[1]
Temiz-Arpaci, O.; Yildiz, I.; Ozkan, S.; Kaynak, F.; Aki-Sener, E.; Yalçin, I. Synthesis and biological activity of some new benzoxazoles. Eur. J. Med. Chem., 2008, 43, 1423-1431.
[2]
Fillaut, J.L.; De Los Rios, I.; Masi, D.; Romerosa, A.; Zanobini, F.; Peruzzini, M. Synthesis and structural characterization of (carbene) ruthenium complexes binding nucleobases. Eur. J. Inorg. Chem., 2002, 2002, 935-942.
[3]
Ivaska, A.; Vaneesorn, Y.; Davidson, I.E.; Smyth, W.F. Voltammetric on-line analysis for some sulphur-containing drugs. Anal. Chim. Acta, 1980, 121, 51-59.
[4]
Abu-Eittah, R.; Osman, A. Studies on the formation of mixed-ligand complexes of cobalt (II) with ammonia and some barbiturates. J. Inorg. Nucl. Chem., 1979, 41, 1079-1085.
[5]
Murphy, R.; Svehla, G. An analytical study of metal-thiobarbituric acid complexes. Anal. Chim. Acta, 1978, 99, 115-124.
[6]
Smyth, W.; Svehla, G.; Zuman, P. Polarography of some sulphur-containing compounds: Part XVI. Polarographic and spectral investigation of acid-base equilibria in aqueous solutions of 2-thiobarbituric acids with substituents on sulphur. Anal. Chim. Acta, 1970, 52, 129-138.
[7]
Izatt, R.M.; Christensen, J.J.; Rytting, J.H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and and nucleotides. Chem. Rev., 1971, 71, 439-481.
[8]
Smyth, W.F.; Jenkins, T.; Siekiera, J.; Baydar, A. Acid-base equilibria of some 6-membered n-heterocyclic compounds. Anal. Chim. Acta, 1975, 80, 233-244.
[9]
Tóth, A.; Billes, F. Ultraviolet spectroscopic study of the acid base equilibrium of pyrimidine derivatives. I. Uracil derivatives. Acta Chir. Acad. Sci. Hung., 1968, 56, 229-250.
[10]
Martin, H.; Driscoll, J. Gas chromatographic identification and determination of barbiturates. Anal. Chem., 1966, 38, 345-346.
[11]
Gudzinowicz, B.; Clark, S. The gas chromatographic analysis of low concentrations of barbiturates using an electron affinity detector. J. Chromatogr. Sci., 1965, 3, 147-151.
[12]
Poethke, W.; Behrendt, H. Polarography of 1,8-dihydroxy-anthraquinone. Pharm. Zentralhalle Dtschl., 1964, 104, 4-13.
[13]
Jain, N.C.; Fontan, C.R.; Kirk, P.L. Rapid extraction method for barbiturates from blood for gas-liquid chromatographic analysis. Microchem. J., 1964, 8, 28-34.
[14]
Kazyak, L.; Knoblock, E.C. Application of gas chromatography to analytical toxicology. Anal. Chem., 1963, 35, 1448-1452.
[15]
Svendsen, A.B.; Brochmann-Hanssen, E. Gas chromatography of barbiturates II. Application to the study of their metabolism and excretion in humans. J. Pharm. Sci., 1962, 51, 494-495.
[16]
Brochmann-Hanssen, E.; Svendsen, A.B. Separation and identification of barbiturates and some related compounds by means of gas-liquid chromatography. J. Pharm. Sci., 1962, 51, 318-321.
[17]
Bassani, D.M. From supramolecular photochemistry to self-assembled photoactive architectures: the emergence of photochemical nanosciences. Int. J. Chem., 2006, 60, 175-178.
[18]
Brewer, A.D.; Minatelli, J.A.; Plowman, J.; Paull, K.D.; Narayanan, V. 5-(N-phenylcarboxamido)-2-thiobarbituric acid (NSC 336628), a novel potential antitumor agent. Biochem. Pharmacol., 1985, 34, 2047-2050.
[19]
Haley, T.J.; Gidley, J. Pharmacological comparison of R(+), S(−) and racemic thiopentone in mice. Eur. J. Pharmacol., 1976, 36, 211-214.
[20]
Agarwal, A.; Lata, S.; Saxena, K.; Srivastava, V.; Kumar, A. Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur. J. Med. Chem., 2006, 41, 1223-1229.
[21]
Osman, A.; Kandeel, M.; Said, M.; Ahmed, E. Synthesis and anticonvulsant activity of some spiro compounds derived frombarbituric and thiobarbituric acids: Part i. Indian J. Chem. B., 1996, 35, 1073-1078.
[22]
Cheng, Q.; Wang, Q.; Tan, T.; Wang, M.; Chen, N. Synthesis and in vitro antibacterial activities of 5-(2,3,4,5-tetrahy-dro-1H-chromeno [2,3-d] pyrimidin-5-yl)pyrimidione derivatives. Chin. J. Chem., 2012, 30, 386-390.
[23]
Yan, Q.; Cao, R.; Yi, W.; Chen, Z.; Wen, H.; Ma, L.; Song, H. Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. Eur. J. Med. Chem., 2009, 44, 4235-4243.
[24]
Zhang, D.; Zhang, J.; Li, M.; Li, W.; Aimaiti, G.; Tuersun, G.; Ye, J.; Chu, Q. A novel miniaturized electrophoretic method for determining formaldehyde and acetaldehyde in food using 2-thiobarbituric acid derivatization. Food Chem., 2011, 129, 206-212.
[25]
Matsushita, T.; Inoue, S-I.; Tanaka, R. Method for determining the total lipid content of fish meat using a 2-thiobarbituric acid reaction. J. Am. Oil Chem. Soc., 2010, 87, 963-972.
[26]
De Melo, E.B.; da Silveira Gomes, A.; Carvalho, I. α- and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron, 2006, 62, 10277-10302.
[27]
Asano, N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology, 2003, 13, 93R-104R.
[28]
Lee, H.Y.; Lee, D.S.; Kim, D.H.; Cho, S.K.; Lee, D.S. Antiviral activity of methylelaiophylin, an α-glucosidase inhibitor. J. Microbiol. Biotechnol., 2011, 21, 263-266.
[29]
Jacob, G.S. Glycosylation inhibitors in biology and medicine. Curr. Opin. Struct. Biol., 1995, 5, 605-611.
[30]
Dennis, J.W.; Laferte, S.; Waghorne, C.; Breitman, M.L.; Kerbel, R.S. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science, 1987, 236, 582-585.
[31]
Khan, K.M.; Khan, M.; Ali, M.; Taha, M.; Hameed, A.; Ali, S.; Perveen, S.; Choudhary, M.I. Synthesis and DPPH radical scavenging activity of 5-arylidene-N,N-dimethylbarbiturates. Med. Chem., 2011, 7, 231-236.
[32]
Chapdelaine, P.; Tremblay, R.R.; Dube, J. p-Nitrophenol-alpha-D-glucopyranoside as substrate for measurement of maltase activity in human semen. Clin. Chem., 1978, 24, 208-211.
[33]
Guerreiro, L.R.; Carreiro, E.P.; Fernandes, L.; Cardote, T.A.; Moreira, R.; Caldeira, A.T.; Guedes, R.C.; Burke, A. Five-membered iminocyclitol α-glucosidase inhibitors: Synthetic, biological screening and in silico studies. Bioorg. Med. Chem., 2013, 21, 1911-1917.
[34]
Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J., 2010, 277, 4205-4214.
[35]
Khan, M.; Yousaf, M.; Wadood, A.; Junaid, M.; Ashraf, M.; Alam, U.; Ali, M.; Arshad, M.; Hussain, Z.; Khan, K.M. Discovery of novel oxindole derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22, 3441-3448.
[36]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17, 490-519.
[37]
Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 2000, 21, 1049-1074.