Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Regenerative Potential of Stem Cells Derived from Human Exfoliated Deciduous (SHED) Teeth during Engineering of Human Body Tissues

Author(s): Shivkanya Fuloria, Ajay Jain, Sameep Singh, Iswar Hazarika, Samson Salile and Neeraj K. Fuloria*

Volume 16, Issue 5, 2021

Published on: 31 December, 2020

Page: [507 - 517] Pages: 11

DOI: 10.2174/1574888X16999201231213206

Price: $65

Abstract

The current decade witnesses the regenerative potential of Stem Cells (SCs) based lifesaving therapies for the treatment of various disease conditions. Human teeth act as a reservoir for SCs that exist in high abundance in baby, wisdom, and permanent teeth. The collection of Stem cells from Human Exfoliated Deciduous teeth (SHED) is considered a simple process as it offers the convenience of little or no pain. In comparison to the SCs from dental or bone marrow or other tissues, the SHED offers the benefit of higher cellular differentiation and proliferation. Massive in vitro and in vivo studies reveal the regenerative potential of SHED in the engineering of the dental pulp tissue, neuronal tissue, root, bio root, cardiovascular tissues, lymphatic tissues, renal tissues, dermal tissues, hepatic tissues, and bone tissues. The current review describes the methods of collection/ isolation/storage, various biomarkers, and types of SHED. This review highlights the regenerative potential of SHED in the engineering of different tissues of the human body. As per the available research evidence, the present study supports that SHED may differentiate into the endothelial cells, neurons, odontoblasts, pancreatic β-cells, hepatocytes, renal cells, fibroblasts, osteoblasts, and many other types of cells. The present study recommends that further clinical trials are required before the clinical application of SHED-based therapies.

Keywords: Regeneration, stem cell, exfoliated, neuro, tissues, SHED.

[1]
Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): Saving for the future. J Clin Pediatr Dent 2009; 33(4): 289-94.
[http://dx.doi.org/10.17796/jcpd.33.4.y887672r0j703654] [PMID: 19725233]
[2]
Liu Y, Li Y, Nan LP, et al. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12(4): 266-76.
[http://dx.doi.org/10.4252/wjsc.v12.i4.266] [PMID: 32399135]
[3]
Ahmed GM, Abouauf EA, AbuBakr N, Dörfer CE, El-Sayed KF. Tissue engineering approaches for enamel, dentin, and pulp regeneration: An update. Stem Cells Int 2020; 2020: 5734539.
[http://dx.doi.org/10.1155/2020/5734539] [PMID: 32184832]
[4]
Keyes BE, Fuchs E. Stem cells: Aging and transcriptional fingerprints. J Cell Biol 2018; 217(1): 79-92.
[http://dx.doi.org/10.1083/jcb.201708099] [PMID: 29070608]
[5]
Lee SM, Zhang Q, Le AD. Dental stem cells: Sources and potential applications. Curr Oral Health Rep 2014; 1(1): 34-42.
[http://dx.doi.org/10.1007/s40496-014-0012-0]
[6]
Khazaei M, Bozorgi A, Khazaei S, et al. Stem cells in dentistry, sources, and applications. Dent Hypotheses 2016; 7(2): 42.
[http://dx.doi.org/10.4103/2155-8213.183764]
[7]
Deogade SC, Ghate S, Dube G, et al. Application of dental stem cells in regenerative medicine. Ann Niger Med 2015; 9(2): 41.
[http://dx.doi.org/10.4103/0331-3131.177944]
[8]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences. United States of America. 2003; pp. 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100]
[9]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[http://dx.doi.org/10.1172/JCI59251] [PMID: 22133879]
[10]
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6.
[http://dx.doi.org/10.1177/0022034510368647] [PMID: 20395410]
[11]
Kashyap R. SHED-basic structure for stem cell research. J Clin Diagn Res 2015; 9(3): ZE07-9.
[http://dx.doi.org/10.7860/JCDR/2015/9871.5636] [PMID: 25954717]
[12]
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9(4): 445-64.
[http://dx.doi.org/10.1002/sctm.19-0398] [PMID: 31943813]
[13]
Kawase-Koga Y, Fujii Y, Yamakawa D, Sato M, Chikazu D. Identification of neurospheres generated from human dental pulp stem cells in xeno-/serum-free conditions. Regen Ther 2020; 14: 128-35.
[http://dx.doi.org/10.1016/j.reth.2019.11.006] [PMID: 32099873]
[14]
Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int 2016; 2016: 5957806.
[http://dx.doi.org/10.1155/2016/5957806] [PMID: 27313627]
[15]
Koyama N, Okubo Y, Nakao K, Bessho K. Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 2009; 67(3): 501-6.
[http://dx.doi.org/10.1016/j.joms.2008.09.011] [PMID: 19231772]
[16]
Feng X, Xing J, Feng G, et al. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33(8): 1023-31.
[http://dx.doi.org/10.1007/s10571-013-9965-0] [PMID: 24043508]
[17]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[18]
Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 2011; 20(7): 1003-13.
[http://dx.doi.org/10.3727/096368910X539128] [PMID: 21054950]
[19]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[20]
Chang EA, Jin SW, Nam MH, Kim SD. Human induced pluripotent stem cells: Clinical significance and applications in neurologic diseases. J Korean Neurosurg Soc 2019; 62(5): 493-501.
[http://dx.doi.org/10.3340/jkns.2018.0222] [PMID: 31392877]
[21]
Xu M, He J, Zhang C, Xu J, Wang Y. Strategies for derivation of endothelial lineages from human stem cells. Stem Cell Res Ther 2019; 10(1): 200.
[http://dx.doi.org/10.1186/s13287-019-1274-1] [PMID: 31286997]
[22]
Han NR, Baek S, Kim HY, et al. Generation of embryonic stem cells derived from the inner cell mass of blastocysts of outbred ICR mice. Anim Cells Syst (Seoul) 2020; 24(2): 91-8.
[http://dx.doi.org/10.1080/19768354.2020.1752306] [PMID: 32489688]
[23]
Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: A review. Cancer Cell Int 2007; 7(9): 9.
[http://dx.doi.org/10.1186/1475-2867-7-9] [PMID: 17547749]
[24]
Shammaa R, El-Kadiry AE, Abusarah J, Rafei M. Mesenchymal stem cells beyond regenerative medicine. Front Cell Dev Biol 2020; 8: 72.
[http://dx.doi.org/10.3389/fcell.2020.00072] [PMID: 32133358]
[25]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[26]
Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792-806.
[http://dx.doi.org/10.1177/0022034509340867] [PMID: 19767575]
[27]
Ng AP, Alexander WS. Haematopoietic stem cells: Past, present and future. Cell Death Discov 2017; 3(1): 17002.
[http://dx.doi.org/10.1038/cddiscovery.2017.2] [PMID: 28180000]
[28]
Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol 2006; 24: 705-38.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090742] [PMID: 16551264]
[29]
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147(15): dev182675.
[http://dx.doi.org/10.1242/dev.182675] [PMID: 32747330]
[30]
Tian H, Biehs B, Warming S, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011; 478(7368): 255-9.
[http://dx.doi.org/10.1038/nature10408] [PMID: 21927002]
[31]
Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32: 149-84.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135600] [PMID: 19555289]
[32]
Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking neural stem cell niche by biocompatible substrates. Stem Cells Int 2016; 2016: 1513285.
[http://dx.doi.org/10.1155/2016/1513285] [PMID: 26880934]
[33]
Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446(7132): 185-9.
[http://dx.doi.org/10.1038/nature05574] [PMID: 17330052]
[34]
Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 2012; 12(3): 170-80.
[http://dx.doi.org/10.1038/nrc3217] [PMID: 22362215]
[35]
Goldstein J, Horsley V. Home sweet home: Skin stem cell niches. Cell Mol Life Sci 2012; 69(15): 2573-82.
[http://dx.doi.org/10.1007/s00018-012-0943-3] [PMID: 22410738]
[36]
Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: Isolation, characterization and applications in surgery. ANZ J Surg 2009; 79(4): 235-44.
[http://dx.doi.org/10.1111/j.1445-2197.2009.04852.x] [PMID: 19432707]
[37]
Lee JA, Parrett BM, Conejero JA, et al. Biological alchemy: Engineering bone and fat from fat-derived stem cells. Ann Plast Surg 2003; 50(6): 610-7.
[http://dx.doi.org/10.1097/01.SAP.0000069069.23266.35] [PMID: 12783012]
[38]
Riegger J, Palm HG, Brenner RE. The functional role of chondrogenic stem/progenitor cells: Novel evidence for immunomodulatory properties and regenerative potential after cartilage injury. Eur Cell Mater 2018; 36: 110-27.
[http://dx.doi.org/10.22203/eCM.v036a09] [PMID: 30215457]
[39]
Jung Y, Brown KD, Witek RP, et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 2008; 134(5): 1532-43.
[http://dx.doi.org/10.1053/j.gastro.2008.02.022] [PMID: 18471524]
[40]
Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439(7072): 84-8.
[http://dx.doi.org/10.1038/nature04372] [PMID: 16397499]
[41]
Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature 2008; 456(7220): 344-9.
[http://dx.doi.org/10.1038/nature07404] [PMID: 18849962]
[42]
Pipino C, Shangaris P, Resca E, et al. Placenta as a reservoir of stem cells: An underutilized resource? Br Med Bull 2013; 105(1): 43-68.
[http://dx.doi.org/10.1093/bmb/lds033] [PMID: 23184854]
[43]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[44]
Rosa V, Botero TM, Nör JE. Regenerative endodontics in light of the stem cell paradigm. Int Dent J 2011; 61(1)(Suppl. 1): 23-8.
[http://dx.doi.org/10.1111/j.1875-595X.2011.00026.x] [PMID: 21726222]
[45]
Nör JE. Tooth regeneration in operative dentistry. Oper Dent 2006; 31(6): 633-42.
[http://dx.doi.org/10.2341/06-000] [PMID: 17153970]
[46]
Albuquerque MTP, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res 2014; 93(12): 1222-31.
[http://dx.doi.org/10.1177/0022034514549809] [PMID: 25201917]
[47]
Cordeiro MM, Dong Z, Kaneko T, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34(8): 962-9.
[http://dx.doi.org/10.1016/j.joen.2008.04.009] [PMID: 18634928]
[48]
Gotlieb EL, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth. J Am Dent Assoc 2008; 139(4): 457-65.
[http://dx.doi.org/10.14219/jada.archive.2008.0189] [PMID: 18385030]
[49]
Rosa V, Zhang Z, Grande RHM, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92(11): 970-5.
[http://dx.doi.org/10.1177/0022034513505772] [PMID: 24056227]
[50]
Murray PE, Stanley HR, Matthews JB, Sloan AJ, Smith AJ. Age-related odontometric changes of human teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 93(4): 474-82.
[http://dx.doi.org/10.1067/moe.2002.120974] [PMID: 12029288]
[51]
Duthey B. Background paper 6.11: Alzheimer disease and other dementias. A Public Health Approach to Innovation 2013; 1-74. Available from: http://www.who.int/medicines/areas/priority_ medicines/BP611Alzheimer.pdf.
[52]
Marras C, Tanner CM. Epidemiology of Parkinson’s disease.Movement Disorders, Neurologic Principles and Practice. New York: McGraw Hill 2004; pp. 177-96.
[53]
Kelly DF, Becker DP. Advances in management of neurosurgical trauma: USA and Canada. World J Surg 2001; 25(9): 1179-85.
[http://dx.doi.org/10.1007/s00268-001-0080-x] [PMID: 11571956]
[54]
Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009; 35(11): 1536-42.
[http://dx.doi.org/10.1016/j.joen.2009.07.024] [PMID: 19840643]
[55]
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4(10): 806-18.
[http://dx.doi.org/10.1038/nrn1221] [PMID: 14523380]
[56]
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol 2016; 231(9): 2048-63.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[57]
Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci 2013; 51(2): 307-17.
[http://dx.doi.org/10.1007/s12031-013-0046-0] [PMID: 23797732]
[58]
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 2014; 6(1): 21-6.
[PMID: 24551431]
[59]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[60]
Pavan WJ, Raible DW. Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 2012; 366(1): 55-63.
[http://dx.doi.org/10.1016/j.ydbio.2012.02.038] [PMID: 22465373]
[61]
Russek NS, Jensen MB. Histological quantification of brain tissue inflammatory cell infiltration after focal cerebral infarction: A systematic review. Int J Neurosci 2014; 124(3): 160-5.
[http://dx.doi.org/10.3109/00207454.2013.833509] [PMID: 23991681]
[62]
Balkaya M, Kröber JM, Rex A, Endres M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab 2013; 33(3): 330-8.
[http://dx.doi.org/10.1038/jcbfm.2012.185] [PMID: 23232947]
[63]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[64]
Sugimura-Wakayama Y, Katagiri W, Osugi M, et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev 2015; 24(22): 2687-99.
[http://dx.doi.org/10.1089/scd.2015.0104] [PMID: 26154068]
[65]
Lukersmith S. International perspectives on spinal cord injury 1-15.http://etd.uwc.ac.za/xmlui/bitstream/handle/11394/6863/3260-4143-1-SM.pdf?sequence=1
[66]
Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008; 26(3): 638-45.
[http://dx.doi.org/10.1634/stemcells.2007-0484] [PMID: 18079433]
[67]
Yamaguchi S, Shibata R, Yamamoto N, et al. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 2015; 5
[http://dx.doi.org/10.1038/srep16295]
[68]
Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: Stem cells and beyond. Int J Mol Sci 2019; 20(6): 1420.
[http://dx.doi.org/10.3390/ijms20061420]
[69]
Gyöngyösi M, Wojakowski W, Lemarchand P, et al. ACCRUE Investigators. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 2015; 116(8): 1346-60.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304346] [PMID: 25700037]
[70]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[71]
Ishikawa J, Takahashi N, Matsumoto T, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone 2016; 83: 210-9.
[http://dx.doi.org/10.1016/j.bone.2015.11.012] [PMID: 26603475]
[72]
El-Badrawy MK, Shalabi NM, Mohamed MA, Ragab A, Abdelwahab HW. Stem cells and lung regeneration. Int J Stem Cells 2016; 9(1): 31-5.
[http://dx.doi.org/10.15283/ijsc.2016.9.1.31] [PMID: 27426083]
[73]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[74]
Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther 2019; 10(1): 39.
[http://dx.doi.org/10.1186/s13287-019-1134-z] [PMID: 30670101]
[75]
Hattori Y, Kim H, Tsuboi N, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 2015; 10(10): e0140121.
[http://dx.doi.org/10.1371/journal.pone.0140121] [PMID: 26509261]
[76]
Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: New concepts and experimental evidence. Anesthesiology 2012; 116(5): 1139-48.
[http://dx.doi.org/10.1097/ALN.0b013e31824f951b] [PMID: 22415388]
[77]
Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med 2008; 59: 311-25.
[http://dx.doi.org/10.1146/annurev.med.59.061506.154239] [PMID: 17914926]
[78]
Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol 2006; 169(2): 372-87.
[http://dx.doi.org/10.2353/ajpath.2006.060043] [PMID: 16877340]
[79]
Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptor- mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol 2009; 13(1): 9-14.
[http://dx.doi.org/10.1007/s10157-008-0119-5] [PMID: 19085040]
[80]
Yoshida M, Honma S. Regeneration of injured renal tubules. J Pharmacol Sci 2014; 124(2): 117-22.
[http://dx.doi.org/10.1254/jphs.13R12CP] [PMID: 24463777]
[81]
da Silva LB, Palma PV, Cury PM, Bueno V. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury. Int Immunopharmacol 2007; 7(13): 1609-16.
[http://dx.doi.org/10.1016/j.intimp.2007.08.014] [PMID: 17996670]
[82]
Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 2007; 18(9): 2486-96.
[http://dx.doi.org/10.1681/ASN.2007020140] [PMID: 17656474]
[83]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[http://dx.doi.org/10.1634/stemcells.2005-0342] [PMID: 16410387]
[84]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical- size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[85]
Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011; 13(5): 598-605.
[http://dx.doi.org/10.3109/14653249.2010.542462] [PMID: 21341975]
[86]
Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013; 44(2): 551-4.
[http://dx.doi.org/10.1161/STROKEAHA.112.676759] [PMID: 23238858]
[87]
Ma L, Aijima R, Hoshino Y, et al. Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res Ther 2015; 6(1): 104.
[http://dx.doi.org/10.1186/s13287-015-0091-4] [PMID: 26012584]
[88]
El Moshy S, Radwan IA, Rady D, et al. Dental stem cell-derived secretome/conditioned medium: The future for regenerative therapeutic applications. Stem Cells Int 2020; 2020: 7593402.
[http://dx.doi.org/10.1155/2020/7593402] [PMID: 32089709]
[89]
Ueda M, Nishino Y. Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg 2010; 21(6): 1861-6.
[http://dx.doi.org/10.1097/SCS.0b013e3181f43f0a] [PMID: 21119440]
[90]
Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep 2019; 9(1): 1535.
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[91]
Hirata M, Ishigami M, Matsushita Y, et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl Med 5(10): 1416-24.
[http://dx.doi.org/10.5966/sctm.2015-0353]
[92]
Ishkitiev N, Yaegaki K, Imai T, et al. Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 2015; 21(3-4): 586-93.
[http://dx.doi.org/10.1089/ten.tea.2014.0162] [PMID: 25234861]
[93]
Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 2012; 38(4): 475-80.
[http://dx.doi.org/10.1016/j.joen.2011.12.011] [PMID: 22414832]
[94]
Vasanthan P, Gnanasegaran N, Govindasamy V, et al. Comparison of fetal bovine serum and human platelet lysate in cultivation and differentiation of dental pulp stem cells into hepatic lineage cells. Biochem Eng J 2014; 88: 142-53.
[http://dx.doi.org/10.1016/j.bej.2014.04.007]
[95]
Ishkitiev N, Yaegaki K, Calenic B, et al. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 2010; 36(3): 469-74.
[http://dx.doi.org/10.1016/j.joen.2009.12.022] [PMID: 20171365]
[96]
Su WT, Chen XW. Stem cells from human exfoliated deciduous teeth differentiate into functional hepatocyte-like cells by herbal medicine. Biomed Mater Eng 2014; 24(6): 2243-7.
[http://dx.doi.org/10.3233/BME-141036] [PMID: 25226923]
[97]
Okada M, Ishkitiev N, Yaegaki K, et al. Hydrogen sulphide increases hepatic differentiation of human tooth pulp stem cells compared with human bone marrow stem cells. Int Endod J 2014; 47(12): 1142-50.
[http://dx.doi.org/10.1111/iej.12262] [PMID: 24517624]
[98]
Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6(1): 171.
[http://dx.doi.org/10.1186/s13287-015-0154-6] [PMID: 26358689]
[99]
Govindasamy V, Ronald VS, Abdullah AN, et al. Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 2011; 90(5): 646-52.
[100]
Gaihre B, Uswatta S, Jayasuriya AC. Reconstruction of craniomaxillofacial bone defects using tissue-engineering strategies with injectable and non-injectable scaffolds. J Funct Biomater 2017; 8(4): 49.
[http://dx.doi.org/10.3390/jfb8040049] [PMID: 29156629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy