Review Article

Nanotechnology-based Targeting of Neurodegenerative Disorders: A Promising Tool for Efficient Delivery of Neuromedicines

Author(s): Kuldeep Rajpoot*

Volume 21, Issue 8, 2020

Page: [819 - 836] Pages: 18

DOI: 10.2174/1389450121666200106105633

Price: $65

Abstract

Traditional drug delivery approaches remained ineffective in offering better treatment to various neurodegenerative disorders (NDs). In this context, diverse types of nanocarriers have shown their great potential to cross the blood-brain barrier (BBB) and have emerged as a prominent carrier system in drug delivery. Moreover, nanotechnology-based methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs especially in diagnosis and drug delivery with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. Eventually, this review provides deep insights to explore recent applications of some innovative nanocarriers enclosing active molecules for the efficient treatment of NDs.

Keywords: Neurodegenerative disorders, amyloid-β peptide, parkinson's disease, nanoparticles, nanotechnology, alzheimer's disease.

« Previous
Graphical Abstract

[1]
Dwivedi N, Shah J, Mishra V, Tambuwala M, Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J Drug Deliv Sci Technol 2019; 49: 477-90.
[http://dx.doi.org/10.1016/j.jddst.2018.12.021]
[2]
Sanchez-Mut JV, Heyn H, Vidal E. et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 2016;. 6e718
[http://dx.doi.org/10.1038/tp.2015.214] [PMID: 26784972]
[3]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4): 3391--6. [Review]..
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[4]
Md S, Bhattmisra SK, Zeeshan F, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018; 43: 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[5]
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21(5): 766-78.
[http://dx.doi.org/10.1016/j.drudis.2016.02.006] [PMID: 26891979]
[6]
de Lau LM, Giesbergen PC, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MM. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 2004; 63(7): 1240-4.
[http://dx.doi.org/10.1212/01.WNL.0000140706.52798.BE] [PMID: 15477545]
[7]
Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998; 339(15): 1044-53.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[8]
Nuytemans K, Maldonado L, Ali A, et al. Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants. Neurol Genet 2016; 2(1)e44
[http://dx.doi.org/10.1212/NXG.0000000000000044] [PMID: 27066581]
[9]
Busquets MA, Espargaró A, Estelrich J, Sabate R. Could alpha-synuclein amyloid-like aggregates trigger a prionic neuronal invasion? BioMed research international 2015.
[10]
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 2015; 10: 6757-72.
[http://dx.doi.org/10.2147/IJN.S93918] [PMID: 26604750]
[11]
Baazaoui N, Iqbal K. A Novel Therapeutic Approach to Treat Alzheimer’s Disease by Neurotrophic Support During the Period of Synaptic Compensation. J Alzheimers Dis 2018; 62(3): 1211-8.
[http://dx.doi.org/10.3233/JAD-170839] [PMID: 29562539]
[12]
Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[13]
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas 2012; 73(1): 45-51.
[http://dx.doi.org/10.1016/j.maturitas.2011.12.015] [PMID: 22261367]
[14]
Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1): 171-4.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[15]
Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014; 71: 2-14.
[http://dx.doi.org/10.1016/j.addr.2013.08.008] [PMID: 23981489]
[16]
Rajpoot K, Jain SK. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J Microencapsul 2019; 36(7): 659-76.
[http://dx.doi.org/10.1080/02652048.2019.1665723] [PMID: 31495238]
[17]
Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2019; 25(37): 1-16.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[18]
Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol 2018; 46(6): 1236-47.
[http://dx.doi.org/10.1080/21691401.2017.1366338] [PMID: 28849671]
[19]
Rajani C, Borisa P, Karanwad T, et al. 7 - Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrierPharmaceutical Applications of Dendrimers. Elsevier 2020; pp. 151-98.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00007-X]
[20]
Patel V, Rajani C, Paul D, et al. Dendrimers as novel drug-delivery system and its applicationsDrug Delivery Systems. Academic Press 2020; pp. 333-92.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00008-9]
[21]
Jain SK, Patel K, Rajpoot K, Jain A. Development of a Berberine Loaded Multifunctional Design for the Treatment of Helicobacter pylori Induced Gastric Ulcer. Drug Deliv Lett 2019; 9(1): 50-7.
[http://dx.doi.org/10.2174/2210303108666181120110756]
[22]
Jain SK, Prajapati N, Rajpoot K, Kumar A. A novel sustained release drug-resin complex-based microbeads of ciprofloxacin HCl. Artif Cells Nanomed Biotechnol 2016; 44(8): 1891-900.
[http://dx.doi.org/10.3109/21691401.2015.1111233] [PMID: 26698089]
[23]
Jain SK, Kumar A, Kumar A, Pandey AN, Rajpoot K. Development and in vitro characterization of a multiparticulate delivery system for acyclovir-resinate complex. Artif Cells Nanomed Biotechnol 2016; 44(5): 1266-75.
[PMID: 25813568]
[24]
Patrey NK, Rajpoot K, Jain AK, Jain SK. Diltiazem loaded floating microspheres of Ethylcellulose and Eudragit for gastric delivery: in vitro evaluation. Asian Journal of Biomaterial Research 2016; 2(2): 71-7.
[25]
Rajpoot K, Tekade RK. Microemulsion as drug and gene delivery vehicle: an inside storyDrug Delivery Systems. Academic Press 2019; pp. 455-520.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00010-7]
[26]
Rajpoot K. Acyclovir-loaded sorbitan esters-based organogel: development and rheological characterization. Artif Cells Nanomed Biotechnol 2017; 45(3): 551-9.
[http://dx.doi.org/10.3109/21691401.2016.1161639] [PMID: 27019055]
[27]
Rajpoot K, Tekade M, Pandey V, Nagaraja S, Youngren-Ortiz SR, Tekade RK. Self-microemulsifying drug-delivery system: ongoing challenges and future aheadDrug Delivery Systems. Academic Press 2020; pp. 393-454.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00009-0]
[28]
Kaehler T. Nanotechnology: basic concepts and definitions. Clin Chem 1994; 40(9): 1797-9.
[PMID: 8070103]
[29]
Stern ST, Johnson DN. Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy 2008; 4(8): 1097-100.
[http://dx.doi.org/10.4161/auto.7142] [PMID: 18927490]
[30]
Spuch C, Saida O, Navarro C. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul 2012; 6(1): 2-18.
[http://dx.doi.org/10.2174/187221112799219125] [PMID: 22272933]
[31]
Rajpoot K. Recent Advances and Applications of Biosensors in Novel Technology. Biosens J 2017; 6(2): 145.
[32]
Li BL, Setyawati MI, Chen L, et al. Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl Mater Interfaces 2017; 9(18): 15286-96.
[http://dx.doi.org/10.1021/acsami.7b02529] [PMID: 28452468]
[33]
Gorain B, Choudhury H, Pandey M, et al. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed Pharmacother 2018; 104: 496-508.
[http://dx.doi.org/10.1016/j.biopha.2018.05.066] [PMID: 29800914]
[34]
Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM. Gene therapy of the brain: the trans-vascular approach. Neurology 2004; 62(8): 1275-81.
[http://dx.doi.org/10.1212/01.WNL.0000120551.38463.D9] [PMID: 15111662]
[35]
Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006; 6(5): 494-500.
[http://dx.doi.org/10.1016/j.coph.2006.06.001] [PMID: 16839816]
[36]
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim K-H. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46(1): 158-96.
[http://dx.doi.org/10.1039/C6CS00517A] [PMID: 27841412]
[37]
Linazasoro G. Nanotechnologies for Neurodegenerative Diseases Study Group of the Basque Country (NANEDIS). Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat Disord 2008; 14(5): 383-92.
[http://dx.doi.org/10.1016/j.parkreldis.2007.11.012] [PMID: 18329315]
[38]
Alvarez YD, Fauerbach JA, Pellegrotti JV, Jovin TM, Jares-Erijman EA, Stefani FD. Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano Lett 2013; 13(12): 6156-63.
[http://dx.doi.org/10.1021/nl403490e] [PMID: 24219503]
[39]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[40]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[41]
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64(7): 640-65.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[42]
Kim K-T, Lee HS, Lee J-J, et al. Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood-brain barrier. Future Med Chem 2018; 10(22): 2659-74.
[http://dx.doi.org/10.4155/fmc-2018-0208] [PMID: 30499740]
[43]
Pardridge WM. Drug targeting to the brain. Pharm Res 2007; 24(9): 1733-44.
[http://dx.doi.org/10.1007/s11095-007-9324-2] [PMID: 17554607]
[44]
Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136: 413-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[45]
Jain S, Kesharwani P, Tekade RK, Jain NK. One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Dev Ind Pharm 2015; 41(5): 722-7.
[http://dx.doi.org/10.3109/03639045.2014.900077] [PMID: 24641446]
[46]
Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014; 8(3): 1958-65.
[http://dx.doi.org/10.1021/nn501292z] [PMID: 24660817]
[47]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[48]
Sun C, Ding Y, Zhou L, et al. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine (Lond) 2017; 13(8): 2605-21.
[http://dx.doi.org/10.1016/j.nano.2017.07.009] [PMID: 28756093]
[49]
You Y, Wang N, He L, et al. Designing dual-functionalized carbon nanotubes with high blood-brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 2019; 48(5): 1569-73.
[http://dx.doi.org/10.1039/C8DT03948H] [PMID: 30499579]
[50]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. Journal of pharmacy pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 2003;; 6(2:): 252--73..
[51]
Gabathuler R. Blood-brain barrier transport of drugs for the treatment of brain diseases. CNS Neurol Disord Drug Targets 2009; 8(3): 195-204.
[http://dx.doi.org/10.2174/187152709788680652] [PMID: 19601817]
[52]
Bhaskar S, Tian F, Stoeger T, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010; 7(1): 3.
[http://dx.doi.org/10.1186/1743-8977-7-3] [PMID: 20199661]
[53]
Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006; 1(3): 223-36.
[http://dx.doi.org/10.1007/s11481-006-9025-3] [PMID: 18040800]
[54]
Triguero D, Buciak JB, Yang J, Pardridge WM. Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc Natl Acad Sci USA 1989; 86(12): 4761-5.
[http://dx.doi.org/10.1073/pnas.86.12.4761] [PMID: 2734318]
[55]
Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012; 33(29): 7194-205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[56]
Zensi A, Begley D, Pontikis C, et al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J Drug Target 2010; 18(10): 842-8.
[http://dx.doi.org/10.3109/1061186X.2010.513712] [PMID: 20849354]
[57]
Boado RJ. A new generation of neurobiological drugs engineered to overcome the challenges of brain drug delivery. Drug News Perspect 2008; 21(9): 489-503.
[http://dx.doi.org/10.1358/dnp.2008.21.9.1290820] [PMID: 19180267]
[58]
Preston JE, Joan Abbott N, Begley DJ. Chapter Five - Transcytosis of Macromolecules at the Blood–Brain Barrier In: Advances in Pharmacology, Davis, T P,. Ed. Academic Press 2014.
[59]
Poduslo JF, Curran GL. Increased permeability across the blood-nerve barrier of albumin glycated in vitro and in vivo from patients with diabetic polyneuropathy. Proc Natl Acad Sci USA 1992; 89(6): 2218-22.
[http://dx.doi.org/10.1073/pnas.89.6.2218] [PMID: 1549585]
[60]
Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 2016; 43: 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[61]
Gavériaux-Ruff C, Kieffer BL. Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav Pharmacol 2011; 22(5-6): 405-14.
[http://dx.doi.org/10.1097/FBP.0b013e32834a1f2c] [PMID: 21836459]
[62]
Park T-E, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials 2015; 38: 61-71.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.068] [PMID: 25457984]
[63]
MacKay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res 2005; 1035(2): 139-53.
[http://dx.doi.org/10.1016/j.brainres.2004.12.007] [PMID: 15722054]
[64]
Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. NeuroRx 2005; 2(1): 44-53.
[http://dx.doi.org/10.1602/neurorx.2.1.44] [PMID: 15717056]
[65]
Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 2010; 31(5): 908-15.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.104] [PMID: 19853292]
[66]
Chen MY, Hoffer A, Morrison PF, et al. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg 2005; 103(2): 311-9.
[http://dx.doi.org/10.3171/jns.2005.103.2.0311] [PMID: 16175862]
[67]
Perlstein B, Ram Z, Daniels D, et al. Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring. Neuro-oncol 2008; 10(2): 153-61.
[http://dx.doi.org/10.1215/15228517-2008-002] [PMID: 18316474]
[68]
Mehta AM, Sonabend AM, Bruce JN. Convection-Enhanced Delivery. Neurotherapeutics 2017; 14(2): 358-71.
[http://dx.doi.org/10.1007/s13311-017-0520-4] [PMID: 28299724]
[69]
Christian A, Andreas W. Hot topic cells, micro- and nanosystems in reconstructive medicine: past, present,and future guest editors: christian andressen & andreas wree Curr Pharm Biotechnol. 2013;; 14(1) 2-3.
[PMID: 23092253]
[70]
Mazza M, Notman R, Anwar J, et al. Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano 2013; 7(2): 1016-26.
[http://dx.doi.org/10.1021/nn305193d] [PMID: 23289352]
[71]
Yang CC, Yang SY, Chieh JJ, et al. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci 2011; 2(9): 500-5.
[http://dx.doi.org/10.1021/cn200028j] [PMID: 22860173]
[72]
Klementieva O, Aso E, Filippini D, et al. Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules 2013; 14(10): 3570-80.
[http://dx.doi.org/10.1021/bm400948z] [PMID: 24004423]
[73]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3)e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[74]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[75]
Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(1): 35-47.
[http://dx.doi.org/10.1002/wnan.59] [PMID: 20049829]
[76]
Neelov IM, Janaszewska A, Klajnert B, et al. Molecular properties of lysine dendrimers and their interactions with Aβ-peptides and neuronal cells. Curr Med Chem 2013; 20(1): 134-43.
[http://dx.doi.org/10.2174/0929867311302010013] [PMID: 23033946]
[77]
Härtig W, Paulke BR, Varga C, Seeger J, Harkany T, Kacza J. Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting beta-amyloid in Alzheimer’s disease. Neurosci Lett 2003; 338(2): 174-6.
[http://dx.doi.org/10.1016/S0304-3940(02)01399-X] [PMID: 12566180]
[78]
Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine (Lond) 2010; 6(1): 144-52.
[http://dx.doi.org/10.1016/j.nano.2009.04.001] [PMID: 19446656]
[79]
Wasiak T, Ionov M, Nieznanski K, et al. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol Pharm 2012; 9(3): 458-69.
[http://dx.doi.org/10.1021/mp2005627] [PMID: 22206488]
[80]
Taylor M, Moore S, Mourtas S, et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine (Lond) 2011; 7(5): 541-50.
[http://dx.doi.org/10.1016/j.nano.2011.06.015] [PMID: 21722618]
[81]
Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 2012; 6(7): 5897-908.
[http://dx.doi.org/10.1021/nn300489k] [PMID: 22686577]
[82]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 2008; 1200: 159-68.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[83]
Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 2011; 23(1): 61-77.
[http://dx.doi.org/10.3233/JAD-2010-101374] [PMID: 20930270]
[84]
Cui Z, Lockman PR, Atwood CS, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 2005; 59(2): 263-72.
[http://dx.doi.org/10.1016/j.ejpb.2004.07.009] [PMID: 15661498]
[85]
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 2011; 415(1-2): 273-83.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[86]
Milowska K, Grochowina J, Katir N, et al. Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation. Mol Pharm 2013; 10(3): 1131-7.
[http://dx.doi.org/10.1021/mp300636h] [PMID: 23379345]
[87]
Tiwari MN, Agarwal S, Bhatnagar P, et al. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med 2013; 65: 704-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.042] [PMID: 23933227]
[88]
Tang S, Martinez LJ, Sharma A, Chai M. Synthesis and characterization of water-soluble and photostable L-DOPA dendrimers. Org Lett 2006; 8(20): 4421-4.
[http://dx.doi.org/10.1021/ol061449l] [PMID: 16986915]
[89]
Huang R, Ke W, Liu Y, et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 2010; 290(1-2): 123-30.
[http://dx.doi.org/10.1016/j.jns.2009.09.032] [PMID: 19909981]
[90]
Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 2011; 151(2): 131-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.022] [PMID: 21362449]
[91]
Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res 2013; 30(10): 2549-59.
[http://dx.doi.org/10.1007/s11095-013-1005-8] [PMID: 23703371]
[92]
Milowska K, Malachowska M, Gabryelak T. PAMAM G4 dendrimers affect the aggregation of α-synuclein. Int J Biol Macromol 2011; 48(5): 742-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.02.021] [PMID: 21382406]
[93]
Wang Y, Wei YT, Zu ZH, et al. Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharm Res 2011; 28(6): 1406-14.
[http://dx.doi.org/10.1007/s11095-011-0452-3] [PMID: 21537876]
[94]
Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci 2018; 6(11): 2812-37.
[http://dx.doi.org/10.1039/C8BM00422F] [PMID: 30255869]
[95]
Jin G-Z, Kim M, Shin US, Kim H-W. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett 2011; 501(1): 10-4.
[http://dx.doi.org/10.1016/j.neulet.2011.06.023] [PMID: 21723372]
[96]
Liu J-J, Wang C-Y, Wang J-G, Ruan H-J, Fan C-Y. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A 2011; 96(1): 13-20.
[http://dx.doi.org/10.1002/jbm.a.32946] [PMID: 20949481]
[97]
Stephanopoulos N, Ortony JH, Stupp SI. Self-Assembly for the Synthesis of Functional Biomaterials. Acta Mater 2013; 61(3): 912-30.
[http://dx.doi.org/10.1016/j.actamat.2012.10.046] [PMID: 23457423]
[98]
Olney JW. Glutaate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 1969; 28(3): 455-74.
[http://dx.doi.org/10.1097/00005072-196907000-00007] [PMID: 5788942]
[99]
Ali SS, Hardt JI, Quick KL, et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 2004; 37(8): 1191-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.07.002] [PMID: 15451059]
[100]
Vajda FJ. Neuroprotection and neurodegenerative disease. J Clin Neurosci 2002; 9(1): 4-8.
[http://dx.doi.org/10.1054/jocn.2001.1027] [PMID: 11749009]
[101]
Das M, Patil S, Bhargava N, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007; 28(10): 1918-25.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.036] [PMID: 17222903]
[102]
Lou ZC, Sun JQ, Wan JF, Zhang XH, Zhang HQ, Gu N. Quick and sensitive detection of prion disease-associated isoform (prpsc) using a novel gold surface/prpsc/gold nanoparticles sandwich spr detection assay. Journal of Nano Research 2017; 48: 18-28.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.48.18]
[103]
Xiao SJ, Hu PP, Wu XD, et al. Sensitive discrimination and detection of prion disease-associated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quantum dots. Anal Chem 2010; 82(23): 9736-42.
[http://dx.doi.org/10.1021/ac101865s] [PMID: 21038863]
[104]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013238428
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[105]
Georgieva JV, Kalicharan D, Couraud PO, et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Molecular therapy: the journal of the American Society of Gene Therapy 2011;; 19( (2):): 318--25..
[106]
Xie M, Luo K, Huang B-H, et al. PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials 2010; 31(32): 8362-70.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.063] [PMID: 20723972]
[107]
Ai Tran HN, Sousa F, Moda F, et al. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale 2010; 2(12): 2724-32.
[http://dx.doi.org/10.1039/c0nr00551g] [PMID: 20944860]
[108]
McCarthy JM, Rasines Moreno B, Filippini D, et al. Influence of surface groups on poly(propylene imine) dendrimers antiprion activity. Biomacromolecules 2013; 14(1): 27-37.
[http://dx.doi.org/10.1021/bm301165u] [PMID: 23234313]
[109]
Supattapone S, Nguyen H-OB, Cohen FE, Prusiner SB, Scott MR. Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci USA 1999; 96(25): 14529-34.
[http://dx.doi.org/10.1073/pnas.96.25.14529] [PMID: 10588739]
[110]
Calvo P, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 2001; 111(2): 151-5.
[http://dx.doi.org/10.1016/S0165-0270(01)00450-2] [PMID: 11595281]
[111]
Lim YB, Mays CE, Kim Y, Titlow WB, Ryou C. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity. Biomaterials 2010; 31(8): 2025-33.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.085] [PMID: 20022103]
[112]
Jankovic J. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery &amp. Psychiatry 2008; 79(4): 368.
[113]
Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 2003; 26(4): 215-21.
[http://dx.doi.org/10.1016/S0166-2236(03)00038-9] [PMID: 12689773]
[114]
Brotchie J, Fitzer-Attas C. Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology 2009; 72(7)(Suppl.): S32-8.
[http://dx.doi.org/10.1212/WNL.0b013e318198e0e9] [PMID: 19221312]
[115]
Lloyd KG. CNS Compensation to Dopamine Neuron Loss in Parkinson’s Disease.. CNS Compensation to Dopamine Neuron Loss in Parkinson’s Disease.Advances in Experimental Medicine and Biology, ed. US: Springer 1977; pp. 255--66.
[116]
Rao G, Fisch L, Srinivasan S, et al. Does this patient have Parkinson disease? JAMA 2003; 289(3): 347-53.
[http://dx.doi.org/10.1001/jama.289.3.347] [PMID: 12525236]
[117]
Qiang JK, Wong YC, Siderowf A, et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 2013; 74(1): 119-27.
[http://dx.doi.org/10.1002/ana.23872] [PMID: 23447138]
[118]
Wang E-S, Yao H-B, Chen Y-H, et al. Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem 2013; 31(4-5): 625-37.
[http://dx.doi.org/10.1159/000350082] [PMID: 23652646]
[119]
Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol 2006; 5(1): 75-86.
[http://dx.doi.org/10.1016/S1474-4422(05)70285-4] [PMID: 16361025]
[120]
Piccini P, Brooks DJ. New developments of brain imaging for Parkinson’s disease and related disorders. Mov Disord 2006; 21(12): 2035-41.
[http://dx.doi.org/10.1002/mds.20845] [PMID: 16874751]
[121]
Brooks DJ, Ibanez V, Sawle GV, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 1992; 31(2): 184-92.
[http://dx.doi.org/10.1002/ana.410310209] [PMID: 1575457]
[122]
Marek KL, Seibyl JP, Zoghbi SS, et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996; 46(1): 231-7.
[http://dx.doi.org/10.1212/WNL.46.1.231] [PMID: 8559382]
[123]
Crawford P, Zimmerman EE. Differentiation and diagnosis of tremor. Am Fam Physician 2011; 83(6): 697-702.
[PMID: 21404980]
[124]
Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 2005; 77(6): 1566-71.
[http://dx.doi.org/10.1021/ac048691v] [PMID: 15762558]
[125]
Akhtar RS, Stern MB. New concepts in the early and preclinical detection of Parkinson’s disease: therapeutic implications. Expert Rev Neurother 2012; 12(12): 1429-38.
[http://dx.doi.org/10.1586/ern.12.144] [PMID: 23237350]
[126]
An Y, Tang L, Jiang X, et al. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry 2010; 16(48): 14439-46.
[http://dx.doi.org/10.1002/chem.201001654] [PMID: 21038326]
[127]
Kaushik AC, Bharadwaj S, Kumar S, Wei D-Q. Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep 2018; 8(1): 9169--9.
[http://dx.doi.org/10.1038/s41598-018-27580-1] [PMID: 29907754]
[128]
Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011; 419(1-2): 296-307.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.036] [PMID: 21821107]
[129]
Barcia E, Boeva L, García-García L, et al. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv 2017; 24(1): 1112-23.
[http://dx.doi.org/10.1080/10717544.2017.1359862] [PMID: 28782388]
[130]
de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[131]
Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J Drug Target 2015; 23(9): 775-88.
[http://dx.doi.org/10.3109/1061186X.2015.1020809] [PMID: 25758751]
[132]
Leyva-Gómez G, Cortés H, Magaña JJ, Leyva-García N, Quintanar-Guerrero D, Florán B. Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today 2015; 20(7): 824-37.
[http://dx.doi.org/10.1016/j.drudis.2015.02.009] [PMID: 25701281]
[133]
Cole NB, Murphy DD. The cell biology of α-synuclein: a sticky problem? Neuromolecular Med 2002; 1(2): 95-109.
[http://dx.doi.org/10.1385/NMM:1:2:95] [PMID: 12025860]
[134]
Milowska K, Gabryelak T, Bryszewska M, Caminade A-M, Majoral J-P. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int J Biol Macromol 2012; 50(4): 1138-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.02.003] [PMID: 22353396]
[135]
Milowska K, Szwed A, Mutrynowska M, et al. Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm 2015; 484(1-2): 268-75.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.066] [PMID: 25735664]
[136]
Ciepluch K, Weber M, Katir N, et al. Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 2013; 54: 119-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.002] [PMID: 23237795]
[137]
Choi I, Lee E, Lee LP. Current nano/biotechnological approaches in amyotrophic lateral sclerosis. Biomed Eng Lett 2013; 3(4): 209-22.
[http://dx.doi.org/10.1007/s13534-013-0114-y]
[138]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[139]
Bataveljić D, Stamenković S, Bačić G, Andjus PR. Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hung 2011; 98(1): 27-31.
[http://dx.doi.org/10.1556/APhysiol.98.2011.1.4] [PMID: 21388928]
[140]
Mazibuko Z, Indermun S, Govender M, et al. Targeted Delivery of Amantadine-loaded Methacrylate Nanosphere-ligands for the Potential Treatment of Amyotrophic Lateral Sclerosis. J Pharm Pharm Sci 2018; 21(1): 94-109.
[http://dx.doi.org/10.18433/jpps29595] [PMID: 29510799]
[141]
Marcuzzo S, Isaia D, Bonanno S, et al. FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from als mice. Cells 2019; 8(3)E279
[http://dx.doi.org/10.3390/cells8030279] [PMID: 30909571]
[142]
Machtoub L, Bataveljić D, Andjus PR. Molecular imaging of brain lipid environment of lymphocytes in amyotrophic lateral sclerosis using magnetic resonance imaging and SECARS microscopy. Physiol Res 2011; 60(Suppl. 1): S121-7.
[PMID: 21777015]
[143]
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond) 2010; 5(1): 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[144]
Cong W, Bai R, Li Y-F, Wang L, Chen C. Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington’s Disease. ACS Appl Mater Interfaces 2019; 11(38): 34725-35.
[http://dx.doi.org/10.1021/acsami.9b12319] [PMID: 31479233]
[145]
Joshi AS, Singh V, Gahane A, Thakur AK. Biodegradable Nanoparticles Containing Mechanism Based Peptide Inhibitors Reduce Polyglutamine Aggregation in Cell Models and Alleviate Motor Symptoms in a Drosophila Model of Huntington’s Disease. ACS Chem Neurosci 2019; 10(3): 1603-14.
[http://dx.doi.org/10.1021/acschemneuro.8b00545] [PMID: 30452227]
[146]
Sava V, Fihurka O, Khvorova A, Sanchez-Ramos J. Enriched chitosan nanoparticles loaded with siRNA are effective in lowering Huntington’s disease gene expression following intranasal administration. Nanomedicine (Lond) 2019; 24102119
[http://dx.doi.org/10.1016/j.nano.2019.102119] [PMID: 31666200]
[147]
Valenza M, Chen JY, Di Paolo E, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol Med 2015; 7(12): 1547-64.
[http://dx.doi.org/10.15252/emmm.201505413] [PMID: 26589247]
[148]
Meijboom KE, Wood MJA, McClorey G. Splice-Switching Therapy for Spinal Muscular Atrophy. Genes (Basel) 2017; 8(6)E161
[http://dx.doi.org/10.3390/genes8060161] [PMID: 28604635]
[149]
Watterson JH, Raha S, Kotoris CC, et al. Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor. Nucleic Acids Res 2004; 32(2): e18-8.
[http://dx.doi.org/10.1093/nar/gnh013] [PMID: 14742865]
[150]
Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51.
[http://dx.doi.org/10.1016/j.addr.2015.01.008] [PMID: 25666165]
[151]
Cullis PR, Hope MJ. Lipid Nanoparticle Systems for Enabling Gene Therapies Molecular therapy: the journal of the American Society of Gene Therapy 2017; 25(7): 1467--75.
[152]
Järver P, Zaghloul EM, Arzumanov AA, et al. Peptide nanoparticle delivery of charge-neutral splice-switching morpholino oligonucleotides. Nucleic Acid Ther 2015; 25(2): 65-77.
[http://dx.doi.org/10.1089/nat.2014.0511] [PMID: 25594433]
[153]
Peng S-Y, Shaw S-WS. Prenatal transplantation of human amniotic fluid stem cells for spinal muscular atrophy. Curr Opin Obstet Gynecol 2018; 30(2): 111-5.
[http://dx.doi.org/10.1097/GCO.0000000000000444] [PMID: 29489501]
[154]
Waknine-Grinberg JH, Even-Chen S, Avichzer J, et al. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS One 2013; 8(8)e72722
[http://dx.doi.org/10.1371/journal.pone.0072722] [PMID: 23991146]
[155]
Knuschke T, Bayer W, Rotan O, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine (Lond) 2014; 10(8): 1787-98.
[http://dx.doi.org/10.1016/j.nano.2014.06.014] [PMID: 25014891]
[156]
Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 2014; 21(36): 4186-98.
[http://dx.doi.org/10.2174/0929867321666140826114135] [PMID: 25174930]
[157]
Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials 2013; 34(20): 4818-30.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.013] [PMID: 23545288]
[158]
Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine (Lond) 2014; 10(1): 177-85.
[http://dx.doi.org/10.1016/j.nano.2013.06.012] [PMID: 23845925]
[159]
Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond) 2013; 8(2): 223-37.
[http://dx.doi.org/10.2217/nnm.12.104] [PMID: 23173734]
[160]
Guo D, Zhang G, Wysocki TA, et al. Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J Virol 2014; 88(17): 9504-13.
[http://dx.doi.org/10.1128/JVI.01557-14] [PMID: 24920821]
[161]
Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol 2019; 130: 515-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.156] [PMID: 30826404]
[162]
Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. 1996; Vol. 1549.
[163]
Ittner LM, Götz J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2011; 12(2): 65-72.
[http://dx.doi.org/10.1038/nrn2967] [PMID: 21193853]
[164]
Karlsson D, Fallarero A, Brunhofer G, et al. Identification and characterization of diarylimidazoles as hybrid inhibitors of butyrylcholinesterase and amyloid beta fibril formation. Eur J Pharm Sci 2012; 45(1-2): 169-83.
[http://dx.doi.org/10.1016/j.ejps.2011.11.004] [PMID: 22108346]
[165]
Krafft GA, Klein WL. ADDLs and the signaling web that leads to Alzheimer’s disease. Neuropharmacology 2010; 59(4-5): 230-42.
[http://dx.doi.org/10.1016/j.neuropharm.2010.07.012] [PMID: 20650286]
[166]
Sun L, Fan Z, Yue T, Yin J, Fu J, Zhang M. Additive nanomanufacturing of lab-on-a-chip fluorescent peptide nanoparticle arrays for Alzheimer’s disease diagnosis. Bio-Design and Manufacturing 2018; 1(3): 182-94.
[http://dx.doi.org/10.1007/s42242-018-0019-9]
[167]
Gobbi M, Re F, Canovi M, et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials 2010; 31(25): 6519-29.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.044] [PMID: 20553982]
[168]
Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011; 32(6): 1635-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.027] [PMID: 21131044]
[169]
Canovi M, Markoutsa E, Lazar AN, et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 2011; 32(23): 5489-97.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.020] [PMID: 21529932]
[170]
Bereczki E, Re F, Masserini ME, Winblad B, Pei JJ. Liposomes functionalized with acidic lipids rescue Aβ-induced toxicity in murine neuroblastoma cells. Nanomedicine (Lond) 2011; 7(5): 560-71.
[http://dx.doi.org/10.1016/j.nano.2011.05.009] [PMID: 21703989]
[171]
Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid. J Neurosci 2003; 23(1): 29-33.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00029.2003] [PMID: 12514198]
[172]
Liu G, Men P, Perry G, Smith MA. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci 2009; 1(1): 42-55.
[http://dx.doi.org/10.1166/jns.2009.005] [PMID: 19936278]
[173]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207-16.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[174]
Ni R, Gillberg PG, Bergfors A, Marutle A, Nordberg A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 2013; 136(Pt 7): 2217-27.
[http://dx.doi.org/10.1093/brain/awt142] [PMID: 23757761]
[175]
Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 78-87.
[http://dx.doi.org/10.1038/nrneurol.2009.217] [PMID: 20139997]
[176]
Saleh A, Schroeter M, Ringelstein A, et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007; 38(10): 2733-7.
[http://dx.doi.org/10.1161/STROKEAHA.107.481788] [PMID: 17717318]
[177]
Xiang J, Yu C, Yang F, Yang L, Ding H. Conformation-activity studies on the interaction of berberine with acetylcholinesterase: Physical chemistry approach. Prog Nat Sci 2009; 19(12): 1721-5.
[http://dx.doi.org/10.1016/j.pnsc.2009.07.010]
[178]
Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine (Lond) 2011; 7(5): 521-40.
[http://dx.doi.org/10.1016/j.nano.2011.03.008] [PMID: 21477665]
[179]
Tricco AC, Soobiah C, Berliner S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ 2013; 185(16): 1393-401.
[http://dx.doi.org/10.1503/cmaj.130451] [PMID: 24043661]
[180]
Molino I, Colucci L, Fasanaro AM, Traini E, Amenta F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. ScientificWorldJournal 2013; 2013925702
[http://dx.doi.org/10.1155/2013/925702] [PMID: 24288512]
[181]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[182]
Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 2002; 37(4): 167-77.
[http://dx.doi.org/10.1097/00004424-200204000-00002] [PMID: 11923639]
[183]
Winkler DT, Bondolfi L, Herzig MC, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 2001; 21(5): 1619-27.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01619.2001] [PMID: 11222652]
[184]
Korhonen P, Malm T, White AR. 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018; 120: 191-9.
[http://dx.doi.org/10.1016/j.neuint.2018.08.012] [PMID: 30176269]
[185]
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269: 152-72.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.045] [PMID: 24699227]
[186]
Fernández-Ruiz J, Romero J, Ramos JA. Endocannabinoids and neurodegenerative disorders: parkinson’s disease, huntington’s chorea, alzheimer’s disease, and others handbook of experimental pharmacology, ed;. Springer International Publishing 2015; pp. 233--59.
[187]
Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 2015; 16(1): 30-42.
[http://dx.doi.org/10.1038/nrn3876] [PMID: 25524120]
[188]
Atassi N, Beghi E, Blanquer M, et al. Attendees of the international workshop on progress in stem cells research for als/mnd. intraspinal stem cell transplantation for amyotrophic lateral sclerosis: Ready for efficacy clinical trials? Cytotherapy 2016; 18(12): 1471-5.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.005] [PMID: 27720637]
[189]
Feldman EL, Boulis NM, Hur J, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 2014; 75(3): 363-73.
[http://dx.doi.org/10.1002/ana.24113] [PMID: 24510776]
[190]
Glass JD, Hertzberg VS, Boulis NM, et al. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials. Neurology 2016; 87(4): 392-400.
[http://dx.doi.org/10.1212/WNL.0000000000002889] [PMID: 27358335]
[191]
Mazzini L, Gelati M, Profico DC, et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 2015; 13(1): 17.
[http://dx.doi.org/10.1186/s12967-014-0371-2] [PMID: 25889343]
[192]
Solanki A, Chueng ST, Yin PT, Kappera R, Chhowalla M, Lee KB. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 2013; 25(38): 5477-82.
[http://dx.doi.org/10.1002/adma.201302219] [PMID: 23824715]
[193]
Amemori T, Romanyuk N, Jendelova P, et al. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther 2013; 4(3): 68.
[http://dx.doi.org/10.1186/scrt219] [PMID: 23759119]
[194]
Zamproni LN, Mundim MV, Porcionatto MA, des Rieux A. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment. Int J Pharm 2017; 519(1-2): 323-31.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.036] [PMID: 28115261]
[195]
Song M, Kim YJ, Kim YH, et al. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant 2015; 24(2): 183-90.
[http://dx.doi.org/10.3727/096368913X675755] [PMID: 24380414]
[196]
Tan KK, Tann JY, Sathe SR, et al. Enhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns. Biomaterials 2015; 43: 32-43.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.036] [PMID: 25591959]
[197]
Gwak SJ, Koo H, Yun Y, et al. Multifunctional nanoparticles for gene delivery and spinal cord injury. J Biomed Mater Res A 2015; 103(11): 3474-82.
[http://dx.doi.org/10.1002/jbm.a.35489] [PMID: 25904025]
[198]
Wang Z, Wang Y, Wang Z, et al. Polymeric nanovehicle regulated spatiotemporal real-time imaging of the differentiation dynamics of transplanted neural stem cells after traumatic brain injury. ACS Nano 2015; 9(7): 6683-95.
[http://dx.doi.org/10.1021/acsnano.5b00690] [PMID: 26020550]
[199]
Ferreira R, Fonseca MC, Santos T, et al. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale 2016; 8(15): 8126-37.
[http://dx.doi.org/10.1039/C5NR09077F] [PMID: 27025400]
[200]
Liu H, Cao J, Zhang H, et al. Folic acid stimulates proliferation of transplanted neural stem cells after focal cerebral ischemia in rats. J Nutr Biochem 2013; 24(11): 1817-22.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.002] [PMID: 23850087]
[201]
Liu X-Y, Zhou C-B, Fang C. Nanomaterial-involved neural stem cell research: Disease treatment, cell labeling, and growth regulation. Biomed Pharmacother 2018; 107: 583-97.
[http://dx.doi.org/10.1016/j.biopha.2018.08.029] [PMID: 30114642]
[202]
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2009; 71(2): 251-6.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[203]
Sousa F, Mandal S, Garrovo C, et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2010; 2(12): 2826-34.
[http://dx.doi.org/10.1039/c0nr00345j] [PMID: 20949211]
[204]
Kim HR, Andrieux K, Gil S, et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 2007; 8(3): 793-9.
[http://dx.doi.org/10.1021/bm060711a] [PMID: 17309294]
[205]
Wang J, Sun P, Bao Y, Liu J, An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 2011; 25(1): 242-50.
[http://dx.doi.org/10.1016/j.tiv.2010.11.010] [PMID: 21094249]
[206]
Hutter E, Boridy S, Labrecque S, et al. Microglial response to gold nanoparticles. ACS Nano 2010; 4(5): 2595-606.
[http://dx.doi.org/10.1021/nn901869f] [PMID: 20329742]
[207]
Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 2011; 5(9): 7263-76.
[http://dx.doi.org/10.1021/nn2021088] [PMID: 21838310]
[208]
Zhang L, Bai R, Li B, et al. Rutile TiOz particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett 2011; 207(1): 73-81.
[http://dx.doi.org/10.1016/j.toxlet.2011.08.001] [PMID: 21855616]
[209]
Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015; 8(1): 1-13.
[http://dx.doi.org/10.14802/jmd.14034] [PMID: 25614780]
[210]
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulationHandbook of Clinical Neurology. Elsevier 2018; Vol. 147: pp. 293-305.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy