Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

考虑用药理学组合方法抑制阿尔茨海默氏病的慢性炎症

卷 16, 期 11, 2019

页: [1007 - 1017] 页: 11

弟呕挨: 10.2174/1567205016666191106095038

价格: $65

摘要

建议采用组合鸡尾酒疗法作为缓解慢性炎症并在阿尔茨海默氏病(AD)中赋予神经保护的基本干预措施。对组合药理化合物的要求来自疾病过程中活化的小胶质细胞中存在的促炎途径和机制。本文提出了使用四种化合物的起点,这四种化合物在抗炎目标和作用方面存在差异,但在通过血脑屏障(BBB)表现出有限的通透性方面具有共同点。首选化合物的基础已在动物模型(沙利度胺和米诺环素)中证明了神经保护作用,临床试验数据表明,AD脑病理进展缓慢(布洛芬),并且间接证据证明了由活化的小胶质细胞介导的抑制氧化损伤和趋化反应的推定功效(氨苯砜)。要强调的是,除了此处建议的以外,许多候选化合物都可以被视为鸡尾酒方法的组成部分,并有望在后续工作中进行研究。在这种情况下,需要在AD动物模型中进行系统测试,以严格检查首选化合物的功效并替换效果较弱的化合物。该协议代表了一种实用的方法,可以优化AD病理学中小胶质细胞介导的慢性炎症的减轻。随后的工作将把抗炎性鸡尾酒疗法作为一种辅助治疗方法与不依赖炎症的疗法结合起来,作为减缓AD进展的总体预防策略。

关键词: 组合药理学,慢性炎症,小胶质细胞,米诺环素,沙利度胺,布洛芬,氨苯砜。

Next »
[1]
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’ disease. Neurobiol Aging 21: 383-421.(2000);
[2]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353-6.(2002);
[3]
Rogers J, Webster S, Lue LF, Brachova L, Civin WH, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17: 681-6.(1996);
[4]
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8: 26.(2011);
[5]
Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 19: 928-39.(1999);
[6]
Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26: 349-54.(2005);
[7]
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseran F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14: 388-405.(2015);
[8]
Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13: 2911-25.(2009);
[9]
Eikelenboom P, van Gool WA. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm 111: 281-94.(2004);
[10]
McGeer PL, McGeer EG. NSAIDS and Alzheimer’s disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28: 639-47.(2006);
[11]
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 4: 203-16.(2011);
[12]
Piton M, Hirtz C, Desmetz C, Milhau J, Dominique A, et al. Alzheimer’s disease: Advances in drug development. J Alzheimers Dis 65: 3-13.(2018);
[13]
Ransohoff RM. All (animal) models (of neurodegeneration) are wrong. Are they also useful? J Exp Med 215: 2955-8.(2018);
[14]
Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: a matter of blood-brain barrier dysfunction. J Exp Med 214: 3151-60.(2017);
[15]
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85: 296-302.(2015);
[16]
Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis 32: 599-608.(2012);
[17]
Strickland S. Blood will out: vascular contributions to Alzheimer’s disease. J Clin Invest 128: 556-63.(2018);
[18]
Ryu JK, Cho T, Choi HB, Jantaratnotai N, McLarnon JG. Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease. J Neuroinflammation 12: 144.(2015);
[19]
McLarnon JG, Ryu JK. Relevance of Aβ1-42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alzheimer Res 5: 475-80.(2008);
[20]
Pogue AI, Lukiw WJ. Angiogenic signaling in Alzheimer’s disease. Neuroreport 15: 1507-10.(2004);
[21]
Ryu JK, McLarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis 29: 254-66.(2008);
[22]
Jantaratnotal N, Ryu JK, Schwab C, McGeer PL, McLarnon JG. Comparison of vascular perturbations in an Aβ-injected animal model and in AD brain. Int J Alz Dis (2011).
[http://dx.doi.org/10.4061/2011/918280]
[23]
Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm 116: 587-97.(2009);
[24]
Jantaratnotai N, Schwab C, Ryu JK, McGeer PL, McLarnon JG. Converging perturbed vasculature and microglial clusters characterize Alzheimer disease brain. Curr Alzheimer Res 7: 1-12.(2010);
[25]
Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One 6 e23789(2011);
[26]
Ujiie M, Dickstein D, Carlow D, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10: 463-70.(2003);
[27]
Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 9: 62.(2012);
[28]
Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, et al. Minocycline prevents nigtostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. PNAS 90: 14669-74.(2001);
[29]
Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseh C, et al. Ischiropoulos H, Przedborski S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci 22: 1763-71.(2002);
[30]
Tomas-Camardiel M, Rite I, Herrera AJ, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier and damage in the nigral dopaminergic system. Neurobiol Dis 16: 190-201.(2004);
[31]
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington’s disease. Nat Med 6: 797-801.(2000);
[32]
Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496-500.(1999);
[33]
Ryu JK, Franciosi S, Sattayaprasert P, Kim SU, McLarnon JG. Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 48: 85-90.(2004);
[34]
Ryu JK, McLarnon JG. Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood-brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 198: 552-7.(2006);
[35]
Seabrook TJ, Jiang L, Maier M, Lemere CA. Minocycline affects microglial activation, Abeta deposition, and behavior in APP-tg mice. Glia 5: 776-82.(2006);
[36]
Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J 23: 739-50.(2009);
[37]
Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Kim HS, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacol 32: 2393-404.(2007);
[38]
D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082-5.(1994);
[39]
Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applications. Am J Med 108: 487-95.(2000);
[40]
Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. Nat Neurosci 26: 2467-73.(2006);
[41]
Neymotin A, Petri S, Calingasan NY, Wille E, Schafer P, Stewart C, et al. Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 220: 191-7.(2009);
[42]
Valera E, Mante M, Anderson S, Rockenstein E, Masliah E. Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson’s disease. J Neuroinflamm 12: 93.(2015);
[http://dx.doi.org/10.1186]
[43]
Teo SK, Stirling DI, Zeldis JB. Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov Today 10: 107-14.(2005);
[44]
Tweedie D, Ferguson RA, Fishman K, Frankola KA, Van Praag H, Holloway HW, et al. Tumor necrosis factor-α synthesis inhibitor 3,6′-dithiothalidomide attenuates markers of inflammation, Alzheimer’s pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. J Neuroinflammation 9: 106.(2012);
[45]
He P, Cheng X, Staufenbiel M, Li R, Shen Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer’s disease. PLoS One 8 e55091(2013);
[46]
Decourt B, Drumm-Gurnee D, Wilson J, Jacobson S, Belden C, et al. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide: Results from a double-blind, placebo-controlled trial. Curr Alzheimer Res 14: 403-11.(2017);
[47]
Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology 76: 863-9.(2011);
[48]
Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16: 523-30.(1995);
[49]
Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonist: the Cache County study. Neurology 59: 880-6.(2002);
[50]
Veld SC, Miller DR, Kowall NW, Felson DT. Protective effects of NSAIDS on the development of Alzheimer’s disease. Neurology 70: 1672-7.(2008);
[51]
Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 626-32.(1997);
[52]
Int Veldt BA, Ruttenburg A, Hofman A. Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345: 1515-21.(2001);
[53]
McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126: 479-97.(2013);
[54]
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20: 5709-14.(2000);
[55]
Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, et al. NSAIDS and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J Clin Invest 112: 440-9.(2003);
[56]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV7171 transgenic mice. Brain 128: 1442-53.(2005);
[57]
Cohen PR. Neutrophilic dermatoses: a review of current treatment options. Am J Clin Dermatol 10: 301-12.(2009);
[58]
Hong TM, Teng LJ, Shun CT, Peng MC, Tsai JC. Induced interleukin-8 expression in gliomas by tumor-associated macrophages. J Neurooncol 93: 289-301.(2009);
[59]
Kast RE, Scheuerle A, Wirtz CR, Karpel-Massler G, Halatsch ME. The rationale of targeting neutrophils with dapsone during glioblastoma treatment. Anticancer Agents Med Chem 11(8): 756-61.(2011);
[60]
McGeer PL, Harada N, Kimura H, McGeer EG, Schulzer M. Prevalence of dementia amongst elderly Japanese with leprosy: apparent effect of chronic drug therapy. Dement Geriatr Cogn Disord 3: 146-9.(1992);
[61]
Goto M, Kimura T, Hagio S, Ueda K, Kitajima S. Neuropathological analysis of dementia in a Japanese leprosarum. Dementia 6: 157-61.(1995);
[62]
Zhan R, Zhao M, Zhou T, Chen Y, Yu W, Zhao L, et al. Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis 9: 680.(2018);
[63]
Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 22: 837-42.(2001);
[64]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14: 133-50.(2018);
[65]
Galimberti D, Schoonenboom N, Scarpini E, Scheltens P. Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol 53: 547-8.(2003);
[66]
Xia M, Qin S, McNamara M, Mackay C, Hyman BT. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol 150: 1267-74.(1997);
[67]
Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging 22: 957-66.(2001);
[68]
Franciosi S, Choi HB, Kim SU, McLarnon JG. IL-8 enhancement of amyloid-beta (Aβ1-42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol 159: 66-74.(2005);
[69]
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18: 794-9.(2015);
[70]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 26: 735-9.(2017);
[71]
Brogden RN, Speight TM, Avery GS. Minocycline: a review of its antibacterial and pharmacokinetic properties and therapeutic use. Drugs 9: 251-91.(1975);
[72]
Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol 169: 337-52.(2013);
[73]
Muscal JA, Sun Y, Nuchtern JG, Dauser RC, McGuffey LH, Gibson BW, et al. Plasma and cerebrospinal fluid pharmacokinetics of thalidomide and lenalidomide in nonhuman primates. Cancer Chemother Pharmacol 69: 943-7.(2012);
[74]
Palumbo A, Facon T, Sonneveld P, Bladè J, Offidani M, Gay F, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111: 3968-77.(2008);
[75]
Parepally JM, Mandula H, Smith QK. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen and indomethacin. Pharm Res 23: 873-81.(2006);
[76]
Adams SS, Bough RG, Cliffe EE, Lessel B, Mills RFN. Absorption, distribution and toxicity of ibuprofen. Toxicol Appl Pharmacol 15: 310-30.(1969);
[77]
Murray JF Jr, Gordon GR, Peters JH. Tissue levels of dapsone and monoacetyl-dapsone in Lewis rats receiving dietary dapsone. Proc West Pharmacol Soc 17: 150-4.(1974);
[78]
Coleman MD. Dapsone: modes of action, toxicity and possible strategies for increasing patient tolerance. Br J Dermatol 129: 507-13.(1993);
[79]
Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2: 23.(2005);
[80]
Moir RD, Lathe R. T RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14: 1602-14.(2018);
[81]
Paouri E, Georgopoulos S. Systemic and CNS inflammation crosstalk: implications for Alzheimer’s disease. Curr Alzheimer Res 16: 559-74.(2019);
[82]
Bazzari FH, Abdallah DM, El-Abhar HS. Pharmacological intervention to attenuate AD progression: the story so far. Curr Alzheimer Res 16: 261-77.(2019);

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy