Review Article

壳聚糖寡糖的研究进展:从多种生物活性到临床应用

卷 27, 期 30, 2020

页: [5037 - 5055] 页: 19

弟呕挨: 10.2174/0929867326666190712180147

价格: $65

摘要

壳聚糖的水解产物壳聚糖低聚糖(COS)是具有正电荷和良好生物相容性的低分子量聚合物。 最近已经报道了COS具有多种生物活性,包括降血糖,降血脂,抗氧化剂,抗氧化剂,免疫调节,抗炎,抗肿瘤,抗菌和组织工程活性,具有广阔的应用前景。 目前,COS的生物学过程和机制是有吸引力的研究主题,涉及遗传,分子和蛋白质水平。 本文回顾了有关COS的最新发现,尤其是在代谢调节,免疫功能和组织修复方面的发现,从而提供了有关其多种生物学活性,医学益处和治疗机制的重要见解。

关键词: 壳聚糖,壳聚糖低聚糖,生物活性,机理,纳米颗粒,组织工程。

[1]
kim, S.K.; Rajapakse, N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr. Polym., 2005, 62, 357-368.
[http://dx.doi.org/10.1016/j.carbpol.2005.08.012]
[2]
Zhang, J.; Xia, W.; Liu, P.; Cheng, Q.; Tahirou, T.; Gu, W.; Li, B. Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs, 2010, 8(7), 1962-1987.
[http://dx.doi.org/10.3390/md8071962] [PMID: 20714418]
[3]
Liaqat, F.; Eltem, R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym., 2018, 184, 243-259.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.067] [PMID: 29352917]
[4]
Rahman, M.A.; Ochiai, B. Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles. Microsyst. Technol., 2018, 24, 669-681.
[http://dx.doi.org/10.1007/s00542-017-3318-8]
[5]
Chokradjaroen, C.; Rujiravanit, R.; Theeramunkong, S.; Saito, N. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. jap. j. app. phy.,, 2018, 57(1), 0102b5.
[http://dx.doi.org/10.7567/jjap.57.0102b5]
[6]
Prabaharan, M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl., 2008, 23(1), 5-36.
[http://dx.doi.org/10.1177/0885328208091562] [PMID: 18593819]
[7]
Ahlafi, H.; Moussout, H.; Boukhlifi, F.; Echetna, M.; Bennani, M.N.; My Slimane, S. Kinetics of N-deacetylation of chitin extracted from shrimp shells collected from coastal area of Morocco. Mediterr. J. Chem., 2013, 2, 503-513.
[http://dx.doi.org/10.13171/mjc.2.3.2013.22.01.20]
[8]
Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release, 2005, 102(2), 383-394.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.012] [PMID: 15653159]
[9]
Mohammedi, Z. Chitosan and chitosan oligosaccharides: applications in medicine, agriculture and biotechnology. Int. J. Bioorganic Chem., 2017, 2, 102-106.
[10]
Alam, U.; Asghar, O.; Azmi, S.; Malik, R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol., 2014, 126, 211-222.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00015-1] [PMID: 25410224]
[11]
Of, D.; Mellitus, D. American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[12]
Grover, M.; Utreja, P. Recent advances in drug delivery systems for anti-diabetic drugs: a review. Curr. Drug Deliv., 2014, 11(4), 444-457.
[http://dx.doi.org/10.2174/1567201811666140118225021] [PMID: 24438443]
[13]
Miura, T.; Usami, M.; Tsuura, Y.; Ishida, H.; Seino, Y. Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol. Pharm. Bull., 1995, 18(11), 1623-1625.
[http://dx.doi.org/10.1248/bpb.18.1623] [PMID: 8593495]
[14]
Kondo, Y.; Nakatani, A.; Hayashi, K.; Ito, M. Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol. Pharm. Bull., 2000, 23(12), 1458-1464.
[http://dx.doi.org/10.1248/bpb.23.1458] [PMID: 11145178]
[15]
Lee, H.-W.; Park, Y.-S.; Choi, J.-W.; Yi, S.Y.; Shin, W.-S. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull., 2003, 26(8), 1100-1103.
[http://dx.doi.org/10.1248/bpb.26.1100] [PMID: 12913258]
[16]
Chuanxia, J.U.; Ue, W.Y.; Ang, Z.Y.; Hang, Q.Z.; Ang, X.Y.; Iu, Z.L. Antidiabetic effect and mechanism of chitooligosaccharides. Biol Pharm Bull, 2010, 33, 1511-1516.
[http://dx.doi.org/10.1248/bpb.33.1511] [PMID: 20823566]
[17]
Kim, J.N.; Chang, I.Y.; Kim, H.I.; Yoon, S.P. Long-term effects of chitosan oligosaccharide in streptozotocin-induced diabetic rats. Islets, 2009, 1(2), 111-116.
[http://dx.doi.org/10.4161/isl.1.2.9143] [PMID: 21099258]
[18]
Liu, B.; Liu, W.S.; Han, B.Q.; Sun, Y.Y. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J. Gastroenterol., 2007, 13(5), 725-731.
[http://dx.doi.org/10.3748/wjg.v13.i5.725] [PMID: 17278195]
[19]
Kumar, S.G.; Rahman, M.A.; Lee, S.H.; Hwang, H.S.; Kim, H.A.; Yun, J.W. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics, 2009, 9(8), 2149-2162.
[http://dx.doi.org/10.1002/pmic.200800571] [PMID: 19296549]
[20]
Katiyar, D.; Singh, B.; Lall, A.M.; Haldar, C. Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: a correlative study with antihyperlipidemic and antioxidative activity. Eur. J. Pharm. Sci., 2011, 44(4), 534-543.
[http://dx.doi.org/10.1016/j.ejps.2011.09.015] [PMID: 21964204]
[21]
Jo, S.H.; Ha, K.S.; Moon, K.S.; Kim, J.G.; Oh, C.G.; Kim, Y.-C.; Apostolidis, E.; Kwon, Y.-I. Molecular weight dependent glucose lowering effect of low molecular weight Chitosan Oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci., 2013, 14(7), 14214-14224.
[http://dx.doi.org/10.3390/ijms140714214] [PMID: 23839092]
[22]
Kim, J.-G.; Jo, S.-H.; Ha, K.-S.; Kim, S.-C.; Kim, Y.-C.; Apostolidis, E.; Kwon, Y.-I. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement. Altern. Med., 2014, 14, 272.
[http://dx.doi.org/10.1186/1472-6882-14-272] [PMID: 25074485]
[23]
Kim, H.J.; Ahn, H.Y.; Kwak, J.H.; Shin, D.Y.; Kwon, Y.I.; Oh, C.G.; Lee, J.H. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. Food Funct., 2014, 5(10), 2662-2669.
[http://dx.doi.org/10.1039/C4FO00469H] [PMID: 25222285]
[24]
Brahm, A.J.; Hegele, R.A. Combined hyperlipidemia: familial but not (usually) monogenic. Curr. Opin. Lipidol., 2016, 27(2), 131-140.
[http://dx.doi.org/10.1097/MOL.0000000000000270] [PMID: 26709473]
[25]
Anderson, J.W.; Konz, E.C.; Jenkins, D.J.A. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J. Am. Coll. Nutr., 2000, 19(5), 578-590.
[http://dx.doi.org/10.1080/07315724.2000.10718955] [PMID: 11022871]
[26]
Kang, N.H.; Lee, W.K.; Yi, B.R.; Lee, H.R.; Park, M.A.; Park, S.K.; Park, H.K.; Choi, K.C. Risk of cardiovascular disease is suppressed by dietary supplementation with protamine and chitooligosaccharide in Sprague-Dawley rats. Mol. Med. Rep., 2013, 7(1), 127-133.
[http://dx.doi.org/10.3892/mmr.2012.1128] [PMID: 23064235]
[27]
Yang, X.; Zhang, J.; Chen, L.; Wu, Q.; Yu, C. Chitosan oligosaccharides enhance lipid droplets via down-regulation of PCSK9 gene expression in HepG2 cells. Exp. Cell Res., 2018, 366(2), 152-160.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.013] [PMID: 29548750]
[28]
Chiu, C.Y.; Feng, S.-A.; Liu, S.-H.; Chiang, M.-T. Functional comparison for lipid metabolism and intestinal and fecal microflora enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Mar. Drugs, 2017, 15(7), 234.
[http://dx.doi.org/10.3390/md15070234] [PMID: 28737708]
[29]
Jiang, Y.; Fu, C.; Liu, G.; Guo, J.; Su, Z. Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats. Food Nutr. Res., 2018, 62, 1-15.
[http://dx.doi.org/10.29219/fnr.v62.1446] [PMID: 29922118]
[30]
Somogyi, A.; Rosta, K.; Pusztai, P.; Tulassay, Z.; Nagy, G. Antioxidant measurements. Physiol. Meas., 2007, 28(4), R41-R55.
[http://dx.doi.org/10.1088/0967-3334/28/4/R01] [PMID: 17395989]
[31]
Nguyen, N.T.; Hoang, D.Q.; Nguyen, N.D.; Nguyen, Q.H.; Nguyen, D.H. Preparation, characterization, and antioxidant activity of water-soluble oligochitosan. Green Process. Synth., 2017, 6, 461-468.
[http://dx.doi.org/10.1515/gps-2016-0126]
[32]
Zhang, J.; Zhao, P.; Liu, B.; Meng, X. Use of oligochitosan as an inhibiting agent of apple juice enzymatic browning. J. Food Process. Preserv., 2017, 41, e13062.
[http://dx.doi.org/10.1111/jfpp.13062]
[33]
Mengíbar, M.; Mateos-Aparicio, I.; Miralles, B.; Heras, A. Influence of the physico-chemical characteristics of chito-oligosaccharides (COS) on antioxidant activity. Carbohydr. Polym., 2013, 97(2), 776-782.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.035] [PMID: 23911515]
[34]
Mendis, E.; Kim, M.M.; Rajapakse, N.; Kim, S.K. An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci., 2007, 80(23), 2118-2127.
[http://dx.doi.org/10.1016/j.lfs.2007.03.016] [PMID: 17475286]
[35]
Zhang, Y.; Zhou, X.; Ji, L.; Du, X.; Sang, Q.; Chen, F. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder. Carbohydr. Polym., 2017, 172, 113-119.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.037] [PMID: 28606517]
[36]
Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen, A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel chitosanase from bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int. J. Mol. Sci., 2016, 17(8), 1-14.
[http://dx.doi.org/10.3390/ijms17081302] [PMID: 27517920]
[37]
Oh, S-H.; Ryu, B.; Ngo, D.-H.; Kim, W.-S.; Kim, D.G.; Kim, S.-K. 4-hydroxybenzaldehyde-chitooligomers suppresses H2O2-induced oxidative damage in microglia BV-2 cells. Carbohydr. Res., 2017, 440-441, 32-37.
[http://dx.doi.org/10.1016/j.carres.2017.01.007] [PMID: 28192685]
[38]
Jia, P.; Yu, L.; Tao, C.; Dai, G.; Zhang, Z.; Liu, S. Chitosan oligosaccharides protect nucleus pulposus cells from hydrogen peroxide-induced apoptosis in a rat experimental model. Biomed. Pharmacother., 2017, 93, 807-815.
[http://dx.doi.org/10.1016/j.biopha.2017.06.101] [PMID: 28715865]
[39]
Luo, Z.; Dong, X.; Ke, Q.; Duan, Q.; Shen, L. Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation. Oncol. Rep., 2014, 32(5), 2215-2222.
[http://dx.doi.org/10.3892/or.2014.3463] [PMID: 25189124]
[40]
Fang, I.M.; Yang, C.H.; Yang, C.M.; Chen, M.S. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats. PLoS One, 2013, 8(10), e77323.
[http://dx.doi.org/10.1371/journal.pone.0077323] [PMID: 24155943]
[41]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[42]
Qu, Y.; Xu, J.; Zhou, H.; Dong, R.; Kang, M.; Zhao, J. Chitin oligosaccharide (COS) reduces antibiotics dose and prevents antibiotics-caused side effects in adolescent idiopathic scoliosis (AIS) patients with spinal fusion surgery. Mar. Drugs, 2017, 15(3), 70.
[http://dx.doi.org/10.3390/md15030070] [PMID: 28335413]
[43]
Kong, S.Z.; Li, D.D.; Luo, H.; Li, W.J.; Huang, Y.M.; Li, J.C.; Hu, Z.; Huang, N.; Guo, M.H.; Chen, Y.; Li, S.D. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp. Gerontol., 2018, 103, 27-34.
[http://dx.doi.org/10.1016/j.exger.2017.12.018] [PMID: 29275159]
[44]
Zhang, Y.; Ahmad, K.A.; Khan, F.U.; Yan, S.; Ihsan, A.U.; Ding, Q. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem. Biol. Interact., 2019, 305, 54-65.
[http://dx.doi.org/10.1016/j.cbi.2019.03.027] [PMID: 30928397]
[45]
Muzzarelli, R.A.A. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar. Drugs, 2010, 8(2), 292-312.
[http://dx.doi.org/10.3390/md8020292] [PMID: 20390107]
[46]
Wei, X.; Chen, W.; Mao, F.; Wang, Y. Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int. J. Biol. Macromol., 2013, 54, 71-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.10.022] [PMID: 23107809]
[47]
Roca, M.; Muñiz-Diaz, E.; Mora, J.; Romero-Zayas, I.; Ramón, O.; Roig, I.; Pujol-Moix, N. The scintigraphic index spleen/liver at 30 minutes predicts the success of splenectomy in persistent and chronic primary immune thrombocytopenia. Am. J. Hematol., 2011, 86(11), 909-913.
[http://dx.doi.org/10.1002/ajh.22147] [PMID: 21948335]
[48]
Kong, S.Z.; Li, J.-C.; Li, S.-D.; Liao, M.N.; Li, C.P.; Zheng, P.-J.; Guo, M.-H.; Tan, W.-X.; Zheng, Z.-H.; Hu, Z. Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Mar. Drugs, 2018, 16(6), 181.
[http://dx.doi.org/10.3390/md16060181] [PMID: 29794973]
[49]
Zhai, X.; Yang, X.; Zou, P.; Shao, Y.; Yuan, S.; Abd El-Aty, A.M.; Wang, J. Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. J. Food Sci., 2018, 83(2), 535-542.
[http://dx.doi.org/10.1111/1750-3841.14048] [PMID: 29350748]
[50]
Mei, Y.X.; Chen, H.X.; Zhang, J.; Zhang, X.D.; Liang, Y.X. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int. J. Biol. Macromol., 2013, 62, 330-335.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.038] [PMID: 24080320]
[51]
Zhang, G.; Jia, P.; Cheng, G.; Jiao, S.; Ren, L.; Ji, S.; Hu, T.; Liu, H.; Du, Y. Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides. Carbohydr. Polym., 2017, 166, 64-72.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.058] [PMID: 28385249]
[52]
Wan, J.; Jiang, F.; Xu, Q.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Yu, J.; He, J. New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Advances, 2017, 7, 9669-9679.
[http://dx.doi.org/10.1039/C7RA00142H]
[53]
Dewen, Q.; Yijie, D.; Yi, Z.; Shupeng, L.; Fachao, S. Plant immunity inducer development and application. Mol. Plant Microbe Interact., 2017, 30(5), 355-360.
[http://dx.doi.org/10.1094/MPMI-11-16-0231-CR] [PMID: 28323528]
[54]
Mudgal, J.; Mudgal, P.P.; Kinra, M.; Raval, R. Immunomodulatory role of chitosan-based nanoparticles and oligosaccharides in cyclophosphamide-treated mice. Scand. J. Immunol., 2019, 89(4), e12749.
[http://dx.doi.org/10.1111/sji.12749] [PMID: 30664262]
[55]
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12, 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[56]
Okada, F. Inflammation-related carcinogenesis: current findings in epidemiological trends, causes and mechanisms. Yonago Acta Med., 2014, 57(2), 65-72.
[PMID: 25324587]
[57]
Gudmundsdottir, S.; Lieder, R.; Sigurjonsson, O.E.; Petersen, P.H. Chitosan leads to downregulation of YKL-40 and inflammasome activation in human macrophages. J. Biomed. Mater. Res. A, 2015, 103(8), 2778-2785.
[http://dx.doi.org/10.1002/jbm.a.35417] [PMID: 25684555]
[58]
Skalli, A.; Castillo, M.; Andree, K.B.; Tort, L.; Furones, D.; Gisbert, E. The LPS derived from the cell walls of the gram-negative bacteria pantoea agglomerans stimulates growth and immune status of rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture, 2013, 416-417, 272-279.
[http://dx.doi.org/10.1016/j.aquaculture.2013.09.037]
[59]
Zhu, J.; Zhang, Y.; Wu, G.; Xiao, Z.; Zhou, H.; Yu, X. Inhibitory effects of oligochitosan on TNF-α, IL-1β and nitric oxide production in lipopolysaccharide-induced RAW264.7 cells. Mol. Med. Rep., 2015, 11(1), 729-733.
[http://dx.doi.org/10.3892/mmr.2014.2643] [PMID: 25323008]
[60]
Hyung, J.H.; Ahn, C.B.; Il Kim, B.; Kim, K.; Je, J.Y. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages. Eur. J. Pharmacol., 2016, 793, 43-48.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.002] [PMID: 27826077]
[61]
Maxwell, T.; Lee, K.; Chun, S.; Nam, K. Mineral-balanced deep sea water enhances the inhibitory effects of chitosan oligosaccharide on atopic dermatitis-like inflammatory response. Biotechnol. Bioprocess Eng.; BBE, 2017, 22, 120-128.
[http://dx.doi.org/10.1007/s12257-017-0091-6]
[62]
Li, Y.; Liu, H.; Xu, Q-S.; Du, Y-G.; Xu, J. Chitosan oligosaccharides block LPS-induced O-Glcnacylation of NF-κB and endothelial inflammatory response. Carbohydr. Polym., 2014, 99, 568-578.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.082] [PMID: 24274545]
[63]
Amor, S.; Peferoen, L.A.N.; Vogel, D.Y.S.; Breur, M.; van der Valk, P.; Baker, D.; van Noort, J.M. Inflammation in neurodegenerative diseases--an update. Immunology, 2014, 142(2), 151-166.
[http://dx.doi.org/10.1111/imm.12233] [PMID: 24329535]
[64]
Hao, C.; Wang, W.; Wang, S.; Zhang, L.; Guo, Y. An overview of the protective effects of chitosan and acetylated chitosan oligosaccharides against neuronal disorders. Mar. Drugs, 2017, 15(4), 89.
[http://dx.doi.org/10.3390/md15040089] [PMID: 28333077]
[65]
Dai, X.; Hou, W.; Sun, Y.; Gao, Z.; Zhu, S.; Jiang, Z. Chitosan oligosaccharides inhibit/disaggregate fibrils and attenuate amyloid β-mediated neurotoxicity. Int. J. Mol. Sci., 2015, 16(5), 10526-10536.
[http://dx.doi.org/10.3390/ijms160510526] [PMID: 26006224]
[66]
Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F.N.; Ballesteros, A.O.; Morales, J.C.; Kidibule, P.; Fernandez-Lobato, M.; Plou, F.J. Enzymatic production of fully deacetylated chitooligosaccharides and their neu-roprotective and anti-inflammatory properties. Biocatal. Biotransform., 2018, 36, 57-67.
[http://dx.doi.org/10.1080/10242422.2017.1295231]
[67]
Wu, W.; Wei, W.; Lu, M.; Zhu, X.; Liu, N.; Niu, Y.; Sun, T.; Li, Y.; Yu, J. Neuroprotective effect of chitosan oligosaccharide on hypoxic-ischemic brain damage in neonatal rats. Neurochem. Res., 2017, 42(11), 3186-3198.
[http://dx.doi.org/10.1007/s11064-017-2356-z] [PMID: 28755288]
[68]
Jia, S.; Lu, Z.; Gao, Z.; An, J.; Wu, X.; Li, X.; Dai, X.; Zheng, Q.; Sun, Y. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of Alzheimer’s disease. Int. J. Biol. Macromol., 2016, 83, 416-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.011] [PMID: 26601759]
[69]
Dai, X.; Chang, P.; Li, X.; Gao, Z.; Sun, Y. The inhibitory effect of chitosan oligosaccharides on β-site amyloid precursor protein cleaving enzyme 1 (BACE1) in HEK293 APPswe cells. Neurosci. Lett., 2018, 665, 80-85.
[http://dx.doi.org/10.1016/j.neulet.2017.11.052] [PMID: 29175631]
[70]
Kunanusornchai, W.; Witoonpanich, B.; Tawonsawatruk, T.; Pichyangkura, R.; Chatsudthipong, V.; Muanprasat, C. Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: an in vitro and in vivo study. pharmacol. res., 2016, 113(pt a), 458-467.
[http://dx.doi.org/10.1016/j.phrs.2016.09.016] [PMID: 27650754]
[71]
Liu, Y.-E.; Tong, C.-C.; Zhang, Y.B.; Cong, P.F.; Shi, X.-Y.; Liu, Y.; Shi, L.; Tong, Z.; Jin, H.-X.; Hou, M.-X. Chitosan oligosaccharide ameliorates acute lung injury induced by blast injury through the DDAH1/ADMA pathway. PLoS One, 2018, 13(2), e0192135.
[http://dx.doi.org/10.1371/journal.pone.0192135] [PMID: 29415054]
[72]
Fang, I.M.; Yang, C.M.; Yang, C.H. Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats. Exp. Eye Res., 2015, 130, 38-50.
[http://dx.doi.org/10.1016/j.exer.2014.12.001] [PMID: 25479043]
[73]
Zhang, C.; Liao, Q.; Ming, J.-H.; Hu, G.-L.; Chen, Q.; Liu, S.-Q.; Li, Y-M. The effects of chitosan oligosaccharides on OPG and RANKL expression in a rat osteoarthritis model. Acta Cir. Bras., 2017, 32(6), 418-428.
[http://dx.doi.org/10.1590/s0102-865020170060000002] [PMID: 28700003]
[74]
Li, Z.; Yang, X.; Song, X.; Ma, H.; Zhang, P. chitosan oligosaccharide reduces propofol requirements and propofol-related side effects. Mar. Drugs, 2016, 14(12), 234.
[http://dx.doi.org/10.3390/md14120234] [PMID: 28009824]
[75]
Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771.
[http://dx.doi.org/10.1038/nrc3611] [PMID: 24154716]
[76]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[77]
Palucka, A.K.; Coussens, L.M. The basis of oncoimmunology. Cell, 2016, 164(6), 1233-1247.
[http://dx.doi.org/10.1016/j.cell.2016.01.049] [PMID: 26967289]
[78]
Park, J.K.; Chung, M.J.; Choi, H.N.; Park, Y.I. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci., 2011, 12(1), 266-277.
[http://dx.doi.org/10.3390/ijms12010266] [PMID: 21339986]
[79]
Muanprasat, C.; Chatsudthipong, V. Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol. Ther., 2017, 170, 80-97.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.013] [PMID: 27773783]
[80]
Jiang, Z.; Li, H.; Qiao, J.; Yang, Y.; Wang, Y.; Liu, W.; Han, B. Potential analysis and preparation of chitosan oligosaccharides as oral nutritional supplements of cancer adjuvant therapy. Int. J. Mol. Sci., 2019, 20(4), 920.
[http://dx.doi.org/10.3390/ijms20040920] [PMID: 30791594]
[81]
Muanprasat, C.; Wongkrasant, P.; Satitsri, S.; Moonwiriyakit, A.; Pongkorpsakol, P.; Mattaveewong, T.; Pichyangkura, R.; Chatsudthipong, V. Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: mechanism of action and potential applications in intestinal disorders. Biochem. Pharmacol., 2015, 96(3), 225-236.
[http://dx.doi.org/10.1016/j.bcp.2015.05.016] [PMID: 26047848]
[82]
Mattaveewong, T.; Wongkrasant, P.; Chanchai, S.; Pichyangkura, R.; Chatsudthipong, V.; Muanprasat, C. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym., 2016, 145, 30-36.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.077] [PMID: 27106148]
[83]
Zou, P.; Yuan, S.; Yang, X.; Zhai, X.; Wang, J. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells. Chem. Biol. Interact., 2018, 279, 129-135.
[http://dx.doi.org/10.1016/j.cbi.2017.11.010] [PMID: 29155028]
[84]
Liu, L.; Xin, Y.; Liu, J.; Zhang, E.; Li, W. Inhibitory effect of chitosan oligosaccharide on human hepatoma cells in vitro. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 272-277.
[http://dx.doi.org/10.21010/ajtcam.v14i4.30] [PMID: 28638890]
[85]
Xu, Q.; Wang, W.; Qu, C.; Gu, J.; Yin, H.; Jia, Z.; Song, L.; Du, Y. Chitosan oligosaccharides inhibit epithelial cell migration through blockade of N-acetylglucosaminyl-transferase V and branched GlcNAc structure. Carbohydr. Polym., 2017, 170, 241-246.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.075] [PMID: 28521993]
[86]
Xu, Q.; Wang, W.; Yang, W.; Du, Y.; Song, L. Chitosan oligosaccharide inhibits EGF-induced cell growth possibly through blockade of epidermal growth factor receptor/mitogen-activated protein kinase pathway. Int. J. Biol. Macromol., 2017, 98, 502-505.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.021] [PMID: 28185929]
[87]
Kulikov, S.; Zelenikhin, P.; Murtazina, R.; Khayrullin, R.; Bezrodnikh, E.; Tikhonov, V. Induction of apoptosis of tumor cells by oligochitosans (short chain chitosans). Bionanoscience, 2016, 6, 460-463.
[http://dx.doi.org/10.1007/s12668-016-0243-8]
[88]
Zhai, X.; Yuan, S.; Yang, X.; Zou, P.; Shao, Y.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Wang, J. Growth-inhibition of S180 residual-tumor by combination of cyclophosphamide and chitosan oligosaccharides in vivo. Life Sci., 2018, 202, 21-27.
[http://dx.doi.org/10.1016/j.lfs.2018.04.004] [PMID: 29626528]
[89]
Zou, P.; Yang, X.; Zhang, Y.; Du, P.; Yuan, S.; Yang, D.; Wang, J. Antitumor effects of orally and intraperitoneally administered chitosan oligosaccharides (COSs) on S180-bearing/residual mouse. J. Food Sci., 2016, 81(12), H3035-H3042.
[http://dx.doi.org/10.1111/1750-3841.13538] [PMID: 27802366]
[90]
Smith, B.R.; Gambhir, S.S. Nanomaterials for in vivo imaging. Chem. Rev., 2017, 117(3), 901-986.
[http://dx.doi.org/10.1021/acs.chemrev.6b00073] [PMID: 28045253]
[91]
Lee, J.Y.; Termsarasab, U.; Lee, M.Y.; Kim, D.H.; Lee, S.Y.; Kim, J.S.; Cho, H.J.; Kim, D.D. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater., 2017, 57, 262-273.
[http://dx.doi.org/10.1016/j.actbio.2017.05.012] [PMID: 28483700]
[92]
Liu, X.; Xia, W.; Jiang, Q.; Yu, P.; Yue, L. Chitosan oligosaccharide-N-chlorokojic acid mannich base polymer as a potential antibacterial material. Carbohydr. Polym., 2018, 182, 225-234.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.019] [PMID: 29279119]
[93]
Zou, P.; Yang, X.; Wang, J.; Li, Y.; Yu, H.; Zhang, Y.; Liu, G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem., 2016, 190, 1174-1181.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.076] [PMID: 26213092]
[94]
Je, J.Y.; Kim, S.K. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J. Agric. Food Chem., 2006, 54(18), 6629-6633.
[http://dx.doi.org/10.1021/jf061310p] [PMID: 16939319]
[95]
Tang, Y.L.; Shi, Y.H.; Zhao, W.; Hao, G.; Le, G.W. Discovery of a novel antimicrobial peptide using membrane binding-based approach. Food Control, 2009, 20, 149-156.
[http://dx.doi.org/10.1016/j.foodcont.2008.03.006]
[96]
Liu, X.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria. J. Biosci. Bioeng., 2015, 120(3), 335-339.
[http://dx.doi.org/10.1016/j.jbiosc.2015.01.010] [PMID: 25682520]
[97]
Yue, L.; Li, J.; Chen, W.; Liu, X.; Jiang, Q.; Xia, W. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr. Polym., 2017, 176, 356-364.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.043] [PMID: 28927618]
[98]
Li, Z.; Zhang, M.; Cheng, D.; Yang, R. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydr. Polym., 2016, 151, 834-840.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.012] [PMID: 27474631]
[99]
Luo, C.; Liu, W.; Luo, B.; Tian, J.; Wen, W.; Liu, M.; Zhou, C. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer. Carbohydr. Polym., 2017, 156, 235-243.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.036] [PMID: 27842818]
[100]
Jiang, W.; Zhou, Z.; Wang, D.; Zhou, X.; Tao, R.; Yang, Y.; Shi, Y.; Zhang, G.; Wang, D.; Zhou, Z. Transglutaminase catalyzed hydrolyzed wheat gliadin grafted with chitosan oligosaccharide and its characterization. Carbohydr. Polym., 2016, 153, 105-114.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.097] [PMID: 27561477]
[101]
Reighard, K.P.; Schoenfisch, M.H. Antibacterial action of nitric oxide-releasing chitosan oligosaccharides against Pseudomonas aeruginosa under aerobic and anaerobic conditions. Antimicrob. Agents Chemother., 2015, 59(10), 6506-6513.
[http://dx.doi.org/10.1128/AAC.01208-15] [PMID: 26239983]
[102]
Reighard, K.P.; Hill, D.B.; Dixon, G.A.; Worley, B.V.; Schoenfisch, M.H. Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling, 2015, 31(9-10), 775-787.
[http://dx.doi.org/10.1080/08927014.2015.1107548] [PMID: 26610146]
[103]
Lu, Y.; Shah, A.; Hunter, R.A.; Soto, R.J.; Schoenfisch, M.H. S-Nitrosothiol-modified nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Acta Biomater., 2015, 12, 62-69.
[http://dx.doi.org/10.1016/j.actbio.2014.10.028] [PMID: 25449913]
[104]
Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Langella, P.; Skurnik, D.; Richard, M.L.; Beaugerie, L. Fungal microbiota dysbiosis in IBD. Gut, 2017, 66(6), 1039-1048.
[http://dx.doi.org/10.1136/gutjnl-2015-310746] [PMID: 26843508]
[105]
Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; Yu, J. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut, 2018, 67(6), 1024-1032.
[http://dx.doi.org/10.1136/gutjnl-2017-314281] [PMID: 28765474]
[106]
Zheng, J.; Yuan, X.; Cheng, G.; Jiao, S.; Feng, C.; Zhao, X.; Yin, H.; Du, Y.; Liu, H. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr. Polym., 2018, 190, 77-86.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.058] [PMID: 29628262]
[107]
Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Reclamation of marine chitinous materials for chitosanase production via microbial conversion by Paenibacillus macerans. Mar. Drugs, 2018, 16(11), 16.
[http://dx.doi.org/10.3390/md16110429] [PMID: 30400216]
[108]
Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. biodegradable materials for bone repair and tissue engineering applications. Materials (Basel), 2015, 8(9), 5744-5794.
[http://dx.doi.org/10.3390/ma8095273] [PMID: 28793533]
[109]
Wang, B.; Tan, L.; Deng, D.; Lu, T.; Zhou, C.; Li, Z.; Tang, Z.; Wu, Z.; Tang, H. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles. Int. J. Nanomedicine, 2015, 10, 3417-3427.
[http://dx.doi.org/10.2147/IJN.S82091]] [PMID: 26056441]
[110]
Shahverdi, S.; Hajimiri, M.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Gharehaghaji, A.A.; Dinarvand, R. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int. J. Pharm., 2014, 473(1-2), 345-355.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.021] [PMID: 25051110]
[111]
Okamoto, Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa, Y.; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym., 2003, 53, 337-342.
[http://dx.doi.org/10.1016/S0144-8617(03)00076-6]
[112]
Alsarra, I.A. Chitosan topical gel formulation in the management of burn wounds. Int. J. Biol. Macromol., 2009, 45(1), 16-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.03.010]] [PMID: 19447254]
[113]
Mori, T.; Okumura, M.; Matsuura, M.; Ueno, K.; Tokura, S.; Okamoto, Y.; Minami, S.; Fujinaga, T. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 1997, 18(13), 947-951.
[http://dx.doi.org/10.1016/S0142-9612(97)00017-3] [PMID: 9199765]
[114]
Chandika, P.; Ko, S.C.; Oh, G.W.; Heo, S.Y.; Nguyen, V.T.; Jeon, Y.J.; Lee, B.; Jang, C.H.; Kim, G.; Park, W.S.; Chang, W.; Choi, I.W.; Jung, W.K. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol., 2015, 81, 504-513.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.038] [PMID: 26306410]
[115]
Li, C.; Fu, R.; Yu, C.; Li, Z.; Guan, H.; Hu, D.; Zhao, D.; Lu, L. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int. J. Nanomedicine, 2013, 8, 4131-4145.
[http://dx.doi.org/10.2147/IJN.S51679]] [PMID: 24204142]
[116]
Li, C.W.; Wang, Q.; Li, J.; Hu, M.; Shi, S.J.; Li, Z.W.; Wu, G.L.; Cui, H.H.; Li, Y.Y.; Zhang, Q.; Yu, X.H.; Lu, L.C. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. Int. J. Nanomedicine, 2016, 11, 373-386.
[http://dx.doi.org/10.2147/IJN.S91975]] [PMID: 26855575]
[117]
Sandri, G.; Aguzzi, C.; Rossi, S.; Bonferoni, M.C.; Bruni, G.; Boselli, C.; Cornaglia, A.I.; Riva, F.; Viseras, C.; Caramella, C.; Ferrari, F. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater., 2017, 57, 216-224.
[http://dx.doi.org/10.1016/j.actbio.2017.05.032] [PMID: 28522411]
[118]
Chen, Y.; Dan, N.; Dan, W.; Liu, X.; Cong, L. A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications. Mater. Sci. Eng. C, 2019, 94, 1020-1036.
[http://dx.doi.org/10.1016/j.msec.2018.10.036] [PMID: 30423683]
[119]
Ratanavaraporn, J.; Kanokpanont, S.; Tabata, Y.; Damrongsakkul, S. Growth and osteogenic differentiation of adipose-derived and bone marrow-derived stem cells on chitosan and chitooligosaccharide films. Carbohydr. Polym., 2009, 78, 873-878.
[http://dx.doi.org/10.1016/j.carbpol.2009.07.006]
[120]
Jung, W.K.; Moon, S.H.; Kim, S.K. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci., 2006, 78(9), 970-976.
[http://dx.doi.org/10.1016/j.lfs.2005.06.006] [PMID: 16137703]
[121]
Bai, B.L.; Xie, Z.J.; Weng, S.J.; Wu, Z.Y.; Li, H.; Tao, Z.S.; Boodhun, V.; Yan, D.Y.; Shen, Z.J.; Tang, J.H.; Yang, L. Chitosan oligosaccharide promotes osteoclast formation by stimulating the activation of MAPK and AKT signaling pathways. J. Biomater. Sci. Polym. Ed., 2018, 29(10), 1207-1218.
[http://dx.doi.org/10.1080/09205063.2018.1448336] [PMID: 29502489]
[122]
Ding, S.-J.; Shie, M.-Y.; Hoshiba, T.; Kawazoe, N.; Chen, G.; Chang, H-C. Osteogenic differentiation and immune response of human bone-marrow-derived mesenchymal stem cells on injectable calcium-silicate-based bone grafts. Tissue Eng. Part A, 2010, 16(7), 2343-2354.
[http://dx.doi.org/10.1089/ten.tea.2009.0749] [PMID: 20205531]
[123]
Liu, L.; Li, M.; Yu, M.; Shen, M.; Wang, Q.; Yu, Y.; Xie, J. Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int. J. Biol. Macromol., 2019, 121, 743-751.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.083] [PMID: 30342142]
[124]
Meyer, C.; Stenberg, L.; Gonzalez-Perez, F.; Wrobel, S.; Ronchi, G.; Udina, E.; Suganuma, S.; Geuna, S.; Navarro, X.; Dahlin, L.B.; Grothe, C.; Haastert-Talini, K. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 2016, 76, 33-51.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.040] [PMID: 26517563]
[125]
Zhao, Y.; Wang, Y.; Gong, J.; Yang, L.; Niu, C.; Ni, X.; Wang, Y.; Peng, S.; Gu, X.; Sun, C.; Yang, Y. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials, 2017, 134, 64-77.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.026] [PMID: 28456077]
[126]
Wang, Y.; Zhao, Y.; Sun, C.; Hu, W.; Zhao, J.; Li, G.; Zhang, L.; Liu, M.; Liu, Y.; Ding, F.; Yang, Y.; Gu, X. Chitosan degradation products promote nerve regeneration by stimulating schwann cell proliferation via miR-27a/FOXO1 axis. Mol. Neurobiol., 2016, 53(1), 28-39.
[http://dx.doi.org/10.1007/s12035-014-8968-2] [PMID: 25399953]
[127]
Phil, L.; Naveed, M.; Mohammad, I.S.; Bo, L.; Bin, D. Chitooligosaccharide: an evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed. Pharmacother., 2018, 102, 438-451.
[http://dx.doi.org/10.1016/j.biopha.2018.03.108] [PMID: 29579704]
[128]
Park, P.J.; Je, J.Y.; Jung, W.K.; Ahn, C.B.; Kim, S.K. Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur. Food Res. Technol., 2004, 219, 529-533.
[http://dx.doi.org/10.1007/s00217-004-0977-3]
[129]
Liu, X.; Jiang, Q.; Xia, W. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: kojic acid grafted onto chitosan. Int. J. Biol. Macromol., 2018, 113, 1125-1133.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.007] [PMID: 29505872]
[130]
Das, S.; Ghosh, S.; De, A.K.; Bera, T. Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. Int. J. Biol. Macromol., 2017, 102, 996-1008.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.098] [PMID: 28465178]
[131]
Yang, J.; Wu, Y.; Shen, Y.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl. Mater. Interfaces, 2016, 8(40), 26578-26590.
[http://dx.doi.org/10.1021/acsami.6b09074] [PMID: 27628202]
[132]
Dramou, P.; Fizir, M.; Taleb, A.; Itatahine, A.; Dahiru, N.S.; Mehdi, Y.A.; Wei, L.; Zhang, J.; He, H. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr. Polym., 2018, 197, 117-127.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.071] [PMID: 30007596]
[133]
Tahvilian, R.; Tajani, B.; Sadrjavadi, K.; Fattahi, A. Preparation and characterization of pH-sensitive camptothecin-cis-aconityl grafted chitosan oligosaccharide nanomicelles. Int. J. Biol. Macromol., 2016, 92, 795-802.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.100] [PMID: 27481344]
[134]
Sang, M.; Zhang, Z.; Liu, F.; Hu, L.; Li, L.; Chen, L.; Feng, F.; Liu, W.; Qu, W. Multifunctional hyaluronic acid-decorated redox-responsive magnetic complex micelle for targeted drug delivery with enhanced antitumor efficiency and anti-cell-migration activity. J. Biomed. Nanotechnol., 2018, 14(3), 477-495.
[http://dx.doi.org/10.1166/jbn.2018.2541] [PMID: 29663921]
[135]
Oliveira, A.V.; Rosa da Costa, A.M.; Silva, G.A. Non-viral strategies for ocular gene delivery. Mater. Sci. Eng. C, 2017, 77, 1275-1289.
[http://dx.doi.org/10.1016/j.msec.2017.04.068] [PMID: 28532005]
[136]
Kumari, M.; Liu, C.H.; Wu, W.C. Efficient gene delivery by oligochitosan conjugated serum albumin: Facile synthesis, polyplex stability, and transfection. Carbohydr. Polym., 2018, 183, 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.013] [PMID: 29352891]
[137]
El-Sayed, N.S.; Sharma, M.; Aliabadi, H.M.; El-Meligy, M.G.; El-Zaity, A.K.; Nageib, Z.A.; Tiwari, R.K. Synthesis, characterization, and in vitro cytotoxicity of fatty acyl-CGKRK-chitosan oligosaccharides conjugates for siRNA delivery. Int. J. Biol. Macromol., 2018, 112, 694-702.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.213] [PMID: 29408713]
[138]
Delgado, D.; del Pozo-Rodríguez, A.; Angeles Solinís, M.; Bartkowiak, A.; Rodríguez-Gascón, A. New gene delivery system based on oligochitosan and solid lipid nanoparticles: ‘in vitro’ and ‘in vivo’ evaluation. Eur. J. Pharm. Sci., 2013, 50(3-4), 484-491.
[http://dx.doi.org/10.1016/j.ejps.2013.08.013] [PMID: 23981333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy