Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Adjunctive Immunotherapeutic Efficacy of N-Formylated Internal Peptide of Mycobacterial Glutamine Synthetase in Mouse Model of Tuberculosis

Author(s): Shabir Ahmad Mir and Sadhna Sharma*

Volume 27, Issue 3, 2020

Page: [236 - 242] Pages: 7

DOI: 10.2174/0929866526666191028151615

Price: $65

Abstract

Background: Host-directed therapies are a comparatively new and promising method for the treatment of tuberculosis. A variety of host pathways, vaccines and drugs have the potential to provide novel adjunctive therapies for the treatment of tuberculosis. In this connection, we have earlier reported the immunotherapeutic potential of N-formylated N-terminal peptide of glutamine synthetase of Mycobacterim tuberculosis H37Rv (Mir SA and Sharma S, 2014). Now in the present study, we investigated the immunotherapeutic effect of N-terminally formylated internal-peptide 'f- MLLLPD' of mycobacterial glutamine synthetase (Rv2220) in mouse model of tuberculosis.

Methods: The N-terminally formylated peptide, f-MLLLPD was tested for its potential to generate Reactive Oxygen Species (ROS) in murine neutrophils. Further, its therapeutic effect alone or in combination with anti-tubercular drugs was evaluated in mouse model of tuberculosis.

Results: The f-MLLLPD peptide treatment alone and in combination with ATDs reduced the bacterial load (indicated as colony forming units) in lungs of infected mice by 0.58 (p<0.01) and 2.92 (p<0.001) log10 units respectively and in their spleens by 0.46 (p<0.05) and 2.46 (p<0.001) log10 units respectively. In addition, the observed histopathological results correlated well with the CFU data.

Conclusion: The results of the current study show that f-MLLLPD peptide confers an additional therapeutic efficacy to the anti-tuberculosis drugs.

Keywords: Anti-tuberculosis drugs, formylated peptide, histopathology, immunotherapy, therapeutic effect, host-directed therapies.

Graphical Abstract

[1]
Houben, R.M.; Dodd, P.J. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med., 2016, 13(10)e1002152
[http://dx.doi.org/10.1371/journal.pmed.1002152] [PMID: 27780211]
[2]
WHO. Global Tuberculosis Report. World Health Organization 2018. Available from:. http://www.who.int/tb/publications/global_report/en/
[3]
Doi, T.; Yamada, H.; Yajima, T.; Wajjwalku, W.; Hara, T.; Yoshikai, Y. H2-M3-restricted CD8+ T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis. J. Immunol., 2007, 178(6), 3806-3813.
[http://dx.doi.org/10.4049/jimmunol.178.6.3806] [PMID: 17339479]
[4]
Word Health Organization; Report of The Expert Consultation on Immunother-Apeutic Interventions for Tuberculosis, Geneva; 2007.Availale from. https://www.who.int/tdr/publications/tdr-research-publications/immunotherapeutic-interventions-tb/en/
[5]
Sheikh, J.A.; Khuller, G.K.; Verma, I. Immunotherapeutic role of Ag85B as an adjunct to antituberculous chemotherapy. J. Immune Based Ther. Vaccines, 2011, 9, 4.
[http://dx.doi.org/10.1186/1476-8518-9-4] [PMID: 21703025]
[6]
Barnes, P.F. Immunotherapy for tuberculosis: Wave of the future or tilting at windmills? Am. J. Respir. Crit. Care Med., 2003, 168(2), 142-143.
[http://dx.doi.org/10.1164/rccm.2305001] [PMID: 12851240]
[7]
Fávaro, W.J.; Nunes, O.S.; Seiva, F.R.; Nunes, I.S.; Woolhiser, L.K.; Durán, N.; Lenaerts, A.J. Effects of P-MAPA immunomodulator on toll-like receptors and p53: Potential therapeutic strategies for infectious diseases and cancer. Infect. Agent. Cancer, 2012, 7(1), 14.
[http://dx.doi.org/10.1186/1750-9378-7-14] [PMID: 22709446]
[8]
Hedayat, M.; Takeda, K.; Rezaei, N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med. Res. Rev., 2012, 32(2), 294-325.
[http://dx.doi.org/10.1002/med.20214] [PMID: 22383179]
[9]
Karmakar, S.; Bhaumik, S.K.; Paul, J.; De, T. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog., 2012, 8(4)e1002646
[http://dx.doi.org/10.1371/journal.ppat.1002646] [PMID: 22511870]
[10]
Mir, S.A.; Sharma, S. Immunotherapeutic potential of N-formylated peptides of ESAT-6 and glutamine synthetase in experimental tuberculosis. Int. Immunopharmacol., 2014, 18(2), 298-303.
[http://dx.doi.org/10.1016/j.intimp.2013.09.010] [PMID: 24369314]
[11]
Arnoult, D.; Soares, F.; Tattoli, I.; Girardin, S.E. Mitochondria in innate immunity. EMBO Rep., 2011, 12(9), 901-910.
[http://dx.doi.org/10.1038/embor.2011.157] [PMID: 21799518]
[12]
Jones, R.M.; Mercante, J.W.; Neish, A.S. Reactive oxygen production induced by the gut microbiota: Pharmacotherapeutic implications. Curr. Med. Chem., 2012, 19(10), 1519-1529.
[http://dx.doi.org/10.2174/092986712799828283] [PMID: 22360484]
[13]
Medzhitov, R.; Janeway, C., Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev., 2000, 173, 89-97.
[http://dx.doi.org/10.1034/j.1600-065X.2000.917309.x] [PMID: 10719670]
[14]
Winther, M.; Holdfeldt, A.; Gabl, M.; Wang, J.M.; Forsman, H.; Dahlgren, C. Formylated MHC class Ib binding peptides activate both human and mouse Neutrophils primarily through formyl peptide receptor 1. PLoS One, 2016, 11(12)e0167529
[http://dx.doi.org/10.1371/journal.pone.0167529] [PMID: 27907124]
[15]
Panaro, M.A.; Mitolo, V. Cellular responses to FMLP challenging: A mini-review. Immunopharmacol. Immunotoxicol., 1999, 21(3), 397-419.
[http://dx.doi.org/10.3109/08923979909007117] [PMID: 10466071]
[16]
Fu, H.; Dahlgren, C.; Bylund, J. Subinhibitory concentrations of the deformylase inhibitor actinonin increase bacterial release of neutrophil-activating peptides: A new approach to antimicrobial chemotherapy. Antimicrob. Agents Chemother., 2003, 47(8), 2545-2550.
[http://dx.doi.org/10.1128/AAC.47.8.2545-2550.2003] [PMID: 12878517]
[17]
Gao, J.L.; Lee, E.J.; Murphy, P.M. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J. Exp. Med., 1999, 189(4), 657-662.
[http://dx.doi.org/10.1084/jem.189.4.657] [PMID: 9989980]
[18]
Colmone, A.; Wang, C.R. H2-M3-restricted T cell response to infection. Microbes Infect., 2006, 8(8), 2277-2283.
[http://dx.doi.org/10.1016/j.micinf.2006.03.020] [PMID: 16824777]
[19]
Mir, S.A.; Sharma, S. Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis. Vaccine, 2013, 31(37), 3818-3825.
[http://dx.doi.org/10.1016/j.vaccine.2013.04.005] [PMID: 23628242]
[20]
Kerksiek, K.M.; Busch, D.H.; Pilip, I.M.; Allen, S.E.; Pamer, E.G. H2-M3-restricted T cells in bacterial infection: Rapid primary but diminished memory responses. J. Exp. Med., 1999, 190(2), 195-204.
[http://dx.doi.org/10.1084/jem.190.2.195] [PMID: 10432283]
[21]
Wang, C.R.; Castaño, A.R.; Peterson, P.A.; Slaughter, C.; Lindahl, K.F.; Deisenhofer, J. Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2-M3. Cell, 1995, 82(4), 655-664.
[http://dx.doi.org/10.1016/0092-8674(95)90037-3] [PMID: 7664344]
[22]
Lauvau, G.; Pamer, E.G. CD8 T cell detection of bacterial infection: sniffing for formyl peptides derived from Mycobacterium tuberculosis. J. Exp. Med., 2001, 193(10), F35-F39.
[http://dx.doi.org/10.1084/jem.193.10.F35] [PMID: 11369794]
[23]
Khader, S.A.; Bell, G.K.; Pearl, J.E.; Fountain, J.J.; Rangel-Moreno, J.; Cilley, G.E.; Shen, F.; Eaton, S.M.; Gaffen, S.L.; Swain, S.L.; Locksley, R.M.; Haynes, L.; Randall, T.D.; Cooper, A.M. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol., 2007, 8(4), 369-377.
[http://dx.doi.org/10.1038/ni1449] [PMID: 17351619]
[24]
Mir, S.A.; Verma, I.; Sharma, S. Immunotherapeutic potential of recombinant ESAT-6 protein in mouse model of experimental tuberculosis. Immunol. Lett., 2014, 158(1-2), 88-94.
[http://dx.doi.org/10.1016/j.imlet.2013.12.007] [PMID: 24345702]
[25]
Sukhumavasi, W.; Egan, C.E.; Denkers, E.Y. Mouse neutrophils require JNK2 MAPK for Toxoplasma gondii-induced IL-12p40 and CCL2/MCP-1 release. J. Immunol., 2007, 179(6), 3570-3577.
[http://dx.doi.org/10.4049/jimmunol.179.6.3570] [PMID: 17785791]
[26]
Zhang, X.; Majlessi, L.; Deriaud, E.; Leclerc, C.; Lo-Man, R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 2009, 31(5), 761-771.
[http://dx.doi.org/10.1016/j.immuni.2009.09.016] [PMID: 19913447]
[27]
Eum, S.Y.; Kong, J.H.; Hong, M.S.; Lee, Y.J.; Kim, J.H.; Hwang, S.H.; Cho, S.N.; Via, L.E.; Barry, C.E. III Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010, 137(1), 122-128.
[http://dx.doi.org/10.1378/chest.09-0903] [PMID: 19749004]
[28]
Redford, P.S.; Boonstra, A.; Read, S.; Pitt, J.; Graham, C.; Stavropoulos, E.; Bancroft, G.J.; O’Garra, A. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur. J. Immunol., 2010, 40(8), 2200-2210.
[http://dx.doi.org/10.1002/eji.201040433] [PMID: 20518032]
[29]
Mader, D.; Rabiet, M.J.; Boulay, F.; Peschel, A. Formyl peptide receptor-mediated proinflammatory consequences of peptide deformylase inhibition in Staphylococcus aureus. Microbes Infect., 2010, 12(5), 415-419.
[http://dx.doi.org/10.1016/j.micinf.2010.01.014] [PMID: 20156579]
[30]
Sharma, A.; Sharma, S.; Khuller, G.K.; Kanwar, A.J. In vitro and ex vivo activity of peptide deformylase inhibitors against Mycobacterium tuberculosis H37Rv. Int. J. Antimicrob. Agents, 2009, 34(3), 226-230.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.04.005] [PMID: 19505802]
[31]
Sharma, A.; Khuller, G.K.; Kanwar, A.J.; Sharma, S. Therapeutic potential of peptide deformylase inhibitors against experimental tuberculosis. J. Infect., 2010, 60(6), 498-501.
[http://dx.doi.org/10.1016/j.jinf.2010.03.009] [PMID: 20346970]
[32]
Bulatovic, V.M.; Wengenack, N.L.; Uhl, J.R.; Hall, L.; Roberts, G.D.; Cockerill, F.R., III; Rusnak, F. Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob. Agents Chemother., 2002, 46(9), 2765-2771.
[http://dx.doi.org/10.1128/AAC.46.9.2765-2771.2002] [PMID: 12183226]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy