Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Potential Therapeutic Role of Carnitine and Acetylcarnitine in Neurological Disorders

Author(s): Cecilia Maldonado *, Marta Vázquez and Pietro Fagiolino

Volume 26, Issue 12, 2020

Page: [1277 - 1285] Pages: 9

DOI: 10.2174/1381612826666200212114038

Price: $65

Abstract

Background: Current therapy of neurological disorders has several limitations. Although a high number of drugs are clinically available, several subjects do not achieve full symptomatic remission. In recent years, there has been an increasing interest in the therapeutic potential of L-carnitine (LCAR) and acetyl-L-carnitine (ALCAR) because of the multiplicity of actions they exert in energy metabolism, as antioxidants, neuromodulators and neuroprotectors. They also show excellent safety and tolerability profile.

Objective: To assess the role of LCAR and ALCAR in neurological disorders.

Methods: A meticulous review of the literature was conducted in order to establish the linkage between LCAR and ALCAR and neurological diseases.

Results: LCAR and ALCAR mechanisms and effects were studied for Alzheimer’s disease, depression, neuropathic pain, bipolar disorder, Parkinson’s disease and epilepsy in the elderly. Both substances exert their actions mainly on primary metabolism, enhancing energy production, through β-oxidation, and the ammonia elimination via urea cycle promotion. These systemic actions impact positively on the Central Nervous System state, as Ammonia and energy depletion seem to underlie most of the neurotoxic events, such as inflammation, oxidative stress, membrane degeneration, and neurotransmitters disbalances, present in neurological disorders, mainly in the elderly. The impact on bipolar disorder is controversial. LCAR absorption seems to be impaired in the elderly due to the decrease of active transportation; therefore, ALCAR seems to be the more effective option to administer.

Conclusion: ALCAR emerges as a simple, economical and safe adjuvant option in order to impair the progression of most neurological disorders.

Keywords: L-carnitine, acetylcarnitine, acetyl-CoA, ammonia, neurological diseases, elderly.

[1]
Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J 2002; 361(Pt 3): 417-29.
[http://dx.doi.org/10.1042/bj3610417] [PMID: 11802770]
[2]
Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J 1992; 6(15): 3379-86.
[http://dx.doi.org/10.1096/fasebj.6.15.1464372] [PMID: 1464372]
[3]
Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) 2010; 7: 30.
[http://dx.doi.org/10.1186/1743-7075-7-30] [PMID: 20398344]
[4]
Nałecz KA, Miecz D, Berezowski V, Cecchelli R. Carnitine: transport and physiological functions in the brain. Mol Aspects Med 2004; 25(5-6): 551-67.
[http://dx.doi.org/10.1016/j.mam.2004.06.001] [PMID: 15363641]
[5]
Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA. Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 2006; 17(2): 73-88.
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.027] [PMID: 16413418]
[6]
Tacconi MT. Involvement of Carnitine in Reye’s and Reye-Like Syndromes Carnitine Today Molecular Biology Intelligence Unit. Boston, MA: Springer 1997.
[http://dx.doi.org/10.1007/978-1-4615-6005-0_9]
[7]
Stumpf DA, Parker WD Jr, Angelini C. Carnitine deficiency, organic acidemias, and Reye’s syndrome. Neurology 1985; 35(7): 1041-5.
[http://dx.doi.org/10.1212/WNL.35.7.1041] [PMID: 3892364]
[8]
Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 2000; 5(6): 616-32.
[http://dx.doi.org/10.1038/sj.mp.4000805] [PMID: 11126392]
[9]
Ronowska A, Szutowicz A, Bielarczyk H, et al. The regulatory effects of acetyl-coa distribution in the healthy and diseased brain. Front Cell Neurosci 2018; 12: 169.
[http://dx.doi.org/10.3389/fncel.2018.00169] [PMID: 30050410]
[10]
Ferreira GC, McKenna MC. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem Res 2017; 42(6): 1661-75.
[http://dx.doi.org/10.1007/s11064-017-2288-7] [PMID: 28508995]
[11]
Curti D, Dagani F, Galmozzi MR, Marzatico F. Effect of aging and acetyl-L-carnitine on energetic and cholinergic metabolism in rat brain regions. Mech Ageing Dev 1989; 47(1): 39-45.
[http://dx.doi.org/10.1016/0047-6374(89)90005-5] [PMID: 2542702]
[12]
Walker V. Severe hyperammonaemia in adults not explained by liver disease. Ann Clin Biochem 2012; 49(Pt 3): 214-28.
[http://dx.doi.org/10.1258/acb.2011.011206] [PMID: 22349554]
[13]
Liu J, Lkhagva E, Chung HJ, Kim HJ, Hong ST. The pharmabiotic approach to treat hyperammonemia. Nutrients 2018; 10(2) E140
[http://dx.doi.org/10.3390/nu10020140] [PMID: 29382084]
[14]
Zieve L. Pathogenesis of hepatic encephalopathy. Metab Brain Dis 1987; 2(3): 147-65.
[http://dx.doi.org/10.1007/BF00999607] [PMID: 2905418]
[15]
Ott P, Clemmesen O, Larsen FS. Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 2005; 47(1-2): 13-8.
[http://dx.doi.org/10.1016/j.neuint.2005.04.002] [PMID: 15921824]
[16]
Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 2005; 80(10): 1326-38.
[http://dx.doi.org/10.4065/80.10.1326] [PMID: 16212146]
[17]
Segura-Bruna N, Rodriguez-Campello A, Puente V, Roquer J. Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 2006; 114(1): 1-7.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00655.x] [PMID: 16774619]
[18]
Adlimoghaddam A, Sabbir MG, Albensi BC. Ammonia as a Potential neurotoxic factor in Alzheimer’s disease. Front Mol Neurosci 2016; 9: 57.
[http://dx.doi.org/10.3389/fnmol.2016.00057] [PMID: 27551259]
[19]
Maldonado C, Guevara N, Queijo C, González R, Fagiolino P, Vázquez M. Carnitine and/or acetylcarnitine deficiency as a cause of higher levels of ammonia. BioMed Res Int 2016; 2016 2920108
[http://dx.doi.org/10.1155/2016/2920108] [PMID: 26998483]
[20]
Opalka JR, Gellerich FN, Zierz S. Age and sex dependency of carnitine concentration in human serum and skeletal muscle. Clin Chem 2001; 47(12): 2150-3.
[http://dx.doi.org/10.1093/clinchem/47.12.2150] [PMID: 11719481]
[21]
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71(4): 505-8.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[22]
Bejanin A, Schonhaut DR, La Joie R, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017; 140(12): 3286-300.
[http://dx.doi.org/10.1093/brain/awx243] [PMID: 29053874]
[23]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[24]
Hampel H, Mesulam MM, Cuello AC, et al. Revisiting the cholinergic hypothesis in alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 2019; 6(1): 2-15.
[PMID: 30569080]
[25]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[26]
Jin YY, Singh P, Chung HJ, Hong ST. Blood ammonia as a possible etiological agent for alzheimer’s disease. Nutrients 2018; 10(5): 564.
[http://dx.doi.org/10.3390/nu10050564] [PMID: 29734664]
[27]
Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 2002; 17(4): 221-7.
[http://dx.doi.org/10.1023/A:1021989230535] [PMID: 12602499]
[28]
Branconnier RJ, Dessain EC, McNiff ME, Cole JO. Blood ammonia and Alzheimer’s disease. Am J Psychiatry 1986; 143(10): 1313-4.
[http://dx.doi.org/10.1176/ajp.143.10.1313] [PMID: 3766798]
[29]
Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 1997; 56(4): 687-96.
[http://dx.doi.org/10.1016/S0091-3057(96)00431-5] [PMID: 9130295]
[30]
Marin DB, Davis K. Experimental therapeutics Psychopharmacology: the fourth generation of progress. New York: Raven Press 1995; pp. 1417-26.
[31]
Taglialatela G, Navarra D, Cruciani R, Ramacci MT, Alemà GS, Angelucci L. Acetyl-L-carnitine treatment increases nerve growth factor levels and choline acetyltransferase activity in the central nervous system of aged rats. Exp Gerontol 1994; 29(1): 55-66.
[http://dx.doi.org/10.1016/0531-5565(94)90062-0] [PMID: 8187841]
[32]
Pettegrew JW, Klunk WE, Panchalingam K, Kanfer JN, McClure RJ. Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer’s disease. Neurobiol Aging 1995; 16(1): 1-4.
[http://dx.doi.org/10.1016/0197-4580(95)80001-8] [PMID: 7723928]
[33]
Sano M, Bell K, Cote L, et al. Double-blind parallel design pilot study of acetyl levocarnitine in patients with Alzheimer’s disease. Arch Neurol 1992; 49(11): 1137-41.
[http://dx.doi.org/10.1001/archneur.1992.00530350051019] [PMID: 1444880]
[34]
Thal LJ, Carta A, Clarke WR, et al. A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer’s disease. Neurology 1996; 47(3): 705-11.
[http://dx.doi.org/10.1212/WNL.47.3.705] [PMID: 8797468]
[35]
Spagnoli A, Lucca U, Menasce G, et al. Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 1991; 41(11): 1726-32.
[http://dx.doi.org/10.1212/WNL.41.11.1726] [PMID: 1944900]
[36]
Rapoport SI. Anatomic and functional brain imaging in Alzheimer’s disease Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press 1995; pp. 1401-15.
[37]
Kish SJ. Brain energy metabolizing enzymes in Alzheimer’s disease: alpha-ketoglutarate dehydrogenase complex and cytochrome oxidase. Ann N Y Acad Sci 1997; 826: 218-28.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48473.x] [PMID: 9329693]
[38]
Lemberg A, Fernández MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol 2009; 8(2): 95-102.
[http://dx.doi.org/10.1016/S1665-2681(19)31785-5] [PMID: 19502650]
[39]
Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003; 18(2): 61-71.
[http://dx.doi.org/10.1097/00004850-200303000-00001] [PMID: 12598816]
[40]
Bianchetti A, Rozzini R, Trabucchi M. Effects of acetyl-L-carnitine in Alzheimer’s disease patients unresponsive to acetylcholinesterase inhibitors. Curr Med Res Opin 2003; 19(4): 350-3.
[PMID: 12841930]
[41]
Passeri M, Cucinotta D, Bonati PA, Iannuccelli M, Parnetti L, Senin U. Acetyl-L-carnitine in the treatment of mildly demented elderly patients. Int J Clin Pharmacol Res 1990; 10(1-2): 75-9.
[PMID: 2201659]
[42]
Pettegrew JW, Klunk WE, Kanal E, Panchalingam K, McClure RJ. Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol Aging 1995; 16(6): 973-5.
[http://dx.doi.org/10.1016/0197-4580(95)02017-9] [PMID: 8622789]
[43]
Lassmann H, Fischer P, Jellinger K. Synaptic pathology of Alzheimer’s disease. Ann N Y Acad Sci 1993; 695: 59-64.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23028.x] [PMID: 8239314]
[44]
Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 1996; 7(3): 128-34.
[PMID: 8740626]
[45]
Wakabayashi K, Honer WG, Masliah E. Synapse alterations in the hippocampal-entorhinal formation in Alzheimer’s disease with and without Lewy body disease. Brain Res 1994; 667(1): 24-32.
[http://dx.doi.org/10.1016/0006-8993(94)91709-4] [PMID: 7895080]
[46]
Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatr 1998; 10(1): 11-23.
[http://dx.doi.org/10.1017/S1041610298005110] [PMID: 9629521]
[47]
Yao PJ, Coleman PD. Reduced O-glycosylated clathrin assembly protein AP180: implication for synaptic vesicle recycling dysfunction in Alzheimer’s disease. Neurosci Lett 1998; 252(1): 33-6.
[http://dx.doi.org/10.1016/S0304-3940(98)00547-3] [PMID: 9756352]
[48]
Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 2006; 545(1): 51-64.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.025] [PMID: 16904103]
[49]
Mancuso C, Bates TE, Butterfield DA, et al. Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 2007; 16(12): 1921-31.
[http://dx.doi.org/10.1517/13543784.16.12.1921] [PMID: 18042001]
[50]
Hudson S, Tabet N. Acetyl-L-carnitine for dementia. Cochrane Database Syst Rev 2003; (2): CD003158
[PMID: 12804452]
[51]
Yang Y, Choi H, Lee CN, Kim YB, Kwak YTA. Multicenter, Randomized, double-blind, placebo-controlled clinical trial for efficacy of acetyl-l-carnitine in patients with dementia associated with cerebrovascular disease. Dement Neurocognitive Disord 2018; 17(1): 1-10.
[http://dx.doi.org/10.12779/dnd.2018.17.1.1] [PMID: 30906386]
[52]
Timonen M, Liukkonen T. Management of depression in adults. BMJ 2008; 336(7641): 435-9.
[http://dx.doi.org/10.1136/bmj.39478.609097.BE] [PMID: 18292169]
[53]
Hibbeln JR, Palmer JW, Davis JM. Are disturbances in lipid-protein interactions by phospholipase-A2 a predisposing factor in affective illness? Biol Psychiatry 1989; 25(7): 945-61.
[http://dx.doi.org/10.1016/0006-3223(89)90274-6] [PMID: 2566335]
[54]
Pettegrew JW, Minshew NJ, Spiker D, et al. Alterations in membrane molecular dynamics in erythrocytes of patients with affective illness. Depression 1993; 1: 88-100.
[http://dx.doi.org/10.1002/depr.3050010205]
[55]
Pettegrew JW. Toward a molecular basis for affective disordersDepression - Basic Mechanisms, Diagnosis and Treatment. New York: Guilford Press 1986; pp. 183-204.
[56]
Smeland OB, Meisingset TW, Borges K, Sonnewald U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int 2012; 61(1): 100-7.
[http://dx.doi.org/10.1016/j.neuint.2012.04.008] [PMID: 22549035]
[57]
Tempesta E, Casella L, Pirrongelli C, Janiri L, Calvani M, Ancona L. L-acetylcarnitine in depressed elderly subjects. A cross-over study vs placebo. Drugs Exp Clin Res 1987; 13(7): 417-23.
[PMID: 3308388]
[58]
Garzya G, Corallo D, Fiore A, Lecciso G, Petrelli G, Zotti C. Evaluation of the effects of L-acetylcarnitine on senile patients suffering from depression. Drugs Exp Clin Res 1990; 16(2): 101-6.
[PMID: 2205455]
[59]
Bella R, Biondi R, Raffaele R, Pennisi G. Effect of acetyl-L-carnitine on geriatric patients suffering from dysthymic disorders. Int J Clin Pharmacol Res 1990; 10(6): 355-60.
[PMID: 2099360]
[60]
Bersani G, Meco G, Denaro A, et al. L-Acetylcarnitine in dysthymic disorder in elderly patients: a double-blind, multicenter, controlled randomized study vs. fluoxetine. Eur Neuropsychopharmacol 2013; 23(10): 1219-25.
[http://dx.doi.org/10.1016/j.euroneuro.2012.11.013] [PMID: 23428336]
[61]
Nasca C, Xenos D, Barone Y, et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 2013; 110(12): 4804-9.
[http://dx.doi.org/10.1073/pnas.1216100110] [PMID: 23382250]
[62]
Veronese N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S. Acetyl-L-Carnitine supplementation and the treatment of depressive symptoms: a systematic review and meta-analysis. Psychosom Med 2018; 80(2): 154-9.
[http://dx.doi.org/10.1097/PSY.0000000000000537] [PMID: 29076953]
[63]
Chiechio S, Canonico PL, Grilli M. l-Acetylcarnitine: A mechanistically distinctive and potentially rapid-acting antidepressant drug. Int J Mol Sci 2017; 19(1) E11
[http://dx.doi.org/10.3390/ijms19010011] [PMID: 29267192]
[64]
Chiechio S, Copani A, Nicoletti F, Gereau RW IV. L-acetylcarnitine: a proposed therapeutic agent for painful peripheral neuropathies. Curr Neuropharmacol 2006; 4(3): 233-7.
[http://dx.doi.org/10.2174/157015906778019509] [PMID: 18615142]
[65]
Dworkin RH, O’Connor AB, Audette J, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 2010; 85(3)(Suppl.): S3-S14.
[http://dx.doi.org/10.4065/mcp.2009.0649] [PMID: 20194146]
[66]
Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288(5472): 1765-9.
[http://dx.doi.org/10.1126/science.288.5472.1765] [PMID: 10846153]
[67]
Duggan AW, Hope PJ, Jarrott B, Schaible HG, Fleetwood-Walker SM. Release, spread and persistence of immunoreactive neurokinin A in the dorsal horn of the cat following noxious cutaneous stimulation. Studies with antibody microprobes. Neuroscience 1990; 35(1): 195-202.
[http://dx.doi.org/10.1016/0306-4522(90)90134-P] [PMID: 2163031]
[68]
Mazzitelli M, Palazzo E, Maione S, Neugebauer V. Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation. Front Mol Neurosci 2018; 11: 383.
[http://dx.doi.org/10.3389/fnmol.2018.00383] [PMID: 30356691]
[69]
Chiechio S, Caricasole A, Barletta E, et al. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Mol Pharmacol 2002; 61(5): 989-96.
[http://dx.doi.org/10.1124/mol.61.5.989] [PMID: 11961116]
[70]
Chiechio S, Copani A, Melchiorri D, et al. Metabotropic receptors as targets for drugs of potential use in the treatment of neuropathic pain. J Endocrinol Invest 2004; 27(6)(Suppl.): 171-6.
[PMID: 15481819]
[71]
Sima AA, Calvani M, Mehra M, Amato A. Acetyl-L-Carnitine Study Group.Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care 2005; 28(1): 89-94.
[http://dx.doi.org/10.2337/diacare.28.1.89] [PMID: 15616239]
[72]
Phillips TJ, Cherry CL, Cox S, Marshall SJ, Rice AS. Pharmacological treatment of painful HIV-associated sensory neuropathy: a systematic review and meta-analysis of randomised controlled trials. PLoS One 2010; 5(12) e14433
[http://dx.doi.org/10.1371/journal.pone.0014433] [PMID: 21203440]
[73]
Herzmann C, Johnson MA, Youle M. Long-term effect of acetyl-L-carnitine for antiretroviral toxic neuropathy. HIV Clin Trials 2005; 6(6): 344-50.
[http://dx.doi.org/10.1310/CH1N-YBNU-G3CU-JBXR] [PMID: 16566084]
[74]
Hart AM, Wilson AD, Montovani C, et al. Acetyl-l-carnitine: a pathogenesis based treatment for HIV-associated antiretroviral toxic neuropathy. AIDS 2004; 18(11): 1549-60.
[http://dx.doi.org/10.1097/01.aids.0000131354.14408.fb] [PMID: 15238773]
[75]
Famularo G, Moretti S, Marcellini S, et al. Acetyl-carnitine deficiency in AIDS patients with neurotoxicity on treatment with antiretroviral nucleoside analogues. AIDS 1997; 11(2): 185-90.
[http://dx.doi.org/10.1097/00002030-199702000-00008] [PMID: 9030365]
[76]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[77]
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[78]
Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 2010; 225(1): 210-8.
[http://dx.doi.org/10.1016/j.expneurol.2010.06.017] [PMID: 20599975]
[79]
Bloch A, Probst A, Bissig H, Adams H, Tolnay M. α-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 2006; 32(3): 284-95.
[http://dx.doi.org/10.1111/j.1365-2990.2006.00727.x] [PMID: 16640647]
[80]
Beach TG, Adler CH, Sue LI, et al. Arizona Parkinson’s Disease Consortium.Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010; 119(6): 689-702.
[http://dx.doi.org/10.1007/s00401-010-0664-3] [PMID: 20306269]
[81]
Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 2014; 289(31): 21490-507.
[http://dx.doi.org/10.1074/jbc.M113.545749] [PMID: 24942732]
[82]
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 2008; 29(11): 1690-701.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.006] [PMID: 17537546]
[83]
Zhang H, Jia H, Liu J, et al. Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease. J Cell Mol Med 2010; 14(1-2): 215-25.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00390.x] [PMID: 20414966]
[84]
Zaitone SA, Abo-Elmatty DM, Shaalan AA. Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson’s disease therapy. Pharmacol Biochem Behav 2012; 100(3): 347-60.
[http://dx.doi.org/10.1016/j.pbb.2011.09.002] [PMID: 21958946]
[85]
Judd LL, Schettler PJ, Solomon DA, et al. Psychosocial disability and work role function compared across the long-term course of bipolar I, bipolar II and unipolar major depressive disorders. J Affect Disord 2008; 108(1-2): 49-58.
[http://dx.doi.org/10.1016/j.jad.2007.06.014] [PMID: 18006071]
[86]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[87]
Perry W, Minassian A, Paulus MP, et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 2009; 66(10): 1072-80.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.58] [PMID: 19805697]
[88]
Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA. The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 2010; 96(1): 7-15.
[http://dx.doi.org/10.1016/j.pbb.2010.03.014] [PMID: 20363246]
[89]
Winter C, von Rumohr A, Mundt A, et al. Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 2007; 184(2): 133-41.
[http://dx.doi.org/10.1016/j.bbr.2007.07.002] [PMID: 17698212]
[90]
Sidor MM, Spencer SM, Dzirasa K, et al. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol Psychiatry 2015; 20(11): 1406-19.
[http://dx.doi.org/10.1038/mp.2014.167] [PMID: 25560763]
[91]
Chung S, Lee EJ, Yun S, et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 2014; 157(4): 858-68.
[http://dx.doi.org/10.1016/j.cell.2014.03.039] [PMID: 24813609]
[92]
Farah A. Atypicality of atypical antipsychotics. Prim Care Companion J Clin Psychiatry 2005; 7(6): 268-74.
[http://dx.doi.org/10.4088/PCC.v07n0602] [PMID: 16498489]
[93]
Scheggi S, Rauggi R, Nanni G, Tagliamonte A, Gambarana C. Repeated acetyl-l-carnitine administration increases phospho-Thr34 DARPP-32 levels and antagonizes cocaine-induced increase in Cdk5 and phospho-Thr75 DARPP-32 levels in rat striatum. Eur J Neurosci 2004; 19(6): 1609-20.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03230.x] [PMID: 15066157]
[94]
Juliet PA, Balasubramaniam D, Balasubramaniam N, Panneerselvam C. Carnitine: a neuromodulator in aged rats. J Gerontol A Biol Sci Med Sci 2003; 58(11): 970-4.
[http://dx.doi.org/10.1093/ gerona/58.11.B970] [PMID: 14630876]
[95]
Evcimen H, Mania I, Mathews M, Basil B. Psychosis precipitated by acetyl-l-carnitine in a patient with bipolar disorder. Prim Care Companion J Clin Psychiatry 2007; 9(1): 71-2.
[http://dx.doi.org/10.4088/PCC.v09n0114d] [PMID: 17599177]
[96]
Goodison G, Overeem K, de Monte V, Siskind D. Mania associated with self-prescribed acetyl-l-carnitine in a man with bipolar I disorder. Australas Psychiatry 2017; 25(1): 13-4.
[http://dx.doi.org/10.1177/1039856216658831] [PMID: 27406927]
[97]
Yatham LN, Liddle PF, Shiah IS, et al. PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry 2002; 159(5): 768-74.
[http://dx.doi.org/10.1176/appi.ajp.159.5.768] [PMID: 11986130]
[98]
Ohtani Y, Endo F, Matsuda I. Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J Pediatr 1982; 101(5): 782-5.
[http://dx.doi.org/10.1016/S0022-3476(82)80320-X] [PMID: 6813444]
[99]
Vázquez M, Fagiolino P, Maldonado C, et al. Hyperammonemia associated with valproic acid concentrations. BioMed Res Int 2014; 2014: 217269
[http://dx.doi.org/10.1155/2014/217269] [PMID: 24868521]
[100]
Vasudev K, Sharma P. Is Valproate depressogenic in patients remitting from acute mania? case series. Case Rep Psychiatry 2015; 2015: 456830
[http://dx.doi.org/10.1155/2015/456830] [PMID: 26664794]
[101]
Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc 1996; 71(6): 576-86.
[http://dx.doi.org/10.4065/71.6.576] [PMID: 8642887]
[102]
de la Court A, Breteler MM, Meinardi H, Hauser WA, Hofman A. Prevalence of epilepsy in the elderly: the Rotterdam Study. Epilepsia 1996; 37(2): 141-7.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb00005.x] [PMID: 8635424]
[103]
Leppik IE, Birnbaum AK. Epilepsy in the elderly. Ann N Y Acad Sci 2010; 1184: 208-24.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05113.x] [PMID: 20146700]
[104]
Ahmed SN, Siddiqi ZA. Antiepileptic drugs and liver disease. Seizure 2006; 15(3): 156-64.
[http://dx.doi.org/10.1016/j.seizure.2005.12.009] [PMID: 16442314]
[105]
Siemes H, Nau H, Schultze K, et al. Valproate (VPA) metabolites in various clinical conditions of probable VPA-associated hepatotoxicity. Epilepsia 1993; 34(2): 332-46.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb02419.x] [PMID: 8453944]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy