Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Design and Development of Solid Dispersion of Valsartan by a Lyophilization Technique: A 32 Factorial Design Approach

Author(s): Nitin Rajendra Shirsath* and Ajaygiri Kamalgiri Goswami

Volume 13, Issue 1, 2021

Published on: 06 February, 2020

Page: [90 - 102] Pages: 13

DOI: 10.2174/1876402912666200206155430

Price: $65

Abstract

Background: Valsartan is a poorly water-soluble drug having limited oral bioavailability. Its absorption and onset of action mostly depend on its solubility. Therefore, its solubility needs to be enhanced for maximum therapeutic action.

Objective: The aim of this work is to formulate valsartan-mannitol Solid Dispersions (SDs) by bottom- up process based-freeze drying (lyophilization) techniques for solubility enhancement of valsartan.

Methods: Valsartan is BCS class II drug having low aqueous solubility and low oral bioavailability. It needs to improve its solubility for the fastest onset of action. SDs were prepared using water as a solvent and tertiary butyl alcohol (TBA) as anti-solvent. A 32 (three level-two factors) response surface methodology was used to detect the effect of independent variables such as the amount of valsartan (X1) and the amount of mannitol (X2) on dependent variables such as solubility (Y1) and particle size (Y2).

Results: Prepared SDs were characterized by employing solubility, particle size determination, Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), zeta potential, Fourier Transform Infrared Spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The optimum values of solubility and particle size were 115.14μg/L and 242.5 nm, respectively.

Conclusion: Solid dispersions of valsartan-mannitol were successfully prepared by simple lyophilization techniques and seem to be promising for enhancing dissolution rate (solubility) and oral bioavailability of valsartan.

Keywords: Solid dispersions (SDs), bottom-up process, valsartan, lyophilization, solubility, BCS.

Graphical Abstract

[1]
Gokce, E.H.; Kaynak, M.S.; Yurdasiper, A.; Ustundag, O.N. Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. Marmara Pharm J Res., 2018, 22(4), 578-586.
[2]
Okur, M.E.; Karantas, I.D.; Okur, N.U.; Siafaka, P.I. Hypertension in 2017: Update in Treatment and Pharmaceutical Innovations. Curr. Pharm. Des., 2017, 23(44), 6795-6814.
[http://dx.doi.org/10.2174/1381612823666170927123454 ]
[3]
Deshmukh, A.; Mahajan, V.R. Advanced delivery of poorly water soluble drugs by lipid based formulation as SMEDDS. Asian J Res Biol Pharm Sci., 2015, 3(1), 14-24.
[4]
Shirsath, N.R.; Goswami, A.K. Nanocarriers based novel drug delivery as effective drug delivery: a review. Curr. Nanomater., 2019, 4(2), 71-83.
[http://dx.doi.org/10.2174/2405461504666190527101436]
[5]
Martindale, W. The complete drug reference; Reynolds, JEF., Ed.; Pharmaceutical press: London, UK, 2011, Vol. 34, p. 100.
[6]
Beg, S.; Swain, S.; Singh, H.P.; Patra, ChN.; Rao, M.E. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech, 2012, 13(4), 1416-1427.
[http://dx.doi.org/10.1208/s12249-012-9865-5 PMID: 23070560]
[7]
Israili, Z.H. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J. Hum. Hypertens., 2000, 14(1), S73-S86.
[http://dx.doi.org/10.1038/sj.jhh.1000991 PMID: 10854085]
[8]
Mbah, C.J. Physicochemical properties of valsartan and the effect of ethyl alcohol, propylene glycol and pH on its solubility., Pharmazie, 2005, 60(11), 849-850..
[PMID: 16320948]
[9]
Shirsath, N.R.; Jagtap, V.A.; Goswami, A.K. Formulation and development of famotidine solid dispersion tablets for their solubility enhancement. Indian J Pharm Educ Res., 2019, 53(4), 669-677.
[10]
Shrivastava, A.R.; Ursekar, B.; Kapadia, C.J. Design, optimization, preparation and evaluation of dispersion granules of valsartan and formulation into tablets. Curr. Drug Deliv., 2009, 6(1), 28-37.
[http://dx.doi.org/10.2174/156720109787048258 PMID: 19418953]
[11]
Martin, A. Physical pharmacy, 4th Ed; Lippin Cott Williams and Wilkins: Philadelphia, United States, 1993.
[12]
Zerrouk, N.; Chemtob, C.; Arnaud, P.; Toscani, S.; Dugue, J. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. Int. J. Pharm., 2001, 225(1-2), 49-62.
[http://dx.doi.org/10.1016/S0378-5173(01)00741-4 ]
[13]
Palmieri, G.F.; Cantalamessa, F.; Martino, P.D.; Nasuti, C.; Martelli, S. Lonidamine Solid Dispersionsè : In vitro and in vivo evaluation:Drug Deliv. Ind. Pharm., 2002; 28, pp. (10)1241-50..
[14]
Tsinontides, S.C.; Rajniak, P.; Pham, D.; Hunke, W.A.; Placek, J.; Reynolds, S.D. Freeze drying-principles and practice for successful scale-up to manufacturing. Int. J. Pharm., 2004, 280(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.018 PMID: 15265542]
[15]
Mura, P.; Cirri, M.; Faucci, M.T.; Ginès-Dorado, J.M.; Bettinetti, G.P. Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J. Pharm. Biomed. Anal., 2002, 30(2), 227-237.
[http://dx.doi.org/10.1016/S0731-7085(02)00252-2 ]
[16]
Purvis, T.; Vaughn, J.M.; Rogers, T.L.; Chen, X.; Overhoff, K.A.; Sinswat, P.; Hu, J.; McConville, J.T.; Johnston, K.P.; Williams, R.O. III Cryogenic liquids, nanoparticles, and microencapsulation. Int. J. Pharm., 2006, 324(1), 43-50.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.012 ]
[17]
Yousif, N.; Ghareeb, M.; Hussain, S. Solubility and dissolution improvement of ketoprofen by solid dispersion in polymer and surfactant using solvent evaporation method. Int. J. Pharm. Pharm. Sci., 2011, 4, 431-435.
[18]
Das, A.; Nayak, A.; Mohanty, B.; Panda, S. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm., 2011, 1-8.
[http://dx.doi.org/10.5402/2011/819765]
[19]
Madgulkar, A.; Bandivadekar, M.; Shid, T.; Rao, S. Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: clotrimazole. Drug Dev. Ind. Pharm., 2016, 42(1), 28-38.
[http://dx.doi.org/10.3109/03639045.2015.1024683 ]
[20]
Nasrul, E.; Rivai, H.; Ben, E.S.; Zaini, E. Physicochemical characterization of amorphous solid dispersion of ketoprofen- polyvinylpyrrolidone K-30 P. Int. J. Pharm. Pharm. Sci., 2015, 7(2), 5-8.
[21]
Xu, W.J.; Xie, H.J.; Cao, Q.R.; Shi, L.L.; Cao, Y.; Zhu, X.Y.; Cui, J.H. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv., 2016, 23(1), 41-48.
[http://dx.doi.org/10.3109/10717544.2014.903012 ]
[22]
Nayak, A.K.; Pal, D.; Pradhan, J.; Hasnain, M.S. Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation. Int. J. Biol. Macromol., 2013, 54, 144-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.008 ]
[23]
Verma, U.; Naik, J.; Mokale, V.J. Preparation of freeze-dried solid dispersion powder using mannitol to enhance solubility of lovastatin and development of sustained release tablet dosage. Am J Pharm Sci Nanotechnol., 2014, 1(1), 11-26.
[24]
de Waard, H.; Hinrichs, W.L.J.; Visser, M.R.; Bologna, C.; Frijlink, H.W. Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated. Int. J. Pharm., 2008, 349(1-2), 66-73.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.023 ]
[25]
Hecq, J.; Deleers, M.; Fanara, D.; Vranckx, H.; Amighi, K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm., 2005, 299(1-2), 167-177.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.014 ]
[26]
Patil, J.S.; Patil, P.B.; Sonawane, P.; Naik, J.B. Design and development of sustained-release glyburide-loaded silica nanoparticles. bull. Mater. Sci., 2017, 40(2), 263-270.
[27]
Mokale, V.; Naik, J.B.; Sutar, Y. Chitosan reinforced alginate controlled release beads of losartan potassiumè :Design, formulation and in vitro evaluation. J. Pharm. Investig., 2014, 44, 243-252.
[http://dx.doi.org/10.1007/s40005-014-0122-7]
[28]
Kulkarni, A.D.; Bari, D.B.; Surana, S.J.; Pardeshi, C.V. In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride. J. Drug Deliv. Sci. Technol., 2015, 31, 108-117.
[http://dx.doi.org/10.1016/j.jddst.2015.12.004]
[29]
Nayak, A.K.; Pal, D.; Santra, K. Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol., 2014, 65, 329-339.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.022 ]
[30]
Nayak, A.K.; Pal, D.; Santra, K. Ispaghula mucilage-gellan mucoadhesive beads of metformin HCl: development by response surface methodology. Carbohydr. Polym., 2014, 107, 41-50.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.022 ]
[31]
Agency, E.M. (R2) Stability testing of new drug substances and products step. Eur Med Agency, 2003, 4, 1-24.
[32]
Alatas, F.; Ratih, H.; Soewandhi, S.N. Enhacement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-cystal formation. Int. J. Pharm. Pharm. Sci., 2015, 7(3), 5-8.
[33]
Ustundag, O.N.; Aysu, Y.; Evren, G. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertensionè : polyethylene glycol versus chitosan oligosaccharide lactate. J. Microencapsul., 2015, 33(1), 1-13.
[34]
Choudhary, A.; Rana, A.C.; Aggarwal, G.; Kumar, V.; Zakir, F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm. Sin. B, 2012, 2(4), 421-428.
[http://dx.doi.org/10.1016/j.apsb.2012.05.002]
[35]
Harsha, N.S. In vitro and in vivo evaluation of nanoparticles prepared by nano spray drying for stomach mucoadhesive drug delivery. Dry. Technol., 2015, 33(10), 1199-1209.
[http://dx.doi.org/10.1080/07373937.2014.995305]
[36]
Patel, R.J.; Patel, Z.P. Formulation optimization and evaluation of nanostructured lipid carriers containing valsartan. Int J Pharm Sci Nanotechnol., 2013, 6(2), 2077-2086.
[37]
Siafaka, P.I.; Üstündağ Okur, N.; Mone, M.; Giannakopoulou, S.; Er, S.; Pavlidou, E.; Karavas, E.; Bikiaris, D.N. Two different approaches for oral administration of voriconazole loaded formulations: electrospun fibers versus β-cyclodextrin complexes. Int. J. Mol. Sci., 2016, 17(3), 282.
[http://dx.doi.org/10.3390/ijms17030282 ]
[38]
Zaini, E.; Umar, S.; Firdaus, N. Improvement of dissolution rate of valsartan by solid dispersion system using D(-) Mannitol. Asian J. Pharm. Clin. Res., 2017, 10(3), 288-290.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16171]
[39]
Lakshmi, P.K.; Srinivas, C.; Kalpana, B. Preparation and comparative evaluation of liquisolid compacts and solid dispersions of Valsartan. Stamford. J. Pharm. Sci., 2011, 4(2), 48-57.
[http://dx.doi.org/10.3329/sjps.v4i2.10440]
[40]
Chopra, S.; Patil, G.V.; Motwani, S.K. Release modulating hydrophilic matrix systems of losartan potassium: optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm., 2007, 66(1), 73-82.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.001 PMID: 17056238]
[41]
Waghulde, M.; Naik, J.B. Development and validation of analytical method for vildagliptin encapsulated poly- ε -caprolactone microparticles. Mater Today Proc., 2018, 5(1), 958-964.
[http://dx.doi.org/10.1016/j.matpr.2017.11.171]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy