Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Z-Acrylonitrile Derivatives: Improved Synthesis, X-ray Structure, and Interaction with Human Serum Albumin

Author(s): Mehtab Parveen*, Afroz Aslam, Shahab A.A. Nami and Musheer Ahmad

Volume 16, Issue 8, 2019

Page: [1149 - 1160] Pages: 12

DOI: 10.2174/1570179416666191008085806

Price: $65

Abstract

Aims and Objective: In the synthesis of heterocyclic compounds, acrylonitrile derivatives are the most important and appropriate precursors. These compounds are the most important intermediates and subunits for the enhancement of molecules having pharmaceutical or biological interests. Nitrogen-containing compounds have received extensive consideration in the literature over the years.

Materials and Methods: A facile, economic and efficient method has been developed for the synthesis of acrylonitrile derivatives using p-nitrophenylacetonitrile and aromatic/heterocyclic aldehydes in the presence of zinc chloride at room temperature. Spectroscopic data were obtained using the following instruments: Fourier transform infrared spectra (KBr discs, 4000-400 cm-1) by Shimadzu IR-408 Perkin-Elmer 1800 instrument; 1H NMR and 13C NMR spectra by Bruker Avance-II 400 MHz using DMSO-d6 as a solvent containing TMS as the internal standard.

Results: To continue our ongoing studies to synthesize heterocyclic and pharmaceutical compounds by mild, facile and efficient protocols, herein we wish to report our experimental results on the synthesis of acrylonitrile derivatives, using various aromatic/heterocyclic aldehydes and p-nitrophenylacetonitrile in the presence of zinc chloride in ethanolic media at room temperature. Some of the new compounds were tested for their human serum albumin activity (HSA) while a study of interaction with HSA protein was performed for compounds 3a and 3b. The results show that compound 3b binds tightly to HSA as compared to compound 3a.

Conclusion: It can be concluded that acrylonitrile derivatives can be synthesized by an efficient method via the reaction of p-nitrophenylacetonitrile with aromatic/heterocyclic aldehydes by the use of zinc chloride as an effective solid catalyst. The remarkable features of this procedure include excellent yields (90-95%), short reaction period (30 min.), moderate reaction environment, easy workup procedure and managing of the catalyst. This method may find a wide significance in organic synthesis for the synthesis of the Z-acrylonitrile.

Keywords: Acrylonitrile, zinc chloride, knoevenagel condensation, human serum albumin studies, Z-acrylonitrile, organic synthesis.

Graphical Abstract

[1]
You, C.; Yu, C.; Yang, X.; Li, Y.; Huo, H.; Wang, Z.; Jiang, Y.; Xu, X.; Lin, K. Double-shelled hollow mesoporous silica nanospheres as an acid-base bifunctional catalyst for cascade reactions. New J. Chem., 2018, 42, 4095-4101.
[http://dx.doi.org/10.1039/C7NJ04670G]
[2]
Sobhani, S.; Zarifi, F.; Skibsted, J. Ionic liquids grafted onto graphene oxide as a new multifunctional heterogeneous catalyst and its application in the one-pot multi-component synthesis of hexahydroquinolines. New J. Chem., 2017, 41, 6219-6225.
[http://dx.doi.org/10.1039/C7NJ00063D]
[3]
Liu, H.; Xi, F.G.; Sun, W.; Yang, N.N.; Gao, E.Q. Amino- and sulfo-bifunctionalized metal-organic frameworks: One-pot tandem catalysis and the catalytic sites. Inorg. Chem., 2016, 55(12), 5753-5755.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01057] [PMID: 27254287]
[4]
Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev., 2011, 111(2), 1072-1133.
[http://dx.doi.org/10.1021/cr1002084] [PMID: 21105733]
[5]
Jia, Z.; Wang, K.; Tan, B.; Gu, Y. Hollow hyper-cross-linked nanospheres with acid and base sites as efficient and water-stable catalysts for one-pot tandem reactions. ACS Catal., 2017, 7, 3693-3702.
[http://dx.doi.org/10.1021/acscatal.6b03631]
[6]
Wang, D.; Wang, B.; Ding, Y.; Wu, H.; Wu, P. A novel acid-base bifunctional catalyst (ZSM-5@Mg3Si4O9(OH)4) with core/shell hierarchical structure and superior activities in tandem reactions. Chem. Commun. (Camb.), 2016, 52(87), 12817-12820.
[http://dx.doi.org/10.1039/C6CC06779D] [PMID: 27725979]
[7]
Choudary, B.M.; Lakshmi Kantam, M.; Neeraja, V.; Koteswara Rao, K.; Figueras, F.; Delmotte, L. Layered double hydroxide fluoride: A novel solid base catalyst for C–C bond formation. Green Chem., 2001, 3, 257-260.
[http://dx.doi.org/10.1039/b107124f]
[8]
Dandia, A.; Parewa, V.; Jain, A.K.; Rathore, K.S. Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition. Green Chem., 2011, 13, 2135-2145.
[http://dx.doi.org/10.1039/c1gc15244k]
[9]
Hong, B.C.; Dange, N.S.; Ding, C.F.; Liao, J.H. Organocatalytic Michael-Knoevenagel-hetero-Diels-Alder reactions: An efficient asymmetric one-pot strategy to isochromene pyrimidinedione derivatives. Org. Lett., 2012, 14(2), 448-451.
[http://dx.doi.org/10.1021/ol202877m] [PMID: 22195677]
[10]
Yan, H.; Zhang, H.Y.; Wang, L.; Zhang, Y.; Zhao, J. Ru(OH)x supported on polyethylenimine modified magnetic nanoparticles coated with silica as a catalyst for one-pot tandem aerobic oxidation/Knoevenagel condensation of alcohols and active methylene compounds. React. Kinet. Mech. Catal., 2018, 125, 789-806.
[http://dx.doi.org/10.1007/s11144-018-1439-4]
[11]
Mase, N.; Horibe, T. Organocatalytic Knoevenagel condensations by means of carbamic acid ammonium salts. Org. Lett., 2013, 15(8), 1854-1857.
[http://dx.doi.org/10.1021/ol400462d] [PMID: 23565818]
[12]
Abbas, M.; Mohamed, E.A.; Ismail, M.M.; Mayas, A.S. Preparation and some reactions with 3-(quinolin-3-yl)-3-oxopropanoic acid. J. Mex. Chem. Soc., 2011, 55, 224-232.
[13]
Hoekstra, M.S.; Sobieray, D.M.; Schwindt, M.A.; Mulhern, T.A.; Grote, T.M.; Huckabee, B.K.; Hendrickson, V.S.; Franklin, L.C.; Granger, E.J.; Karrick, G.L. Chemical development of CI-1008, an enantiomerically pure anticonvulsant. Org. Process Res. Dev., 1997, 1, 26-38.
[http://dx.doi.org/10.1021/op9600320]
[14]
Ott, D.; Borukhova, S.; Hessel, V. Life cycle assessment of multi-step rufinamide synthesis from isolated reactions in batch to continuous micro reactor networks. Green Chem., 2016, 18, 1096-1116.
[http://dx.doi.org/10.1039/C5GC01932J]
[15]
Srikanth, G.; Ray, U.K.; Rao, D.V.N.S.; Gupta, P.B.; Lavanya, P.; Islam, A. Efficient approach to pure entacapone and related compounds. Synth. Commun., 2012, 49, 1359-1366.
[http://dx.doi.org/10.1080/00397911.2010.539894]
[16]
Ying, A.; Wang, L.; Qiu, F.; Hu, H.; Yang, J. Magnetic nanoparticle supported amine: An efficient and environmentally benign catalyst for versatile Knoevenagel condensation under ultrasound irradiation. C. R. Chim., 2015, 18, 223-232.
[http://dx.doi.org/10.1016/j.crci.2014.05.012]
[17]
Gilanizadeh, M.; Zeynizadeh, B. Binary copper and iron oxides immobilized on silica layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water. Res. Chem. Intermed., 2018, 44, 6053-6070.
[http://dx.doi.org/10.1007/s11164-018-3475-0]
[18]
Vaid, R.; Gupta, M. Silica-L-proline: An efficient and recyclable heteroge-neous catalyst for the Knoevenagel condensation between aldehydes and malononitrile in a liquid phase. Monatsh. Chem., 2015, 146, 645-652.
[http://dx.doi.org/10.1007/s00706-014-1331-5]
[19]
Chaudhary, R.G.; Tanna, J.A.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst, and effective antibacterial activity. Adv. Mater. Lett., 2015, 6, 990-998.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[20]
Nemati, F.; Heravi, M.M.; Rad, R.S. Nano-Fe3O4 Encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient knoevenagel condensation and michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones. Chin. J. Catal., 2012, 33, 1825-1831.
[http://dx.doi.org/10.1016/S1872-2067(11)60455-5]
[21]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in an aqueous solution of amino acid ionic liquids (AAILs). Pol. J. Chem., 2016, 18, 90-95.
[http://dx.doi.org/10.1515/pjct-2016-0076]
[22]
Shirini, F.; Daneshvar, N. Introduction of taurine (2-aminoethanesulfonic acid) as a green bioorganic catalyst for the promotion of organic reactions under green conditions. RSC Advances, 2016, 6, 110190-110205.
[http://dx.doi.org/10.1039/C6RA15432H]
[23]
Kaliyan, P.; Matam, S.; Perumal Muthu, S. Water extract of onion catalyzed Knoevenagel condensation reaction: An efficient green procedure for the synthesis of α-cyanoacrylonitriles and α-cyanoacrylates. Asian J. Green Chem., 2019, 3, 137-152.
[24]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via Knoevenagel condensation: A review. Synth. Commun., 2014, 44, 2756-2788.
[http://dx.doi.org/10.1080/00397911.2014.926374]
[25]
Raytchev, P.D.; Roussi, L.; Dutasta, J.P.; Martinez, A.; Dufaud, V. Homogeneous, and silica-supported azido proazaphosphatranes as efficient catalysts for the synthesis of substituted coumarins. Catal. Commun., 2012, 28, 1-4.
[http://dx.doi.org/10.1016/j.catcom.2012.07.012]
[26]
Pullabhotla, V.S.R.R.; Rahman, A.; Jonnalagadda, S.B. Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: an environmentally benign approach. Catal. Commun., 2009, 10, 365-369.
[http://dx.doi.org/10.1016/j.catcom.2008.09.021]
[27]
Shang, F.; Sun, J.; Wu, S.; Liu, H.; Guan, J.; Kan, Q. Direct synthesis of acid-base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions. J. Colloid Interface Sci., 2011, 355(1), 190-197.
[http://dx.doi.org/10.1016/j.jcis.2010.10.042] [PMID: 21185032]
[28]
Rosati, O.; Lanari, D.; Scavo, R.; Persia, D.; Marmottini, F.; Nocchetti, M.; Curini, M.; Piermatti, O. Zirconium potassium phosphate methyl and/or phenyl phosphonates as heterogeneous catalysts for Knoevenagel condensation under solvent-free conditions. Microporous Mesoporous Mater., 2018, 268, 251-259.
[http://dx.doi.org/10.1016/j.micromeso.2018.04.035]
[29]
Tuci, G.; Luconi, L.; Rossin, A.; Berretti, E.; Ba, H.; Innocenti, M.; Yakhvarov, D.; Caporali, S.; Pham-Huu, C.; Giambastiani, G. Aziridine-functionalized multiwalled carbon nanotubes: Robust and versatile catalysts for the oxygen reduction reaction and Knoevenagel condensation. ACS Appl. Mater. Interfaces, 2016, 8(44), 30099-30106.
[http://dx.doi.org/10.1021/acsami.6b09033] [PMID: 27768269]
[30]
Xu, J.; Shen, K.; Xue, B.; Li, Y.X. Microporous carbon nitride as an effective solid base catalyst for Knoevenagel condensation reactions. J. Mol. Catal. Chem., 2013, 372, 105-113.
[http://dx.doi.org/10.1016/j.molcata.2013.02.019]
[31]
Dhakshinamoorthy, A.; Heidenreich, N.; Lenzen, D.; Stock, N. Knoevenagel condensation reaction catalyzed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm, 2017, 19, 4187-4193.
[http://dx.doi.org/10.1039/C6CE02664H]
[32]
Wang, D.; Li, Z. Bi-functional NH2-MIL-101 (Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal. Sci. Technol., 2015, 5, 1623-1628.
[http://dx.doi.org/10.1039/C4CY01464B]
[33]
Amarante, S.F.; Freire, M.A.; Mendes, D.T.S.L.; Freitas, L.S.; Ramos, A.L.D. Evaluation of basic sites of ZIFs metal-organic frameworks in the Knoevenagel condensation reaction. Appl. Catal. A Gen., 2017, 548, 47-51.
[http://dx.doi.org/10.1016/j.apcata.2017.08.006]
[34]
Li, X.; Lin, B.; Li, H.; Yu, Q.; Ge, Y.; Jin, X.; Liu, X.; Zhou, Y.; Xiao, J. Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction. Appl. Catal. B, 2018, 239, 254-259.
[http://dx.doi.org/10.1016/j.apcatb.2018.08.021]
[35]
Kryszak, D.; Stawicka, K.; Trejda, M.; Calvino Casilda, V.; Martin Aranda, R.; Ziolek, M. Development of basicity in mesoporous silicas and metallosilicates. Catal. Sci. Technol., 2017, 7, 5236-5248.
[http://dx.doi.org/10.1039/C7CY00927E]
[36]
Xiao, R.; Tobin, J.M.; Zha, M.; Hou, Y.L.; He, J.; Vilela, F.; Xu, Z. A nanoporous graphene analog for superfast heavy metal removal and continuous flow visible light photoredox catalysis. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 20180-20187.
[http://dx.doi.org/10.1039/C7TA05534J]
[37]
Shcherban, N.D. Ma ̈ki-Arvela, P.; Aho, A.; Sergiienko, S.A.; Yaremov, P.S.; Era ̈nen, K.; Murzin, D.Y. Melamine derived graphitic carbon nitride as a new effective metal-free catalyst for Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate. Catal. Sci. Technol., 2018, 8, 2928-2937.
[http://dx.doi.org/10.1039/C8CY00253C]
[38]
Kantevari, S.; Bantu, R.; Nagarapu, L. HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. J. Mol. Catal. A., 2007, 269, 53-57.
[http://dx.doi.org/10.1016/j.molcata.2006.12.039]
[39]
Kärkäs, M.D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev., 2018, 47(15), 5786-5865.
[http://dx.doi.org/10.1039/C7CS00619E] [PMID: 29911724]
[40]
Cabello, J.A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M. Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem., 1984, 49, 5195-5197.
[http://dx.doi.org/10.1021/jo00200a036]
[41]
Angeletti, I.; Canepa, C.; Martinetti, G.; Venturello, P. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Lett., 1988, 29, 2261-2264.
[http://dx.doi.org/10.1016/S0040-4039(00)86727-1]
[42]
Asiri, A.M. Synthesis and characterization of methine dyes derived from the condensation of 4‐nitrophenylacetonitrile with aromatic aldehydes. Pigm. Resin Technol., 2004, 33, 370-374.
[http://dx.doi.org/10.1108/03699420410568391]
[43]
Ibers, J.A.; Hamilton, W.C. International Tables for X-ray Crystallography; IV, Kynoch Press: Birmingham, England, 1974.
[44]
SMART & SAINT Software Reference manuals, Version 6.45; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2003.
[45]
Sheldrick, G.M. SADABS, software for empirical absorption correction, Ver. 2.05; University of Gottingen: Gottingen, Germany, 2002.
[46]
XPREP, version 5.1; Siemens Industrial Automation Inc.: Madison, WI, 1995, p. 5.
[47]
(a) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Pusch-mann, H. OLEX2: A complete structure solution, refinement, and analysis program. J. Appl. Cryst., 2009, 42, 339-341. http://10.1107/S0021889808042726
(b) Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[48]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[49]
Alam, P.; Abdelhameed, A.S.; Rajpoot, R.K.; Khan, R.H. Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. J. Photochem. Photobiol. B, 2016, 157, 70-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.009] [PMID: 26894847]
[50]
Wua, H.; Zhao, X.; Wang, P.; Dai, Z.; Zou, X. Electrochemical site marker competitive method for probing the binding site and binding mode between bovine serum albumin and alizarin red S. Electrochim. Acta, 2011, 56, 181-4187.
[http://dx.doi.org/10.1016/j.electacta.2011.01.098]
[51]
Neamtu, S.; Mic, M.; Bogdan, M.; Turcu, I. The artifactual nature of stavudine binding to human serum albumin. A fluorescence quenching and isothermal titration calorimetry study. J. Pharm. Biomed. Anal., 2013, 72, 134-138.
[http://dx.doi.org/10.1016/j.jpba.2012.09.023] [PMID: 23146237]
[52]
Anand, U.; Jash, C.; Mukherjee, S. Spectroscopic probing of the microenvironment in a protein-surfactant assembly. J. Phys. Chem. B, 2010, 114(48), 15839-15845.
[http://dx.doi.org/10.1021/jp106703h] [PMID: 21077590]
[53]
Teng, Y.; Zhang, H.; Liu, R. Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug. Mol. Biosyst., 2011, 7(11), 3157-3163.
[http://dx.doi.org/10.1039/c1mb05271c] [PMID: 21935540]
[54]
Roy, D.; Kumar, V.; James, J.; Shihabudeen, M.S.; Kulshrestha, S.; Goel, V.; Thirumurugan, K. Evidence that chemical chaperone 4-phenyl butyric acid binds to human serum albumin at fatty acid binding sites. PLoS One, 2015, 10(7) e0133012
[http://dx.doi.org/10.1371/journal.pone.0133012] [PMID: 26181488]
[55]
Ojha, B.; Das, G. The interaction of 5-(alkoxy) naphthalene-1-amine with bovine serum albumin and its effect on the confirmation of protein. J. Phys. Chem., 2010, B114, 3979-3986.
[http://dx.doi.org/10.1021/jp907576r]
[56]
Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol. Biosyst., 2015, 11(1), 307-316.
[http://dx.doi.org/10.1039/C4MB00548A] [PMID: 25382435]
[57]
Alam, P.; Chaturvedi, S.K.; Anwar, T.; Siddiqi, M.K.; Ajmal, M.R.; Badr, G.; Mahmoud, M.H.; Khan, R.H. Biophysical and molecular docking insight into the interaction of cytosine D-arabinofuranoside with human serum albumin. J. Lumin., 2015, 164, 123-130.
[http://dx.doi.org/10.1016/j.jlumin.2015.03.011]
[58]
Buddanavar, A.T.; Nandibewoor, S.T. Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine. J. Pharm. Anal., 2017, 7(3), 148-155.
[http://dx.doi.org/10.1016/j.jpha.2016.10.001] [PMID: 29404031]
[59]
Laskar, K.; Alam, P.; Khan, R.H.; Rauf, A. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study. Eur. J. Med. Chem., 2016, 122, 72-78.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.012] [PMID: 27343854]
[60]
Yue, Y.; Liu, J.; Yao, M.; Yao, X.; Fan, J.; Ji, H. The investigation of the binding behavior between ethyl maltol and human serum albumin by multi-spectroscopic methods and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 316-323.
[http://dx.doi.org/10.1016/j.saa.2012.05.041] [PMID: 22705675]
[61]
Sułkowska, A. Interaction of drugs with bovine and human serum albumin. J. Mol. Struct., 2002, 614, 227-232.
[http://dx.doi.org/10.1016/S0022-2860(02)00256-9]
[62]
Kabir, M.Z.; Feroz, S.R.; Mukarram, A.K.; Alias, Z.; Mohamad, S.B.; Tayyab, S. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. J. Biomol. Struct. Dyn., 2016, 34(8), 1693-1704.
[http://dx.doi.org/10.1080/07391102.2015.1089187] [PMID: 26331959]
[63]
Gowda, J.I.; Nandibewoor, S.T. Binding and conformational changes of human serum albumin upon interaction with 4-aminoantipyrine studied by spectroscopic methods and cyclic voltammetry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 397-403.
[http://dx.doi.org/10.1016/j.saa.2014.01.028] [PMID: 24508878]
[64]
Shahabadi, N.; Khorshidi, A.; Moghadam, N.H. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 627-632.
[http://dx.doi.org/10.1016/j.saa.2013.05.092] [PMID: 23811149]
[65]
Peters, T. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press, 1996.
[66]
Hu, Y.J.; Liu, Y.; Zhao, R.M.; Qu, S.S. Interaction of colchicine with human serum albumin investigated by spectroscopic methods. Int. J. Biol. Macromol., 2005, 37(3), 122-126.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.09.007] [PMID: 16239027]
[67]
He, Y.; Wang, Y.; Tang, L.; Liu, H.; Chen, W.; Zheng, Z.; Zou, G. Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J. Fluoresc., 2008, 18(2), 433-442.
[http://dx.doi.org/10.1007/s10895-007-0283-0] [PMID: 18058205]
[68]
Chi, Z.; Liu, R.; Teng, Y.; Fang, X.; Gao, C. Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J. Agric. Food Chem., 2010, 58(18), 10262-10269.
[http://dx.doi.org/10.1021/jf101417w] [PMID: 20799712]
[69]
Rashidipour, S.; Naeeminejad, S.; Chamani, J. Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: spectroscopic and molecular modeling investigation. J. Biomol. Struct. Dyn., 2016, 34(1), 57-77.
[http://dx.doi.org/10.1080/07391102.2015.1009946] [PMID: 25692655]
[70]
Tousi, S.H.A.; Saberi, M.R.; Chamani, J. Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: Evidence for allocating the binding site. Protein Pept. Lett., 2010, 17(12), 1524-1535.
[http://dx.doi.org/10.2174/0929866511009011524] [PMID: 20937032]
[71]
Ma, X.; Yan, J.; Wang, Q.; Wu, D.; Li, H. Spectroscopy study and co-administration effect on the interaction of mycophenolic acid and human serum albumin. Int. J. Biol. Macromol., 2015, 77, 280-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.052] [PMID: 25841376]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy