[1]
Patel, H.S.; Mistry, H.J. Synthesis of novel sulphonamides and evaluation of their antibacterial efficacy. Phosphorus Sulfur Silicon , 2004, 179(6), 1085-1093.
[2]
Di Cesare Mannelli, L.; Micheli, L.; Carta, F.; Cozzi, A.; Ghelardini, C.; Supuran, C.T. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 894-899.
[3]
Taha, M.; Baharudin, M.S.; Ismail, N.H.; Selvaraj, M.; Salar, U.; Alkadi, K.A.; Khan, K.M. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors. Bioorg. Chem., 2017, 71, 86-96.
[4]
Riaz, S.; Khan, I.U.; Bajda, M.; Ashraf, M.; Shaukat, A.; Rehman, T.U.; Mutahir, S.; Hussain, S.; Mustafa, G.; Yar, M. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and alzheimer’s disease: in vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Bioorg. Chem., 2015, 63, 64-71.
[5]
Navarrete-Vázquez, G.; Morales-Vilchis, M.G.; Estrada-Soto, S.; Ramírez-Espinosa, J.J.; Hidalgo-Figueroa, S.; Nava-Zuazo, C.; Tlahuext, H.; Leon-Rivera, I.; Medina-Franco, J.L.; López-Vallejo, F.; Webster, S.P. Synthesis of 2-2-[(α/β-naphthalen-1-ylsulfonyl) amino]-1, 3-thiazol-4-yl acetamides with 11β-hydroxysteroid dehydrogenase inhibition and in combo antidiabetic activities. Eur. J. Med. Chem., 2014, 74, 179-186.
[6]
Ahmadi, A.; Khalili, M.; Sohrabi, L.; Delzendeh, N.; Nahri-Niknafs, B.; Ansari, F. Synthesis and evaluation of the hypoglycemic and hypolipidemic activity of sulfonamide-benzothiazole derivatives of benzylidene-2, 4-thiazolidnedione. Mini Rev. Med. Chem., 2017, 17(8), 721-726.
[7]
Seo, W.D.; Kim, J.H.; Kang, J.E.; Ryu, H.W.; Curtis-Long, M.J.; Lee, H.S.; Yang, M.S.; Park, K.H. Sulfonamide chalcone as a new class of α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(24), 5514-5516.
[8]
Husain, A.; Madhesia, D.; Rashid, M.; Ahmad, A.; Khan, S.A. Synthesis and in vivo diuretic activity of some new benzothiazole sulfonamides containing quinoxaline ring system. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1682-1689.
[9]
Altug, C.; Gunes, H.; Nocentini, A.; Monti, S.M.; Buonanno, M.; Supuran, C.T. Synthesis of isoxazole-containing sulfonamides with potent carbonic anhydrase II and VII inhibitory properties. Bioorg. Med. Chem., 2017, 25(4), 1456-1464.
[10]
Renzi, G.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: topical sulfonamide antiglaucoma agents incorporating secondary amine moieties. Bioorg. Med. Chem. Lett., 2000, 10, 673-676.
[11]
Mishra, C.B.; Kumari, S.; Angeli, A.; Monti, S.M.; Buonanno, M.; Tiwari, M.; Supuran, C.T. Discovery of benzenesulfonamides with potent human carbonic anhydrase inhibitory and effective anticonvulsant action: design, synthesis, and pharmacological assessment. J. Med. Chem., 2017, 60(6), 2456-2469.
[12]
Dudutiene, V.; Zubriene, A.; Smirnov, A.; Timm, D.D.; Smirnoviene, J.; Kazokaite, J.; Michailoviene, V.; Zaksauskas, A.; Manakova, E.; Grazulis, S.; Matulis, D. Functionalization of fluorinated benzenesulfonamides and their inhibitory properties toward carbonic anhydrases. ChemMedChem, 2015, 10(4), 662-687.
[13]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological evaluation of some new N-(2, 6-dimethoxypyrimidinyl) thioureido-benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2016, 124, 299-310.
[14]
Yaseen, S.; Ovais, S.; Bashir, R.; Rathore, P.; Samim, M.; Singh, S.; Nair, V.; Javed, K. Synthesis and biological evaluation of 4‐arylphthalazones bearing benzenesulfonamide as anti‐inflammatory and anticancer agents. Archiv der Pharmazie, , 2013, 346(6), 491-498.
[15]
Chohan, Z.H.; Shad, H.A.; Nasim, F.U.H. Synthesis, characterization and biological properties of sulfonamide‐derived compounds and their transition metal complexes. Appl. Organomet. Chem., 2009, 23(8), 319-328.
[16]
Gawin, R.; De Clercq, E.; Naesens, L.; Koszytkowska-Stawinska, M. Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure. Bioorg. Med. Chem., 2008, 16, 8379-8389.
[17]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Okafor, S.; Ibezim, A.; Kumar, N.M. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide. Eur. J. Med. Chem., 2017, 135, 349-369.
[18]
Bhuva, N.H.; Talpara, P.K.; Singala, P.M.; Gothaliya, V.K.; Shah, V.H. Synthesis and biological evaluation of pyrimidinyl sulphonamide derivatives as promising class of antitubercular agents. J. Saudi Chem. Soc., 2017, 21(5), 517-527.
[19]
Zani, F.; Vicini, P. Antimicrobial activity of some 1, 2‐benzisothiazoles having a benzenesulfonamide moiety. Archiv. der Pharmazie, 1998, 331(6), 219-223.
[20]
Li, J.J.; Anderson, D.; Burton, E.G.; Cogburn, J.N.; Collins, J.T.; Garland, D.J.; Gregory, S.A.; Huang, H.C.; Isakson, P.C. 1,2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents. J. Med. Chem., 1995, 38, 4570-4578.
[21]
Kim, D.K.; Lee, J.Y.; Lee, N.; Ryu, D.H.; Kim, J.S.; Lee, S.; Choi, J.Y.; Ryu, J.H.; Kim, N.H.; Im, G.J.; Choi, W.S.; Kim, T.K. Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5′-sulfonamide moiety of a phenyl ring. Bioorg. Med. Chem., 2001, 9, 3013-3021.
[22]
Yelovitch, S.; Barr, H.M.; Camden, J.; Weisman, G.A.; Shai, E.; Varon, D.; Fischer, B. Identification of a promising drug candidate for the treatment of type 2 diabetes based on a P2Y1 receptor agonist. J. Med. Chem., 2012, 55(17), 7623-7635.
[23]
Xu, G.; Lv, B.; Roberge, J.Y.; Xu, B.; Du, J.; Dong, J.; Chen, Y.; Peng, K.; Zhang, L.; Tang, X.; Feng, Y. Design, synthesis, and biological evaluation of deuterated C-aryl glycoside as a potent and long-acting renal sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2014, 57(4), 1236-1251.
[24]
Meltzer-Mats, E.; Babai-Shani, G.; Pasternak, L.; Uritsky, N.; Getter, T.; Viskind, O.; Eckel, J.; Cerasi, E.; Senderowitz, H.; Sasson, S.; Gruzman, A. Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives. J. Med. Chem., 2013, 56(13), 5335-5350.
[25]
Silva, F.S.; Oliveira, P.J.; Duarte, M.F. Oleanolic, ursolic, and betulinic acids as food supplements or pharmaceutical agents for Type 2 diabetes: promise or illusion? J. Agric. Food Chem., 2016, 64(15), 2991-3008.
[26]
Puranik, N.V.; Puntambekar, H.M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase. Med. Chem. Res., 2016, 25(4), 805-816.
[27]
Bian, X.; Fan, X.; Ke, C.; Luan, Y.; Zhao, G.; Zeng, A. Synthesis and α-glucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-d-glucopyranosides. Bioorg. Med. Chem., 2013, 21(17), 5442-5450.
[28]
Wang, G.; Li, X.; Wang, J.; Xie, Z.; Li, L.; Chen, M.; Chen, S.; Peng, Y. Synthesis, molecular docking and α-glucosidase inhibition of 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-arylacetamides. Bioorg. Med. Chem. Lett., 2017, 27(5), 1115-1118.
[29]
Kim, K.Y.; Nguyen, T.H.; Kurihara, H.; Kim, S.M. α‐Glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J. Food Sci., 2010, 75(5), 145-150.
[30]
Nguyen, T.H.; Kim, S.M. α‐Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas. J. Food Sci., 2015, 80(4), 841-847.
[31]
Jhong, C.H.; Riyaphan, J.; Lin, S.H.; Chia, Y.C.; Weng, C.F. Screening alpha‐ glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. Biofactors, 2015, 41(4), 242-251.
[32]
Hsieh, J.F.; Lin, W.J.; Huang, K.F.; Liao, J.H.; Don, M.J.; Shen, C.C.; Shiao, Y.J.; Li, W.T. Antioxidant activity and inhibition of α-glucosidase by hydroxyl-functionalized 2-arylbenzo [b] furans. Eur. J. Med. Chem., 2015, 93, 443-451.
[33]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis, biological evaluation and molecular docking study of N-arylbenzo [d] oxazol-2-amines as potential α-glucosidase inhibitors. Bioorg. Med. Chem., 2016, 24(21), 5374-5379.
[34]
Kam, A.; Li, K.M.; Razmovski‐Naumovski, V.; Nammi, S.; Shi, J.; Chan, K.; Li, G.Q. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α‐amylase and α‐glucosidase. Phytother. Res., 2013, 27(11), 1614-1620.
[35]
Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Zhang, X.; Li, Y.; Ma, Y.; Wang, R.; Yu, P. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: α-Glucosidase and α-Amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. J. Agric. Food Chem., 2017, 65(8), 1574-1581.
[36]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis, in vitro evaluation and molecular docking studies of novel coumarin‐isatin derivatives as α‐glucosidase inhibitors. Chem. Biol. Drug Des., 2017, 89(3), 456-463.
[37]
Singh, R.; Lather, V.; Pandita, D.; Judge, V.; Arumugam, K.N.; Singh, G.A. Synthesis, docking and antidiabetic activity of some newer benzamide derivatives as potential glucokinase activators. Lett. Drug Des. Discov., 2017, 14(5), 540-553.
[38]
Poreba, K.; Pawlik, K.; Rembacz, K.P.; Kurowska, E.; Matuszyk, J.; Długosz, A. Synthesis and antibacterial activity of new sulfonamide isoxazolo [5, 4-b] pyridine derivatives. Acta Pol. Pharm., 2014, 72(4), 727-735.
[39]
Rani, N.; Sharma, S.K.; Vasudeva, N. Assessment of antiobesity potential of Achyranthes aspera Linn. seed. Evid. Based Complement. Alternat. Med., 2012, 2012, 715912.
[40]
Rahim, F.; Malik, F.; Ullah, H.; Wadood, A.; Khan, F.; Javid, M.T.; Taha, M.; Rehman, W.; Rehman, A.U.; Khan, K.M. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorg. Chem., 2015, 60, 42-48.
[41]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42(W1), W252-W258.
[42]
Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J., 2010, 277(20), 4205-4214.
[43]
Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271.
[44]
Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666.
[45]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[46]
Dauter, Z.; Dauter, M.; Brzozowski, A.M.; Christensen, S.; Borchert, T.V.; Beier, L.; Wilson, K.S.; Davies, G.J. X-ray structure of Novamyl, the five-domain “maltogenic” α-amylase from Bacillus stearothermophilus: Maltose and acarbose complexes at 1.7 Å resolution. Biochemistry, 1999, 38(26), 8385-8392.
[47]
Trott, O.; Olson, J.A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[48]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Visualiser, v16.1.0.15350.San Diego; Dassault Systèmes, 2016.
[49]
El‐Gohary, N.S.; Shaaban, M.I. Antimicrobial and antiquorum‐sensing studies. Part 3: Synthesis and biological evaluation of new series of [1, 3, 4] thiadiazoles and fused [1, 3, 4] thiadiazoles. Archiv der Pharmazie, 2015, 348(4), 283-297.
[50]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[51]
Cardoso, M.F.; Rodrigues, P.C.; Oliveira, M.E.I.; Gama, I.L.; da Silva, I.M.; Santos, I.O.; Rocha, D.R.; Pinho, R.T.; Ferreira, V.F.; de Souza, M.C.B.; da Silva, F.D.C. Synthesis and evaluation of the cytotoxic activity of 1, 2-furanonaphthoquinones tethered to 1, 2, 3-1H-triazoles in myeloid and lymphoid leukemia cell lines. Eur. J. Med. Chem., 2014, 84, 708-717.
[52]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[53]
Murugavel, S.; Kannan, D.; Bakthadoss, M. Experimental and computational approaches of a novel methyl (2E)-2-[N-(2-formylphenyl)(4-methylbenzene) sulfonamido] methyl-3-(4-chlorophenyl) prop-2-enoate: A potential antimicrobial agent and an inhibition of penicillin-binding protein. J. Mol. Struct., 2016, 1115, 33-54.
[54]
Balam, S.K.; Krishnammagari, S.K.; Harinath, J.S.; Sthanikam, S.P.; Chereddy, S.S.; Pasupuleti, V.R.; Yellapu, N.K.; Peddiahgari, V.G.R.; Cirandur, S.R. Synthesis of N-(3-picolyl)-based 1, 3, 2λ5-benzoxazaphosphinamides as potential 11β-HSD1 enzyme inhibitors. Med. Chem. Res., 2015, 24(3), 1119-1135.
[55]
de Oliveira, K.N.; Souza, M.M.; Sathler, P.C.; Magalhaes, U.O.; Rodrigues, C.R.; Castro, H.C.; Palm, P.R.; Sarda, M.; Perotto, P.E.; Cezar, S.; de Brito, M.A. Sulphonamide and sulphonyl-hydrazone cyclic imide derivatives: Antinociceptive activity, molecular modeling and in Silico ADMET screening. Arch. Pharm. Res., 2012, 35(10), 1713-1722.