Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

整合的基因组分析揭示了APOE4非携带者中阿尔茨海默氏病的相关基因

卷 16, 期 8, 2019

页: [753 - 763] 页: 11

弟呕挨: 10.2174/1567205016666190823124724

价格: $65

摘要

背景:APOE4是晚期阿尔茨海默氏病(LOAD)的最强遗传危险因素。携带或不携带APOE4的LOAD患者表现出明显的临床病理特征。已显示APOE4通过影响病理过程的各个方面在AD的发病机理中起关键作用。但是,涉及不携带LOAD APOE4的发病机制仍然难以捉摸。 目的:我们旨在鉴定与LOAD不携带APOE4有关的相关基因。 方法:对全基因组关联研究,全基因组表达谱和全基因组连锁扫描以及蛋白质-蛋白质相互作用网络构建的数据集进行综合基因组分析,以鉴定APOE4非携带者中的相关基因簇。通过敲除和western印迹研究了APOE4非载体相关基因簇的一个枢纽基因在tau磷酸化中的作用。 结果:我们鉴定了与AD APOE4非携带者相关的12个基因簇。在这些簇中与AD相关的中枢基因是MAPK8,POU2F1,XRCC1,PRCKG,EXOC6,VAMP4,SIRT1,MME,NOS1,ABCA1和LDLR。 APOE4非携带者的相关基因在遗传性疾病,神经疾病和心理疾病中丰富。此外,在存在APOE3而不是APOE4的情况下,敲低PRKCG以减少蛋白激酶Cγ亚型的表达可增强Thr181和Thr231处的tau磷酸化以及糖原合酶激酶3β和细胞周期蛋白依赖性激酶5的表达。 结论:该研究为不携带APOE4的LOAD的独特发病机理提供了新见解,并促进了基于APOE基因型的鉴定基因的功能探索。

关键词: 迟发性阿尔茨海默病,APOE4,APOE4非载体,整合基因组分析,蛋白激酶Cγ,tau磷酸化。

[1]
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4): 640-51. 2014
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[2]
Scheltens P, Blennow K, Breteler MM. de Strooper B4, Frisoni GB5, Salloway S, et alAlzheimer’s disease. Lancet 388(10043): 505-17. 2016
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[3]
Sindi S, Mangialasche F, Kivipelto M. Advances in the prevention of Alzheimer’s Disease. F1000Prime Rep 7: 50. 2015
[http://dx.doi.org/10.12703/P7-50] [PMID: 26097723]
[4]
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15(8): 857-68. 2016
[http://dx.doi.org/10.1016/S1474-4422(16)00127-7] [PMID: 27302364]
[5]
Wang ZT, Tan CC, Tan L, Yu JT. Systems biology and gene networks in Alzheimer’s disease. Neurosci Biobehav Rev 96: 31-44. 2019
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.007] [PMID: 30465785]
[6]
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123): 921-3. 1993
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[7]
Suwa A, Nishida K, Utsunomiya K, et al. Neuropsychological evaluation and cerebral blood flow effects of apolipoprotein e4 in alzheimer’s disease patients after one year of treatment: an exploratory study. Dement Geriatr Cogn Disord Extra 5(3): 414-23. 2015
[http://dx.doi.org/10.1159/000440714] [PMID: 26628900]
[8]
De Luca V, Spalletta G, Souza RP, Graff A, Bastos-Rodrigues L, Camargos Bicalho MA. Definition of late onset Alzheimer’s disease and anticipation effect of genome-wide significant risk variants: pilot study of the apoe e4 allele. Neuropsychobiology 77(1): 8-12. 2019
[http://dx.doi.org/10.1159/000490739] [PMID: 30110694]
[9]
Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 23(3): 157-65. 2004
[http://dx.doi.org/10.1385/JMN:23:3:157] [PMID: 15181244]
[10]
van der Vlies AE, Pijnenburg YA, Koene T, Klein M, Kok A, Scheltens P, et al. Cognitive impairment in Alzheimer’s disease is modified by APOE genotype. Dement Geriatr Cogn Disord 24(2): 98-103. 2007
[http://dx.doi.org/10.1159/000104467] [PMID: 17596691]
[11]
Lehtovirta M, Soininen H, Helisalmi S, Mannermaa A, Helkala EL, Hartikainen P, et al. Clinical and neuropsychological characteristics in familial and sporadic Alzheimer’s disease: relation to apolipoprotein E polymorphism. Neurology 46(2): 413-9. 1996
[http://dx.doi.org/10.1212/WNL.46.2.413] [PMID: 8614504]
[12]
Smith GE, Bohac DL, Waring SC, Kokmen E, Tangalos EG, Ivnik RJ, et al. Apolipoprotein E genotype influences cognitive ‘phenotype’ in patients with Alzheimer’s disease but not in healthy control subjects. Neurology 50(2): 355-62. 1998
[http://dx.doi.org/10.1212/WNL.50.2.355] [PMID: 9484353]
[13]
Hashimoto M, Yasuda M, Tanimukai S, Matsui M, Hirono N, Kazui H, et al. Apolipoprotein E epsilon 4 and the pattern of regional brain atrophy in Alzheimer’s disease. Neurology 57(8): 1461-6. 2001
[http://dx.doi.org/10.1212/WNL.57.8.1461] [PMID: 11673590]
[14]
Pievani M, Rasser PE, Galluzzi S, Benussi L, Ghidoni R, Sabattoli F, et al. Mapping the effect of APOE epsilon4 on gray matter loss in Alzheimer’s disease in vivo. Neuroimage 45(4): 1090-8. 2009
[http://dx.doi.org/10.1016/j.neuroimage.2009.01.009] [PMID: 19349226]
[15]
Geroldi C, Pihlajamäki M, Laakso MP, DeCarli C, Beltramello A, Bianchetti A, et al. APOE-epsilon4 is associated with less frontal and more medial temporal lobe atrophy in AD. Neurology 53(8): 1825-32. 1999
[http://dx.doi.org/10.1212/WNL.53.8.1825] [PMID: 10563634]
[16]
Agosta F, Vossel KA, Miller BL, Migliaccio R, Bonasera SJ, Filippi M, et al. Apolipoprotein E epsilon4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc Natl Acad Sci USA 106(6): 2018-22. 2009
[http://dx.doi.org/10.1073/pnas.0812697106] [PMID: 19164761]
[17]
Wang X, Wang J, He Y, Li H, Yuan H, Evans A, et al. Apolipoprotein E ε4 modulates cognitive profiles, hippocampal volume, and resting-state functional connectivity in Alzheimer’s disease. J Alzheimers Dis 45(3): 781-95. 2015
[http://dx.doi.org/10.3233/JAD-142556] [PMID: 25624419]
[18]
Manning EN, Barnes J, Cash DM, Bartlett JW, Leung KK, Ourselin S, et al. Alzheimer’s Disease NeuroImaging Initiative. APOE ε4 is associated with disproportionate progressive hippocampal atrophy in AD. PLoS One 9(5)e97608 2014
[http://dx.doi.org/10.1371/journal.pone.0097608] [PMID: 24878738]
[19]
Huang YA, Zhou B, Wernig M, Sudhof TC. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Abeta Secretion Cell 168(3): 427-e21. 2017
[20]
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Bapineuzumab 301 and 302 Clinical Trial Investigators.Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4): 322-33. 2014
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[21]
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, et al. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 98(6): 1141-54 e7. 2018
[22]
Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO, et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide. J Neurosci 32(43): 15181-92. 2012
[http://dx.doi.org/10.1523/JNEUROSCI.1542-12.2012] [PMID: 23100439]
[23]
Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3(89)89ra57 2011
[http://dx.doi.org/10.1126/scitranslmed.3002156] [PMID: 21715678]
[24]
Risacher SL, Kim S, Nho K, Foroud T, Shen L, Petersen RC, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern. Alzheimers Dement 11(12): 1417-29. 2015
[http://dx.doi.org/10.1016/j.jalz.2015.03.003] [PMID: 25960448]
[25]
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. Alzheimer’s Disease Neuroimaging Initiative. APOE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673): 523-7. 2017
[http://dx.doi.org/10.1038/nature24016] [PMID: 28959956]
[26]
Huynh TV, Liao F, Francis CM, Robinson GO, Serrano JR, Jiang H, et al. Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of beta-amyloidosis. Neuron 96(5): 1013-23. 2017
[27]
Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24(5): 647-57. 2018
[http://dx.doi.org/10.1038/s41591-018-0004-z] [PMID: 29632371]
[28]
Kim J, Yoon H, Basak J, Kim J. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cells 37(11): 767-76. 2014
[http://dx.doi.org/10.14348/molcells.2014.0248] [PMID: 25358504]
[29]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1): 43-51. 2015
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[30]
Hallock P, Thomas MA. Integrating the Alzheimer’s disease proteome and transcriptome: a comprehensive network model of a complex disease. OMICS 16(1-2): 37-49. 2012
[http://dx.doi.org/10.1089/omi.2011.0054] [PMID: 22321014]
[31]
Wang M, Roussos P, McKenzie A. Zhou X1, Kajiwara Y, Brennand KJ, et al Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Med 8(1): 104. 2016
[http://dx.doi.org/10.1186/s13073-016-0355-3] [PMID: 27799057]
[32]
Lotta LA, Gulati P, Day FR. Payne F3, Ongen H4, van de Bunt M, et al Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 49(1): 17-26. 2017
[http://dx.doi.org/10.1038/ng.3714] [PMID: 27841877]
[33]
Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer’s disease. BMC Genomics 15: 199. 2014
[http://dx.doi.org/10.1186/1471-2164-15-199] [PMID: 24628925]
[34]
Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, et al. SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study Nucleic Acids Res 38(Web Server issue): W201-9 2017
[http://dx.doi.org/10.1093/nar/gkq513]
[35]
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4): 949-58. 2008
[http://dx.doi.org/10.1016/j.ajhg.2008.02.013] [PMID: 18371930]
[36]
Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13(8): 523-36. 2012
[http://dx.doi.org/10.1038/nrg3253] [PMID: 22751426]
[37]
Börnigen D, Tranchevent LC, Bonachela-Capdevila F, et al. An unbiased evaluation of gene prioritization tools. Bioinformatics 28(23): 3081-8. 2012
[http://dx.doi.org/10.1093/bioinformatics/bts581] [PMID: 23047555]
[38]
Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, et al. GeneMSA Consortium. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 18(11): 2078-90. 2009
[http://dx.doi.org/10.1093/hmg/ddp120] [PMID: 19286671]
[39]
Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res 122(1-3): 38-42. 2010
[http://dx.doi.org/10.1016/j.schres.2010.07.001] [PMID: 20659789]
[40]
Hernandez-Toro J, Prieto C, De las Rivas J. APID2NET: unified interactome graphic analyzer. Bioinformatics 23(18): 2495-7. 2007
[http://dx.doi.org/10.1093/bioinformatics/btm373] [PMID: 17644818]
[41]
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLOS Comput Biol 8(2)e1002375 2012
[http://dx.doi.org/10.1371/journal.pcbi.1002375] [PMID: 22383865]
[42]
Kam AY, Liao D, Loh HH, Law PY. Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits. J Neurosci 30(45): 15304-16. 2010
[http://dx.doi.org/10.1523/JNEUROSCI.4255-10.2010] [PMID: 21068335]
[43]
Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J Neurosci 24(9): 2304-12. 2004
[http://dx.doi.org/10.1523/JNEUROSCI.4162-03.2004] [PMID: 14999081]
[44]
Zheng BW, Yang L, Dai XL, Jiang ZF, Huang HC. Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer’s disease. Neurol Res 38(2): 177-86. 2016
[http://dx.doi.org/10.1080/01616412.2015.1133485] [PMID: 27078700]
[45]
van Rooij JGJ, Meeter LHH, Melhem S, Nijholt DAT, Wong TH. Netherlands Brain Bank3,et al. Netherlands Brain Bank. Hippocampal transcriptome profiling combined with protein-protein interaction analysis elucidates Alzheimer’s disease pathways and genes. Neurobiol Aging 74: 225-33 In: 2019
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.023] [PMID: 30497016]
[46]
Barbash S, Garfinkel BP, Maoz R, Simchovitz A, Nadorp B, Guffanti A, et al. Alzheimer’s brains show inter-related changes in RNA and lipid metabolism. Neurobiol Dis 106: 1-13. 2017
[http://dx.doi.org/10.1016/j.nbd.2017.06.008] [PMID: 28630030]
[47]
Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 74(1): 39-52. 2013
[http://dx.doi.org/10.1002/ana.23870] [PMID: 23424178]
[48]
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4): 396-405. 2010
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[49]
Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, et al. N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease. J Biol Chem 286(9): 7619-28. 2011
[http://dx.doi.org/10.1074/jbc.M110.158477] [PMID: 21177868]
[50]
Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, et al. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-β precursor protein and amyloid-β deposition. J Biol Chem 279(19): 20539-45. 2004
[http://dx.doi.org/10.1074/jbc.M311993200] [PMID: 14871891]
[51]
Taguchi K, Yamagata HD, Zhong W, Kamino K, Akatsu H, Hata R, et al. Identification of hippocampus-related candidate genes for Alzheimer’s disease. Ann Neurol 57(4): 585-8. 2005
[http://dx.doi.org/10.1002/ana.20433] [PMID: 15786443]
[52]
Doğru-Abbasoğlu S, Aykaç-Toker G, Hanagasi HA, Gürvit H, Emre M, Uysal M. The Arg194Trp polymorphism in DNA repair gene XRCC1 and the risk for sporadic late-onset Alzheimer’s disease. Neurol Sci 28(1): 31-4. 2007
[http://dx.doi.org/10.1007/s10072-007-0744-x] [PMID: 17385092]
[53]
Parildar-Karpuzoğlu H, Doğru-Abbasoğlu S, Hanagasi HA, Karadağ B, Gürvit H, Emre M, et al. Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer’s disease. Neurosci Lett 442(3): 287-91. 2008
[http://dx.doi.org/10.1016/j.neulet.2008.07.047] [PMID: 18672023]
[54]
Qian Y, Chen W, Wu J, Tao T, Bi L, Xu W, et al. Association of polymorphism of DNA repair gene XRCC1 with sporadic late-onset Alzheimer’s disease and age of onset in elderly Han Chinese. J Neurol Sci 295(1-2): 62-5. 2010
[http://dx.doi.org/10.1016/j.jns.2010.05.002] [PMID: 20553853]
[55]
Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 68(2): 270-81. 2010
[http://dx.doi.org/10.1016/j.neuron.2010.10.013] [PMID: 20955934]
[56]
Schmidt C, Wolff M, von Ahsen N, Zerr I. Alzheimer’s disease: genetic polymorphisms and rate of decline. Dement Geriatr Cogn Disord 33(2-3): 84-9. 2012
[http://dx.doi.org/10.1159/000336790] [PMID: 22414550]
[57]
Swaminathan S, Kim S, Shen L, Risacher SL, Foroud T, Pankratz N, et al. The Alzheimer’s disease neuroimaging initiative adni. genomic copy number analysis in alzheimer’s disease and mild cognitive impairment: an ADNI Study. Int J Alzheimers Dis 2011729478 2011
[http://dx.doi.org/10.4061/2011/729478] [PMID: 21660214]
[58]
Raingo J, Khvotchev M, Liu P, et al. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15(5): 738-45. 2012
[http://dx.doi.org/10.1038/nn.3067] [PMID: 22406549]
[59]
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3): 344-52. 2013
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[60]
Miners S, van Helmond Z, Barker R, Passmore PA, Johnston JA, Todd S, et al. Genetic variation in MME in relation to neprilysin protein and enzyme activity, Aβ levels, and Alzheimer’s disease risk. Int J Mol Epidemiol Genet 3(1): 30-8. 2012
[PMID: 22493749]
[61]
Reif A, Grünblatt E, Herterich S, Wichart I, Rainer MK, Jungwirth S, et al. Association of a functional NOS1 promoter repeat with Alzheimer’s disease in the VITA cohort. J Alzheimers Dis 23(2): 327-33. 2011
[http://dx.doi.org/10.3233/JAD-2010-101491] [PMID: 21098972]
[62]
Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol 4: 45. 2013
[http://dx.doi.org/10.3389/fphys.2013.00045] [PMID: 23494712]
[63]
Lupton MK, Proitsi P, Lin K, Hamilton G, Daniilidou M, Tsolaki M, et al. The role of ABCA1 gene sequence variants on risk of Alzheimer’s disease. J Alzheimers Dis 38(4): 897-906. 2014
[http://dx.doi.org/10.3233/JAD-131121] [PMID: 24081377]
[64]
Khalil A, Berrougui H, Pawelec G, Fulop T. Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer’s disease. Mech Ageing Dev 133(1): 20-9. 2012
[http://dx.doi.org/10.1016/j.mad.2011.11.008] [PMID: 22178419]
[65]
Brodeur J, Thériault C, Lessard-Beaudoin M, Marcil A, Dahan S, Lavoie C. LDLR-related protein 10 (LRP10) regulates amyloid precursor protein (APP) trafficking and processing: evidence for a role in Alzheimer’s disease. Mol Neurodegener 7: 31. 2012
[http://dx.doi.org/10.1186/1750-1326-7-31] [PMID: 22734645]
[66]
Abisambra JF, Fiorelli T, Padmanabhan J, Neame P, Wefes I, Potter H. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer’s disease. PLoS One 5(1)e8556 2010
[http://dx.doi.org/10.1371/journal.pone.0008556] [PMID: 20049331]
[67]
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8): 517-33. 2011
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[68]
Menard C, Bastianetto S, Quirion R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci 7: 281. 2013
[http://dx.doi.org/10.3389/fncel.2013.00281] [PMID: 24421757]
[69]
Hongpaisan J, Sun MK, Alkon DL. PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31(2): 630-43. 2011
[http://dx.doi.org/10.1523/JNEUROSCI.5209-10.2011] [PMID: 21228172]
[70]
Corbett GT, Roy A, Pahan K. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy. J Biol Chem 288(12): 8299-312. 2013
[http://dx.doi.org/10.1074/jbc.M112.426536] [PMID: 23404502]
[71]
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1): 289-309. 2013
[http://dx.doi.org/10.1016/j.arr.2012.06.003] [PMID: 22742992]
[72]
Goode N, Hughes K, Woodgett JR, Parker PJ. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 267(24): 16878-82. 1992
[PMID: 1324914]
[73]
Lénárt N, Szegedi V, Juhász G, Kasztner A, Horváth J, Bereczki E, et al. Increased tau phosphorylation and impaired presynaptic function in hypertriglyceridemic ApoB-100 transgenic mice. PLoS One 7(9)e46007 2012
[http://dx.doi.org/10.1371/journal.pone.0046007] [PMID: 23029362]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy