, J.; Tian, J. ApoG2 induces ER stress-dependent apoptosis in gastric cancer cells in vitro and its real-time evaluation by bioluminescence imaging in vivo. Cancer Lett., 2013, 336(2), 260-269.
[http://dx.doi.org/10.1016/j.canlet.2013.03.019] [PMID: 23523614]
[8]
Xin, J.; Zhan, Y.H.; Xia, L.M.; Zhu, H.W.; Nie, Y.Z.; Liang, J.M.; Tian, J. ApoG2 as the most potent gossypol derivatives inhibits cell growth and induces apoptosis on gastric cancer cells. Biomed. Pharmacother., 2013, 67(1), 88-95.
[http://dx.doi.org/10.1016/j.biopha.2012.10.016] [PMID: 23201009]
[9]
Carlisi, D.; D’Anneo, A.; Angileri, L.; Lauricella, M.; Emanuele, S.; Santulli, A.; Vento, R.; Tesoriere, G. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J. Cell. Physiol., 2011, 226(6), 1632-1641.
[http://dx.doi.org/10.1002/jcp.22494] [PMID: 21413021]
[10]
Ralstin, M.C.; Gage, E.A.; Yip-Schneider, M.T.; Klein, P.J.; Wiebke, E.A.; Schmidt, C.M. Parthenolide cooperates with NS398 to inhibit growth of human hepatocellular carcinoma cells through effects on apoptosis and G0-G1 cell cycle arrest. Mol. Cancer Res., 2006, 4(6), 387-399.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0157] [PMID: 16778086]
[11]
Park, H.H.; Kim, M.J.; Li, Y.; Park, Y.N.; Lee, J.; Lee, Y.J.; Kim, S.G.; Park, H.J.; Son, J.K.; Chang, H.W.; Lee, E. Britanin suppresses LPS-induced nitric oxide, PGE2 and cytokine production via NF-κB and MAPK inactivation in RAW 264.7 cells. Int. Immunopharmacol., 2013, 15(2), 296-302.
[http://dx.doi.org/10.1016/j.intimp.2012.12.005] [PMID: 23270759]
[12]
Park, H.H.; Kim, S.G.; Park, Y.N.; Lee, J.; Lee, Y.J.; Park, N.Y.; Jeong, K.T.; Lee, E. Suppressive effects of britanin, a sesquiterpene compound isolated from Inulae flos, on mast cell-mediated inflammatory responses. Am. J. Chin. Med., 2014, 42(4), 935-947.
[http://dx.doi.org/10.1142/S0192415X14500591] [PMID: 25004884]
[13]
Wu, G.; Zhu, L.; Yuan, X.; Chen, H.; Xiong, R.; Zhang, S.; Cheng, H.; Shen, Y.; An, H.; Li, T.; Li, H.; Zhang, W. Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway. Antioxid. Redox Signal., 2017, 27(11), 754-768.
[http://dx.doi.org/10.1089/ars.2016.6885] [PMID: 28186440]
[14]
Kim, S.G.; Lee, E.; Park, N.Y.; Park, H.H.; Jeong, K.T.; Kim, K.J.; Lee, Y.J.; Jin, M.; Lee, E. Britanin attenuates ovalbumin-induced airway inflammation in a murine asthma model. Arch. Pharm. Res., 2016, 39(7), 1006-1012.
[http://dx.doi.org/10.1007/s12272-016-0783-z] [PMID: 27342608]
[15]
Fischedick, J.T.; Pesic, M.; Podolski-Renic, A.; Bankovic, J.; de Vos, R.C.H.; Peric, M.; Todorovic, S.; Tanic, N. Cytotoxic activity of sesquiterpene lactones from Inula britannica on human cancer cell lines. Phytochem. Lett., 2013, 6(2), 246-252.
[http://dx.doi.org/10.1016/j.phytol.2013.02.006]
[16]
Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[17]
Lin, W.L.; Lai, D.Y.; Lee, Y.J.; Chen, N.F.; Tseng, T.H. Antitumor progression potential of morusin suppressing STAT3 and NFκB in human hepatoma SK-Hep1 cells. Toxicol. Lett., 2015, 232(2), 490-498.
[http://dx.doi.org/10.1016/j.toxlet.2014.11.031] [PMID: 25476160]
[18]
Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev., 2012, 26(3), 203-234.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[19]
Chen, W.; Hou, J.; Yin, Y.; Jang, J.; Zheng, Z.; Fan, H.; Zou, G. alpha-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFkappaB. Biochem. Pharmacol., 2010, 80(2), 247-254.
[http://dx.doi.org/10.1016/j.bcp.2010.03.021] [PMID: 20346922]
[20]
Jiang, X.; Wang, Y.; Qin, Y.; He, W.; Benlahrech, A.; Zhang, Q.; Jiang, X.; Lu, Z.; Ji, G.; Zheng, Y. Micheliolide provides protection of mice against Staphylococcus aureus and MRSA infection by down-regulating inflammatory response. Sci. Rep., 2017, 7, 41964.
[http://dx.doi.org/10.1038/srep41964] [PMID: 28165033]
[21]
Lei, J.C.; Yu, J.Q.; Yin, Y.; Liu, Y.W.; Zou, G.L. Alantolactone induces activation of apoptosis in human hepatoma cells. Food Chem. Toxicol., 2012, 50(9), 3313-3319.
[http://dx.doi.org/10.1016/j.fct.2012.06.014] [PMID: 22721982]
[22]
Takada, Y.; Mukhopadhyay, A.; Kundu, G.C.; Mahabeleshwar, G.H.; Singh, S.; Aggarwal, B.B. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J. Biol. Chem., 2003, 278(26), 24233-24241.
[http://dx.doi.org/10.1074/jbc.M212389200] [PMID: 12711606]
[23]
Vermeulen, L.; De Wilde, G.; Van Damme, P.; Vanden Berghe, W.; Haegeman, G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J., 2003, 22(6), 1313-1324.
[http://dx.doi.org/10.1093/emboj/cdg139] [PMID: 12628924]
[24]
Wang, F.; Jiang, Z.; Li, Y.; He, X.; Zhao, J.; Yang, X.; Zhu, L.; Yin, Z.; Li, X.; Wang, X.; Liu, W.; Shang, W.; Yang, Z.; Wang, S.; Zhen, Q.; Zhang, Z.; Yu, Y.; Zhong, H.; Ye, Q.; Huang, L.; Yuan, J. Shigella flexneri T3SS effector IpaH4.5 modulates the host inflammatory response via interaction with NF-κB p65 protein. Cell. Microbiol., 2013, 15(3), 474-485.
[http://dx.doi.org/10.1111/cmi.12052] [PMID: 23083102]
[25]
Zheng, J.; Kong, C.; Yang, X.; Cui, X.; Lin, X.; Zhang, Z. Protein kinase C-alpha (PKC alpha) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder. BMC Cancer, 2017, 17, 1-12.
[http://dx.doi.org/10.1186/s12885-017-3401-7]
[26]
Kastrati, I.; Siklos, M.I.; Calderon-Gierszal, E.L.; El-Shennawy, L.; Georgieva, G.; Thayer, E.N.; Thatcher, G.R.; Frasor, J. Dimethyl fumarate inhibits the nuclear factor kappa B pathway in breast cancer cells by covalent modification of p65 protein. J. Biol. Chem., 2016, 291(7), 3639-3647.
[http://dx.doi.org/10.1074/jbc.M115.679704] [PMID: 26683377]
[27]
Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[28]
Hu, M.; Xu, L.; Yin, L.; Qi, Y.; Li, H.; Xu, Y.; Han, X.; Peng, J.; Wan, X. Cytotoxicity of dioscin in human gastric carcinoma cells through death receptor and mitochondrial pathways. J. Appl. Toxicol., 2013, 33(8), 712-722.
[http://dx.doi.org/10.1002/jat.2715] [PMID: 22334414]
[29]
Starenki, D.V.; Namba, H.; Saenko, V.A.; Ohtsuru, A.; Maeda, S.; Umezawa, K.; Yamashita, S. Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor, dehydroxymethylepoxyquinomicin. Clin. Cancer Res., 2004, 10(20), 6821-6829.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0463] [PMID: 15501958]
[30]
Fahy, B.N.; Schlieman, M.G.; Mortenson, M.M.; Virudachalam, S.; Bold, R.J. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother. Pharmacol., 2005, 56(1), 46-54.
[http://dx.doi.org/10.1007/s00280-004-0944-5] [PMID: 15791457]
[31]
Rehemtulla, A.; Stegman, L.D.; Cardozo, S.J.; Gupta, S.; Hall, D.E.; Contag, C.H.; Ross, B.D. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia, 2000, 2(6), 491-495.
[http://dx.doi.org/10.1038/sj.neo.7900121] [PMID: 11228541]
[32]
Heffern, M.C.; Park, H.M.; Au-Yeung, H.Y.; Van de Bittner, G.C.; Ackerman, C.M.; Stahl, A.; Chang, C.J. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA, 2016, 113(50), 14219-14224.
[http://dx.doi.org/10.1073/pnas.1613628113] [PMID: 27911810]
[33]
Dai, Y.; Yin, J.; Huang, Y.; Chen, X.; Wang, G.; Liu, Y.; Zhang, X.; Nie, Y.; Wu, K.; Liang, J. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging. Biomed. Opt. Express, 2016, 7(4), 1149-1159.
[http://dx.doi.org/10.1364/BOE.7.001149] [PMID: 27446643]
[34]
Nie, L.Y.; Qin, J.J.; Huang, Y.; Yan, L.; Liu, Y.B.; Pan, Y.X.; Jin, H.Z.; Zhang, W.D. Sesquiterpenoids from Inula lineariifolia inhibit nitric oxide production. J. Nat. Prod., 2010, 73(6), 1117-1120.
[http://dx.doi.org/10.1021/np100124a] [PMID: 20515062]
[35]
Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta, 1997, 44(7), 1299-1305.
[http://dx.doi.org/10.1016/S0039-9140(97)00017-9] [PMID: 18966866]
[36]
Xu, X.L.; Wu, Y.; Hu, M.Y.; Li, X.; Bao, Q.C.; Bian, J.L.; You, Q.D.; Zhang, X.J. Novel natural product-like caged xanthones bearing a carbamate moiety exhibit antitumor potency and anti-angiogenesis activity in vivo. Sci. Rep-UK., 2016, 6, 1-14.
[37]
Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol reverses Doxorubicin resistance by inhibiting Epithelial-Mesenchymal Transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[38]
Wang, C.Z.; Zhang, Z.; Anderson, S.; Yuan, C.S. Natural products and chemotherapeutic agents on cancer: Prevention vs. treatment. Am. J. Chin. Med., 2014, 42(6), 1555-1558.
[http://dx.doi.org/10.1142/S0192415X1420002X] [PMID: 25482675]
[39]
Khan, M.; Yi, F.; Rasul, A.; Li, T.; Wang, N.; Gao, H.; Gao, R.; Ma, T. Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. IUBMB Life, 2012, 64(9), 783-794.
[http://dx.doi.org/10.1002/iub.1068] [PMID: 22837216]
[40]
Kim, I.H.; Kim, S.W.; Kim, S.H.; Lee, S.O.; Lee, S.T.; Kim, D-G.; Lee, M-J.; Park, W.H. Parthenolide-induced apoptosis of hepatic stellate cells and anti-fibrotic effects in an in vivo rat model. Exp. Mol. Med., 2012, 44(7), 448-456.
[http://dx.doi.org/10.3858/emm.2012.44.7.051] [PMID: 22581380]
[41]
Lu, Y.; Li, X.; Park, Y.N.; Kwon, O.; Piao, D.; Chang, Y-C.; Kim, C-H.; Lee, E.; Son, J.K.; Chang, H.W. Britanin suppresses IgE/Ag-induced mast cell activation by inhibiting the syk pathway. Biomol. Ther. (Seoul), 2014, 22(3), 193-199.
[http://dx.doi.org/10.4062/biomolther.2014.038] [PMID: 25009699]
[42]
Lu, Y.; Li, Y.; Jin, M.; Yang, J.H.; Li, X.; Chao, G.H.; Park, H-H.; Park, Y.N.; Son, J.K.; Lee, E.; Chang, H.W. Inula japonica extract inhibits mast cell-mediated allergic reaction and mast cell activation. J. Ethnopharmacol., 2012, 143(1), 151-157.
[http://dx.doi.org/10.1016/j.jep.2012.06.015] [PMID: 22728246]
[43]
Klochkov, S.G.; Pukhov, S.; Afanas’eva, S.; Anikina, L.; Ermatova, A. Amination products of Inula britannica lactones and their antitumor activity. Chem. Nat. Compd., 2015, 51(3), 435-443.
[http://dx.doi.org/10.1007/s10600-015-1310-z]
[44]
Mehmood, T.; Maryam, A.; Zhang, H.; Li, Y.; Khan, M.; Ma, T. Deoxyelephantopin induces apoptosis in HepG2 cells via oxidative stress, NF-κB inhibition and mitochondrial dysfunction. Biofactors, 2017, 43(1), 63-72.
[http://dx.doi.org/10.1002/biof.1324] [PMID: 27628030]
[45]
Mehmood, T.; Maryam, A.; Tian, X.; Khan, M.; Ma, T. Santamarine inhibits NF-kappa B and STAT3 activation and induces apoptosis in HepG2 liver cancer cells via oxidative stress. J. Cancer, 2017, 8(18), 3707-3717.
[http://dx.doi.org/10.7150/jca.20239] [PMID: 29151958]
[46]
Park, J.H.; Liu, L.; Kim, I.H.; Kim, J.H.; You, K.R.; Kim, D.G. Identification of the genes involved in enhanced fenretinide-induced apoptosis by parthenolide in human hepatoma cells. Cancer Res., 2005, 65(7), 2804-2814.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2221] [PMID: 15805281]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy