Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches

Author(s): Sivakumar P. Malliappan, Palanivel Kandasamy, Siva Chidambaram, Devanand Venkatasubbu, Sathish K. Perumal and Abimanyu Sugumaran*

Volume 20, Issue 11, 2020

Page: [1300 - 1310] Pages: 11

DOI: 10.2174/1871520619666191022175003

Price: $65

Abstract

Breast cancer is the second most common cancer that causes death among women worldwide. Incidence of breast cancer is increasing worldwide, and the age at which breast cancer develops has shifted from 50- 70 years to 30-40 years. Chemotherapy is the most commonly used effective treatment strategy to combat breast cancer. However, one of the major drawbacks is low selective site-specificity and the consequent toxic insult to normal healthy cells. The nanocarrier system is consistently utilised to minimise the various limitations involved in the conventional treatment of breast cancer. The nanocarrier based targeted drug delivery system provides better bioavailability, prolonged circulation with an effective accumulation of drugs at the tumour site either by active or passive drug targeting. Active targeting has been achieved by receptor/protein anchoring and externally guided magnetic nanocarriers, whereas passive targeting accomplished by employing the access to the tunnel via leaky tumour vasculature, utilising the tumour microenvironment, because the nanocarrier systems can reduce the toxicity to normal cells. As of now a few nanocarrier systems have been approved by FDA, and various nanoformulations are in the pipeline at the preclinical and clinical development for targeting breast cancer; among them, polymeric micelles, microemulsions, magnetic microemulsions, liposomes, dendrimers, carbon nanotubes, and magnetic Nanoparticles (NPs) are the most common. The current review highlights the active and passive targeting potential of nanocarriers in breast cancer and discusses their role in targeting breast cancer without affecting normal healthy cells.

Keywords: Breast cancer, drug targeting, active targeting, passive targeting, nanocarrier, drug delivery.

Graphical Abstract

[1]
Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; Hiller, W.; Fisher, E.R.; Wickerham, D.L.; Bryant, J.; Wolmark, N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med., 2004, 351(27), 2817-2826.
[http://dx.doi.org/10.1056/NEJMoa041588] [PMID: 15591335]
[2]
van ’t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; Schreiber, G.J.; Kerkhoven, R.M.; Roberts, C.; Linsley, P.S.; Bernards, R.; Friend, S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871), 530-536.
[http://dx.doi.org/10.1038/415530a] [PMID: 11823860]
[3]
Chin, K.; DeVries, S.; Fridlyand, J.; Spellman, P.T.; Roydasgupta, R.; Kuo, W.L.; Lapuk, A.; Neve, R.M.; Qian, Z.; Ryder, T.; Chen, F.; Feiler, H.; Tokuyasu, T.; Kingsley, C.; Dairkee, S.; Meng, Z.; Chew, K.; Pinkel, D.; Jain, A.; Ljung, B.M.; Esserman, L.; Albertson, D.G.; Waldman, F.M.; Gray, J.W. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 2006, 10(6), 529-541.
[http://dx.doi.org/10.1016/j.ccr.2006.10.009] [PMID: 17157792]
[4]
Bergamaschi, A.; Kim, Y.H.; Wang, P.; Sørlie, T.; Hernandez-Boussard, T.; Lonning, P.E.; Tibshirani, R.; Børresen-Dale, A.L.; Pollack, J.R. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer, 2006, 45(11), 1033-1040.
[http://dx.doi.org/10.1002/gcc.20366] [PMID: 16897746]
[5]
Perou, C.M. Molecular stratification of triple-negative breast cancers. Oncologist, 2010, 15(Suppl. 5), 39-48.
[http://dx.doi.org/10.1634/theoncologist.2010-S5-39] [PMID: 21138954]
[6]
Alluri, P.; Newman, L.A. Basal-like and triple-negative breast cancers: Searching for positives among many negatives. Surg. Oncol. Clin. N. Am., 2014, 23(3), 567-577.
[http://dx.doi.org/10.1016/j.soc.2014.03.003] [PMID: 24882351]
[7]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[8]
Assi, H.A.; Khoury, K.E.; Dbouk, H.; Khalil, L.E.; Mouhieddine, T.H.; El Saghir, N.S. Epidemiology and prognosis of breast cancer in young women. J. Thorac. Dis., 2013, 5(Suppl. 1), S2-S8.
[PMID: 23819024]
[9]
Malvia, S.; Bagadi, S.A.; Dubey, U.S.; Saxena, S. Epidemiology of breast cancer in Indian women. Asia Pac. J. Clin. Oncol., 2017, 13(4), 289-295.
[http://dx.doi.org/10.1111/ajco.12661] [PMID: 28181405]
[10]
Dikshit, R.; Gupta, P.C.; Ramasundarahettige, C.; Gajalakshmi, V.; Aleksandrowicz, L.; Badwe, R.; Kumar, R.; Roy, S.; Suraweera, W.; Bray, F.; Mallath, M.; Singh, P.K.; Sinha, D.N.; Shet, A.S.; Gelband, H.; Jha, P. Million Death Study Collaborators. Cancer mortality in India: A nationally representative survey. Lancet, 2012, 379(9828), 1807-1816.
[http://dx.doi.org/10.1016/S0140-6736(12)60358-4] [PMID: 22460346]
[11]
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(6), 409-418.
[http://dx.doi.org/10.3322/caac.20134] [PMID: 21969133]
[12]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[13]
Higgins, M.J.; Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest., 2011, 121(10), 3797-3803.
[http://dx.doi.org/10.1172/JCI57152] [PMID: 21965336]
[14]
Munagala, R.; Aqil, F.; Gupta, R.C. Promising molecular targeted therapies in breast cancer. Indian J. Pharmacol., 2011, 43(3), 236-245.
[http://dx.doi.org/10.4103/0253-7613.81497] [PMID: 21713084]
[15]
Confortini, C.C.; Krong, B. Breast cancer in the global south and the limitations of a biomedical framing: a critical review of the literature. Health Policy Plan., 2015, 30(10), 1350-1361.
[http://dx.doi.org/10.1093/heapol/czu134] [PMID: 25595143]
[16]
Partridge, A.H.; Burstein, H.J.; Winer, E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr., 2001, 2001(30), 135-142.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451] [PMID: 11773307]
[17]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[18]
Gao, Y.; Li, L.B.; Zhai, G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf. B Biointerfaces, 2008, 64(2), 194-199.
[http://dx.doi.org/10.1016/j.colsurfb.2008.01.021] [PMID: 18325744]
[19]
Fassberg, J.; Stella, V.J. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci., 1992, 81(7), 676-684.
[http://dx.doi.org/10.1002/jps.2600810718] [PMID: 1403703]
[20]
Burris, H.A. III Topotecan: Incorporating it into the treatment of solid tumours. Oncologist, 1998, 3(1), 1-3.
[PMID: 10388078]
[21]
Ughachukwu, P.; Unekwe, P. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res., 2012, 2(2), 191-198.
[http://dx.doi.org/10.4103/2141-9248.105671] [PMID: 23439914]
[22]
Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Jeevanesan, V.; Girija, G.; Palanichamy, R. Development and evaluation of magnetic microemulsion: tool for targeted delivery of camptothecin to BALB/c mice-bearing breast cancer. J. Drug Target., 2014, 22(10), 913-926.
[http://dx.doi.org/10.3109/1061186X.2014.948878] [PMID: 25119147]
[23]
Vieira, D.B.; Gamarra, L.F. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo), 2016, 14(1), 99-103.
[http://dx.doi.org/10.1590/S1679-45082016RB3475] [PMID: 27074238]
[24]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[25]
Fanciullino, R.; Ciccolini, J.; Milano, G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol., 2013, 88(3), 504-513.
[http://dx.doi.org/10.1016/j.critrevonc.2013.06.010] [PMID: 23871532]
[26]
Onoue, S.; Yamada, S.; Chan, H.K. Nanodrugs: Pharmacokinetics and safety. Int. J. Nanomedicine, 2014, 9, 1025-1037.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[27]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[28]
Nishimura, Y.; Mieda, H.; Ishii, J.; Ogino, C.; Fujiwara, T.; Kondo, A. Targeting cancer cell-specific RNA interference by siRNA delivery using a complex carrier of affibody-displaying bio-nanocapsules and liposomes. J. Nanobiotechnology, 2013, 11, 19.
[http://dx.doi.org/10.1186/1477-3155-11-19] [PMID: 23800313]
[29]
Fedele, P.; Orlando, L.; Schiavone, P.; Calvani, N.; Caliolo, C.; Quaranta, A.; Nacci, A.; Cinieri, S. Recent advances in the treatment of hormone receptor positive HER2 negative metastatic breast cancer. Crit. Rev. Oncol. Hematol., 2015, 94(3), 291-301.
[http://dx.doi.org/10.1016/j.critrevonc.2015.01.001] [PMID: 25624176]
[30]
Hsiao, J.K.; Wu, H.C.; Liu, H.M.; Yu, A.; Lin, C.T. A multifunctional peptide for targeted imaging and chemotherapy for nasopharyngeal and breast cancers. Nanomedicine (Lond.), 2015, 11(6), 1425-1434.
[http://dx.doi.org/10.1016/j.nano.2015.03.011] [PMID: 25881740]
[31]
Tang, X.J.; Han, M.; Yang, B.; Shen, Y.Q.; He, Z.G.; Xu, D.H.; Gao, J.Q. Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Int. J. Pharm., 2014, 477(1-2), 536-545.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.054] [PMID: 25445532]
[32]
Kumar, A.; Ahuja, A.; Ali, J.; Baboota, S. Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells. Drug Deliv., 2016, 23(1), 214-229.
[http://dx.doi.org/10.3109/10717544.2014.909906] [PMID: 24825490]
[33]
Jiang, H.; Rugo, H.S. Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer: How the latest results are improving therapeutic options. Ther. Adv. Med. Oncol., 2015, 7(6), 321-339.
[http://dx.doi.org/10.1177/1758834015599389] [PMID: 26557900]
[34]
Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; Quinn, T.P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M.A.; Norton, L.; Subramony, J.A.; Wiesner, U.; Bradbury, M.S. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun., 2018, 9(1), 4141.
[http://dx.doi.org/10.1038/s41467-018-06271-5] [PMID: 30297810]
[35]
Norouzi, S.; Majeed, M.; Pirro, M.; Generali, D.; Sahebkar, A. curcumin as an adjunct therapy and microRNA modulator in breast cancer. Curr. Pharm. Des., 2018, 24(2), 171-177.
[http://dx.doi.org/10.2174/1381612824666171129203506] [PMID: 29189128]
[36]
Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Thiagarajan, V.; Palanichamy, R.; Kandasamy, R. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. Int. J. Biol. Macromol., 2017, 104(Pt B), 1846-1852.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.127] [PMID: 28545970]
[37]
Eniu, A. Integrating biological agents into systemic therapy of breast cancer: Trastuzumab, lapatinib, bevacizumab. J. BUON, 2007, 12(Suppl. 1), S119-S126.
[PMID: 17935269]
[38]
D’Abramo, F.; Goerling, U.; Guastadisegni, C. Targeted drugs and psycho-oncological intervention for breast cancer patients. J. Negat. Results Biomed., 2016, 15, 6.
[http://dx.doi.org/10.1186/s12952-016-0049-9] [PMID: 27036549]
[39]
Saxena, M.; Stephens, M.A.; Pathak, H.; Rangarajan, A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis., 2011, 2, e179
[http://dx.doi.org/10.1038/cddis.2011.61] [PMID: 21734725]
[40]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[41]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[PMID: 25071577]
[42]
Gillet, J.P.; Efferth, T.; Steinbach, D.; Hamels, J.; de Longueville, F.; Bertholet, V.; Remacle, J. Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res., 2004, 64(24), 8987-8993.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1978] [PMID: 15604263]
[43]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta, 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[44]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 1992, 258(5088), 1650-1654.
[http://dx.doi.org/10.1126/science.1360704] [PMID: 1360704]
[45]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[http://dx.doi.org/10.1073/pnas.95.26.15665] [PMID: 9861027]
[46]
Velingkar, V.; Dandekar, V. Modulation of P-glycoprotein mediated Multidrug Resistance (MDR) in cancer using chemosensitizers. Int. J. Pharm. Sci. Res., 2010, 1, 104-111.
[47]
Wan, C.P.; Jackson, J.K.; Pirmoradi, F.N.; Chiao, M.; Burt, H.M. Increased accumulation and retention of micellar paclitaxel in drug-sensitive and P-glycoprotein-expressing cell lines following ultrasound exposure. Ultrasound Med. Biol., 2012, 38(5), 736-744.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.01.023] [PMID: 22425383]
[48]
Cummings, J.; Boyd, G.; Macpherson, J.S.; Wolf, H.; Smith, G.; Smyth, J.F.; Jodrell, D.I. Factors influencing the cellular accumulation of SN-38 and camptothecin. Cancer Chemother. Pharmacol., 2002, 49(3), 194-200.
[http://dx.doi.org/10.1007/s00280-001-0393-3] [PMID: 11935211]
[49]
Deng, L.; Tatebe, S.; Lin-Lee, Y.C.; Ishikawa, T.; Kuo, M.T. MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents. Cancer Treat. Res, 2002, 112, 49-66.
[http://dx.doi.org/10.1007/978-1-4615-1173-1_3] [PMID: 12481711]
[50]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev., 2003, 55(1), 3-29.
[http://dx.doi.org/10.1016/S0169-409X(02)00169-2] [PMID: 12535572]
[51]
Wijnholds, J.; Evers, R.; van Leusden, M.R.; Mol, C.A.; Zaman, G.J.; Mayer, U.; Beijnen, J.H.; van der Valk, M.; Krimpenfort, P.; Borst, P. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med., 1997, 3(11), 1275-1279.
[http://dx.doi.org/10.1038/nm1197-1275] [PMID: 9359705]
[52]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[53]
Muller, R.H.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.007] [PMID: 15380654]
[54]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1] [PMID: 20217525]
[55]
Mastrobattista, E.; Koning, G.A.; Storm, G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev., 1999, 40(1-2), 103-127.
[http://dx.doi.org/10.1016/S0169-409X(99)00043-5] [PMID: 10837783]
[56]
Gregoriadis, G. Targeting of drugs. Nature, 1977, 265(5593), 407-411.
[http://dx.doi.org/10.1038/265407a0] [PMID: 834290]
[57]
Jin, S.; Ye, K. Targeted drug delivery for breast cancer treatment. Rec. Pat. Anticancer Drug Discov., 2013, 8(2), 143-153.
[http://dx.doi.org/10.2174/1574892811308020003] [PMID: 23394116]
[58]
Nienhuis, H.H.; Gaykema, S.B.; Timmer-Bosscha, H.; Jalving, M.; Brouwers, A.H.; Lub-de Hooge, M.N.; van der Vegt, B.; Overmoyer, B.; de Vries, E.G.; Schröder, C.P. Targeting breast cancer through its microenvironment: Current status of preclinical and clinical research in finding relevant targets. Pharmacol. Ther., 2015, 147, 63-79.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.004] [PMID: 25444756]
[59]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[60]
Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci., 2004, 95(5), 377-384.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03219.x] [PMID: 15132763]
[61]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[62]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[63]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[64]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[65]
Taurin, S.; Nehoff, H.; Greish, K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release, 2012, 164(3), 265-275.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.013] [PMID: 22800576]
[66]
Omidi, Y.; Barar, J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts, 2014, 4(2), 55-67.
[PMID: 25035848]
[67]
Chatterjee, S.; Naik, U.P. Pericyte-endothelial cell interaction: A survival mechanism for the tumor vasculature. Cell Adhes. Migr., 2012, 6(3), 157-159.
[http://dx.doi.org/10.4161/cam.20252] [PMID: 22568989]
[68]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[69]
Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[70]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol., 2008, 26(1), 74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017] [PMID: 18190835]
[71]
Werengowska-Ciećwierz, K.; Wiśniewski, M.; Terzyk, A.P.; Furmaniak, S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Cond. Matter Phys., 2015, 2015, 27.
[72]
Behera, A.L.; Patil, S.V.; Sahoo, S.K. Nanosizing of drugs: A promising approach for drug delivery. Pharm. Sin., 2010, 1, 20-28.
[73]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[74]
Galvin, P.; Thompson, D.; Ryan, K.B.; McCarthy, A.; Moore, A.C.; Burke, C.S.; Dyson, M.; Maccraith, B.D.; Gun’ko, Y.K.; Byrne, M.T.; Volkov, Y.; Keely, C.; Keehan, E.; Howe, M.; Duffy, C.; MacLoughlin, R. Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications. Cell. Mol. Life Sci., 2012, 69(3), 389-404.
[http://dx.doi.org/10.1007/s00018-011-0856-6] [PMID: 22015612]
[75]
He, X.; Bonaparte, N.; Kim, S.; Acharya, B.; Lee, J.Y.; Chi, L.; Lee, H.J.; Paik, Y.K.; Moon, P.G.; Baek, M.C.; Lee, E.K.; Kim, J.H.; Kim, I.S.; Lee, B.H. Enhanced delivery of T cells to tumor after chemotherapy using membrane-anchored, apoptosis-targeted peptide. J. Control. Release, 2012, 162(3), 521-528.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.023] [PMID: 22824781]
[76]
Noyhouzer, T.; L’Homme, C.; Beaulieu, I.; Mazurkiewicz, S.; Kuss, S.; Kraatz, H.B.; Canesi, S.; Mauzeroll, J. Ferrocene-modified phospholipid: An innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells. Langmuir, 2016, 32(17), 4169-4178.
[http://dx.doi.org/10.1021/acs.langmuir.6b00511] [PMID: 26987014]
[77]
Alphandéry, E. Perspectives of breast cancer thermotherapies. J. Cancer, 2014, 5(6), 472-479.
[http://dx.doi.org/10.7150/jca.8693] [PMID: 24959300]
[78]
Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers (Basel), 2011, 3(3), 2888-2903.
[http://dx.doi.org/10.3390/cancers3032888] [PMID: 24212938]
[79]
Dong, S.; Guo, Y.; Duan, Y.; Li, Z.; Wang, C.; Niu, L.; Wang, N.; Ma, M.; Shi, Y.; Zhang, M. Co-delivery of paclitaxel and gemcitabine by methoxy poly(ethylene glycol)-poly(lactide-coglycolide)-polypeptide nanoparticles for effective breast cancer therapy. Anticancer Drugs, 2018, 29(7), 637-645.
[http://dx.doi.org/10.1097/CAD.0000000000000631] [PMID: 29846247]
[80]
Gao, L.P.; Gao, L.F.; Fan, M.X.; Li, Q.L.; Jin, J.Y.; Wang, J. Hydrotropic polymer-based paclitaxel-loaded self-assembled nanoparticles: preparation and biological evaluation. RSC Advances, 2017, 7, 33248-33256.
[http://dx.doi.org/10.1039/C7RA04563H]
[81]
Sugumaran, A.; Ponnusamy, C.; Kandasamy, P.; Krishnaswami, V.; Palanichamy, R.; Kandasamy, R.; Lakshmanan, M.; Natesan, S. Development and evaluation of camptothecin loaded polymer stabilized nanoemulsion: Targeting potential in 4T1-breast tumour xenograft model. Eur. J. Pharm. Sci., 2018, 116, 15-25.
[http://dx.doi.org/10.1016/j.ejps.2017.10.005] [PMID: 28987538]
[82]
Popilski, H.; Abtew, E.; Schwendeman, S.; Domb, A.; Stepensky, D. Efficacy of paclitaxel/dexamethasone intra-tumoral delivery in treating orthotopic mouse breast cancer. J. Control. Release, 2018, 279, 1-7.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.010] [PMID: 29654797]
[83]
Freag, M.S.; Elzoghby, A.O. Protein-inorganic nanohybrids: A potential symbiosis in tissue engineering. Curr. Drug Targets, 2018, 19(16), 1897-1904.
[http://dx.doi.org/10.2174/1389450118666171027111050] [PMID: 29076428]
[84]
Liyanage, P.Y.; Hettiarachchi, S.D.; Zhou, Y.; Ouhtit, A.; Seven, E.S.; Oztan, C.Y.; Celik, E.; Leblanc, R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 419-433.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006] [PMID: 31034927]
[85]
Cunha, F.S.; dos Santos Pereira, L.N. de, Costa, E.; Silva, T.P.; de, Sousa Luz, R.A.; Nogueira Mendes, A. Development of nanoparticulate systems with action in breast and ovarian cancer. Nanotheragnostics. J. Drug Target., 2019, 27, 732-741.
[http://dx.doi.org/10.1080/1061186X.2018.1523418]
[86]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer. Agents Med. Chem., 2017, 17(2), 152-163.
[http://dx.doi.org/10.2174/1871520616666160502122724] [PMID: 27137076]
[87]
Lin, C.Y.; Liu, T.M.; Chen, C.Y.; Huang, Y.L.; Huang, W.K.; Sun, C.K.; Chang, F.H.; Lin, W.L. Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors. J. Control. Release, 2010, 146(3), 291-298.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.033] [PMID: 20621645]
[88]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[89]
Kukowska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R., Jr Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res., 2005, 65(12), 5317-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[90]
Yoo, H.S.; Park, T.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control. Release, 2004, 100(2), 247-256.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.017] [PMID: 15544872]
[91]
Sankhala, K.; Mita, A.; Adinin, R.; Wood, L.; Beeram, M.; Bullock, S.; Yamagata, N.; Matsuno, K.; Fujisawa, T.; Phan, A. A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J. Clin. Oncol., 2009, 27, 2535.
[92]
Jain, T.K.; Roy, I.; De, T.K.; Maitra, A.N. Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J. Am. Chem. Soc., 1998, 120, 11092-11095.
[http://dx.doi.org/10.1021/ja973849x]
[93]
Badley, R.D.; Ford, W.T.; McEnroe, F.J.; Assink, R.A. Surface modification of colloidal silica. Langmuir, 1990, 6, 792-801.
[http://dx.doi.org/10.1021/la00094a013]
[94]
Lal, M.; Levy, L.; Kim, K.S.; He, G.S.; Wang, X.; Min, Y.H.; Pakatchi, S.; Prasad, P.N. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chem. Mater., 2000, 19, 2632-2639.
[http://dx.doi.org/10.1021/cm000178k]
[95]
Li, Z.; Zhu, S.; Gan, K.; Zhang, Q.; Zeng, Z.; Zhou, Y.; Liu, H.; Xiong, W.; Li, X.; Li, G. Poly-L-lysine-modified silica nanoparticles: A potential oral gene delivery system. J. Nanosci. Nanotechnol., 2005, 5(8), 1199-1203.
[http://dx.doi.org/10.1166/jnn.2005.220] [PMID: 16193977]
[96]
Wu, X.; Wu, M.; Zhao, J.X. Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine (Lond.), 2014, 10(2), 297-312.
[http://dx.doi.org/10.1016/j.nano.2013.08.008] [PMID: 24028896]
[97]
Roy, I.; Ohulchanskyy, T.Y.; Bharali, D.J.; Pudavar, H.E.; Mistretta, R.A.; Kaur, N.; Prasad, P.N. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 279-284.
[http://dx.doi.org/10.1073/pnas.0408039101] [PMID: 15630089]
[98]
Mishra, M.; Kumar, H.; Tripathi, K. Diabetic delayed wound healing and the role of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2008, 3, 49.
[99]
Venkatasubbu, G.D.; Ramasamy, S.; Ramakrishnan, V.; Kumar, J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol., 2013, 24, 947-954.
[http://dx.doi.org/10.1016/j.apt.2013.01.008]
[100]
Venkatasubbu, G.D.; Ramasamy, S.; Avadhani, G.S.; Ramakrishnan, V.; Kumar, J. Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol., 2013, 235, 437-442.
[http://dx.doi.org/10.1016/j.powtec.2012.11.003]
[101]
Kumar, A.; Sahoo, B.; Montpetit, A.; Behera, S.; Lockey, R.F.; Mohapatra, S.S. Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine (Lond.), 2007, 3(2), 132-137.
[http://dx.doi.org/10.1016/j.nano.2007.03.001] [PMID: 17572355]
[102]
Liu, X.; Kaminski, M.D.; Chen, H.; Torno, M.; Taylor, L.; Rosengart, A.J. Synthesis and characterization of highly-magnetic biodegradable poly(d,l-lactide-co-glycolide) nanospheres. J. Control. Release, 2007, 119(1), 52-58.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.031] [PMID: 17350131]
[103]
Zhang, Y.; Wei, C.; Wang, S.; Liu, Y.; Pope, C. Phototoxicity of zinc oxide nanoparticles conjugates in human ovarian cancer NIH OVACAR-3 cells. J. Biomed. Nanotechnol., 2008, 4, 432-438.
[http://dx.doi.org/10.1166/jbn.2008.006]
[104]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[105]
Yaghmur, A.; Glatter, O. Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci., 2009, 147-148, 333-342.
[http://dx.doi.org/10.1016/j.cis.2008.07.007] [PMID: 18804754]
[106]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[107]
Lammers, T.; Hennink, W.E.; Storm, G. Tumour-targeted nanomedicines: Principles and practice. Br. J. Cancer, 2008, 99(3), 392-397.
[http://dx.doi.org/10.1038/sj.bjc.6604483] [PMID: 18648371]
[108]
Allen, T.M.; Martin, F.J. Advantages of liposomal delivery systems for anthracyclines. Semin. Oncol., 2004, 31(6)(Suppl. 13), 5-15.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.001] [PMID: 15717735]
[109]
Coleman, R.E.; Biganzoli, L.; Canney, P.; Dirix, L.; Mauriac, L.; Chollet, P.; Batter, V.; Ngalula-Kabanga, E.; Dittrich, C.; Piccart, M. A randomised phase II study of two different schedules of pegylated liposomal doxorubicin in metastatic breast cancer (EORTC-10993). Eur. J. Cancer, 2006, 42(7), 882-887.
[http://dx.doi.org/10.1016/j.ejca.2005.12.011] [PMID: 16520033]
[110]
Phillips, M.A.; Gran, M.L.; Peppas, N.A. Targeted nanodelivery of drugs and diagnostics. Nano Today, 2010, 5(2), 143-159.
[http://dx.doi.org/10.1016/j.nantod.2010.03.003] [PMID: 20543895]
[111]
Esposito, E.; Mariani, P.; Ravani, L.; Contado, C.; Volta, M.; Bido, S.; Drechsler, M.; Mazzoni, S.; Menegatti, E.; Morari, M.; Cortesi, R. Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. Eur. J. Pharm. Biopharm., 2012, 80(2), 306-314.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.015] [PMID: 22061262]
[112]
Luo, Q.; Zhao, J.; Zhang, X.; Pan, W. Nanostructured Lipid Carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int. J. Pharm., 2011, 403(1-2), 185-191.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.013] [PMID: 20951778]
[113]
Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[114]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[115]
Hashem, F.M.; Nasr, M.; Khairy, A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm. Dev. Technol., 2014, 19(7), 824-832.
[http://dx.doi.org/10.3109/10837450.2013.836218] [PMID: 24032414]
[116]
Xie, Y.; Bagby, T.R.; Cohen, M.S.; Forrest, M.L. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin. Drug Deliv., 2009, 6(8), 785-792.
[http://dx.doi.org/10.1517/17425240903085128] [PMID: 19563270]
[117]
Oussoren, C.; Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev., 2001, 50(1-2), 143-156.
[http://dx.doi.org/10.1016/S0169-409X(01)00154-5] [PMID: 11489337]
[118]
Kumar, A.; Jena, P.K.; Behera, S.; Lockey, R.F.; Mohapatra, S.; Mohapatra, S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine (Lond.), 2010, 6(1), 64-69.
[http://dx.doi.org/10.1016/j.nano.2009.04.002] [PMID: 19446653]
[119]
Verma, N.K.; Crosbie-Staunton, K.; Satti, A.; Gallagher, S.; Ryan, K.B.; Doody, T.; McAtamney, C.; MacLoughlin, R.; Galvin, P.; Burke, C.S.; Volkov, Y.; Gun’ko, Y.K. Magnetic core-shell nanoparticles for drug delivery by nebulization. J. Nanobiotechnology, 2013, 11, 1.
[http://dx.doi.org/10.1186/1477-3155-11-1] [PMID: 23343139]
[120]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[121]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol., 2017, 104(Pt B), 1853-1859.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.137] [PMID: 28359890]
[122]
Milane, L.; Duan, Z.; Amiji, M. Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer. PLoS One, 2011, 6(9)e24075
[http://dx.doi.org/10.1371/journal.pone.0024075] [PMID: 21931642]
[123]
Guo, S.; Lv, L.; Shen, Y.; Hu, Z.; He, Q.; Chen, X. A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci. Rep., 2016, 6, 21459.
[http://dx.doi.org/10.1038/srep21459] [PMID: 26875787]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy