Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mechanistic Insights of Soluble Uric Acid-related Kidney Disease

Author(s): Pan Jing, Min Shi, Liang Ma* and Ping Fu*

Volume 27, Issue 30, 2020

Page: [5056 - 5066] Pages: 11

DOI: 10.2174/0929867326666181211094421

Price: $65

Abstract

Hyperuricemia, defined as the presence of elevated serum uric acid (sUA), could lead to urate deposit in joints, tendons, kidney and other tissues. Hyperuricemia as an independent risk factor was common in patients during the causation and progression of kidney disease. Uric acid is a soluble final product of endogenous and dietary purine metabolism, which is freely filtered in kidney glomeruli where approximately 90% of filtered uric acid is reabsorbed. Considerable studies have demonstrated that soluble uric acid was involved in the pathophysiology of renal arteriolopathy, tubule injury, tubulointerstitial fibrosis, as well as glomerular hypertrophy and glomerulosclerosis. In the review, we summarized the mechanistic insights of soluble uric acid related renal diseases.

Keywords: Soluble uric acid, hyperuricemia, kidney injury, Uric acid (UA), renal arteriolopathy, uric acid-induced kidney injury.

[1]
Richette, P.; Bardin, T. Gout. Lancet, 2010, 375(9711), 318-328.
[http://dx.doi.org/10.1016/S0140-6736(09)60883-7] [PMID: 19692116]
[2]
Grassi, D.; Ferri, L.; Desideri, G.; Di Giosia, P.; Cheli, P.; Del Pinto, R.; Properzi, G.; Ferri, C. Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Curr. Pharm. Des., 2013, 19(13), 2432-2438.
[http://dx.doi.org/10.2174/1381612811319130011] [PMID: 23173592]
[3]
Yoo, T.W.; Sung, K.C.; Shin, H.S.; Kim, B.J.; Kim, B.S.; Kang, J.H.; Lee, M.H.; Park, J.R.; Kim, H.; Rhee, E.J.; Lee, W.Y.; Kim, S.W.; Ryu, S.H.; Keum, D.G. Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ. J., 2005, 69(8), 928-933.
[http://dx.doi.org/10.1253/circj.69.928] [PMID: 16041161]
[4]
Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med., 2008, 359(17), 1811-1821.
[http://dx.doi.org/10.1056/NEJMra0800885] [PMID: 18946066]
[5]
Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003, 41(6), 1183-1190.
[http://dx.doi.org/10.1161/01.HYP.0000069700.62727.C5] [PMID: 12707287]
[6]
Johnson, R.J.; Kivlighn, S.D.; Kim, Y.G.; Suga, S.; Fogo, A.B. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am. J. Kidney Dis., 1999, 33(2), 225-234.
[http://dx.doi.org/10.1016/S0272-6386(99)70295-7] [PMID: 10023633]
[7]
Gonick, H.C.; Rubini, M.E.; Gleason, I.O.; Sommers, S.C. The renal lesion in gout. Ann. Intern. Med., 1965, 62, 667-674.
[http://dx.doi.org/10.7326/0003-4819-62-4-667] [PMID: 14274831]
[8]
Talbott, J.H.; Terplan, K.L. The kidney in gout. Medicine (Baltimore), 1960, 39, 405-467.
[http://dx.doi.org/10.1097/00005792-196012000-00001] [PMID: 13775026]
[9]
Beck, L.H. Requiem for gouty nephropathy. Kidney Int., 1986, 30(2), 280-287.
[http://dx.doi.org/10.1038/ki.1986.179] [PMID: 3761864]
[10]
Wu, J.; Chen, X.; Xie, Y.; Yamanaka, N.; Shi, S.; Wu, D.; Liu, S.; Cai, G. Characteristics and risk factors of intrarenal arterial lesions in patients with IgA nephropathy. Nephrol. Dial. Transplant., 2005, 20(4), 719-727.
[http://dx.doi.org/10.1093/ndt/gfh716] [PMID: 15701667]
[11]
Kohagura, K.; Kochi, M.; Miyagi, T.; Kinjyo, T.; Maehara, Y.; Nagahama, K.; Sakima, A.; Iseki, K.; Ohya, Y. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens. Res., 2013, 36(1), 43-49.
[http://dx.doi.org/10.1038/hr.2012.135] [PMID: 22951520]
[12]
Mazzali, M.; Kanellis, J.; Han, L.; Feng, L.; Xia, Y.Y.; Chen, Q.; Kang, D.H.; Gordon, K.L.; Watanabe, S.; Nakagawa, T.; Lan, H.Y.; Johnson, R.J. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal Physiol., 2002, 282(6), F991-F997.
[http://dx.doi.org/10.1152/ajprenal.00283.2001] [PMID: 11997315]
[13]
Sánchez-Lozada, L.G.; Tapia, E.; Santamaría, J.; Avila-Casado, C.; Soto, V.; Nepomuceno, T.; Rodríguez-Iturbe, B.; Johnson, R.J.; Herrera-Acosta, J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int., 2005, 67(1), 237-247.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00074.x] [PMID: 15610247]
[14]
Sánchez-Lozada, L.G.; Tapia, E.; Avila-Casado, C.; Soto, V.; Franco, M.; Santamaría, J.; Nakagawa, T.; Rodríguez-Iturbe, B.; Johnson, R.J.; Herrera-Acosta, J. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol. Renal Physiol., 2002, 283(5), F1105-F1110.
[http://dx.doi.org/10.1152/ajprenal.00170.2002] [PMID: 12372787]
[15]
Hunt, B.J. The endothelium in atherogenesis. Lupus, 2000, 9(3), 189-193.
[http://dx.doi.org/10.1191/096120300678828244] [PMID: 10805486]
[16]
Gimbrone, M.A. Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am. J. Cardiol., 1995, 75(6), 67B-70B.
[http://dx.doi.org/10.1016/0002-9149(95)80016-L] [PMID: 7532351]
[17]
Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res., 2000, 87(10), 840-844.
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[18]
Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 2001, 38(5), 1101-1106.
[http://dx.doi.org/10.1161/hy1101.092839] [PMID: 11711505]
[19]
Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia induces endothelial dysfunction. Kidney Int., 2005, 67(5), 1739-1742.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00273.x] [PMID: 15840020]
[20]
Kang, D.H.; Park, S.K.; Lee, I.K.; Johnson, R.J. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J. Am. Soc. Nephrol., 2005, 16(12), 3553-3562.
[http://dx.doi.org/10.1681/ASN.2005050572] [PMID: 16251237]
[21]
Zhao, Y.; Vanhoutte, P.M.; Leung, S.W. Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci., 2015, 129(2), 83-94.
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[22]
Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr. Pharm. Des., 2014, 20(22), 3548-3553.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[23]
Zharikov, S.; Krotova, K.; Hu, H.; Baylis, C.; Johnson, R.J.; Block, E.R.; Patel, J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol., 2008, 295(5), C1183-C1190.
[http://dx.doi.org/10.1152/ajpcell.00075.2008] [PMID: 18784379]
[24]
Park, J.H.; Jin, Y.M.; Hwang, S.; Cho, D.H.; Kang, D.H.; Jo, I. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide, 2013, 32, 36-42.
[http://dx.doi.org/10.1016/j.niox.2013.04.003] [PMID: 23624269]
[25]
Gersch, C.; Palii, S.P.; Kim, K.M.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids, 2008, 27(8), 967-978.
[http://dx.doi.org/10.1080/15257770802257952] [PMID: 18696365]
[26]
Hong, Q.; Qi, K.; Feng, Z.; Huang, Z.; Cui, S.; Wang, L.; Fu, B.; Ding, R.; Yang, J.; Chen, X.; Wu, D. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium, 2012, 51(5), 402-410.
[http://dx.doi.org/10.1016/j.ceca.2012.01.003] [PMID: 22361139]
[27]
Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cristóbal-García, M.; García-Arroyo, F.; Soto, V.; Cruz-Robles, D.; Nakagawa, T.; Yu, M.A.; Kang, D.H.; Johnson, R.J. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron, Exp. Nephrol., 2012, 121(3-4), e71-e78.
[http://dx.doi.org/10.1159/000345509] [PMID: 23235493]
[28]
Yu, M.A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.H. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens., 2010, 28(6), 1234-1242.
[http://dx.doi.org/10.1097/HJH.0b013e328337da1d] [PMID: 20486275]
[29]
Kang, D.H.; Han, L.; Ouyang, X.; Kahn, A.M.; Kanellis, J.; Li, P.; Feng, L.; Nakagawa, T.; Watanabe, S.; Hosoyamada, M.; Endou, H.; Lipkowitz, M.; Abramson, R.; Mu, W.; Johnson, R.J. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am. J. Nephrol., 2005, 25(5), 425-433.
[http://dx.doi.org/10.1159/000087713] [PMID: 16113518]
[30]
Kırça, M.; Oğuz, N.; Çetin, A.; Uzuner, F.; Yeşilkaya, A. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J. Recept. Signal Transduct. Res., 2017, 37(2), 167-173.
[http://dx.doi.org/10.1080/10799893.2016.1203941] [PMID: 27400779]
[31]
Kanellis, J.; Watanabe, S.; Li, J.H.; Kang, D.H.; Li, P.; Nakagawa, T.; Wamsley, A.; Sheikh-Hamad, D.; Lan, H.Y.; Feng, L.; Johnson, R.J. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension, 2003, 41(6), 1287-1293.
[http://dx.doi.org/10.1161/01.HYP.0000072820.07472.3B] [PMID: 12743010]
[32]
Young, W.; Mahboubi, K.; Haider, A.; Li, I.; Ferreri, N.R. Cyclooxygenase-2 is required for tumor necrosis factor-alpha- and angiotensin II-mediated proliferation of vascular smooth muscle cells. Circ. Res., 2000, 86(8), 906-914.
[http://dx.doi.org/10.1161/01.RES.86.8.906] [PMID: 10785514]
[33]
Corry, D.B.; Eslami, P.; Yamamoto, K.; Nyby, M.D.; Makino, H.; Tuck, M.L. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J. Hypertens., 2008, 26(2), 269-275.
[http://dx.doi.org/10.1097/HJH.0b013e3282f240bf] [PMID: 18192841]
[34]
Rao, G.N.; Corson, M.A.; Berk, B.C. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J. Biol. Chem., 1991, 266(13), 8604-8608.
[PMID: 2022672]
[35]
Tang, L.; Xu, Y.; Wei, Y.; He, X. Uric acid induces the expression of TNFα via the ROS-MAPK-NFκB signaling pathway in rat vascular smooth muscle cells. Mol. Med. Rep., 2017, 16(5), 6928-6933.
[http://dx.doi.org/10.3892/mmr.2017.7405] [PMID: 28901421]
[36]
Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol., 2013, 9(1), 13-23.
[http://dx.doi.org/10.1038/nrrheum.2012.143] [PMID: 22945591]
[37]
Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, 16(2), 400.
[http://dx.doi.org/10.1007/s11926-013-0400-9] [PMID: 24357445]
[38]
Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; Stahl, E.; Weiner, D.E.; Chertow, G.M. Hyperuricemia, acute and chronic kidney disease, hypertension, and car-diovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am. J. Kidney Dis., 2018, 71(6), 851-865.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[39]
Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271.
[http://dx.doi.org/10.1172/JCI28075] [PMID: 16886064]
[40]
Isaka, Y.; Takabatake, Y.; Takahashi, A.; Saitoh, T.; Yoshimori, T. Hyperuricemia-induced inflammasome and kidney diseases. Nephrol. Dial. Transplant., 2016, 31(6), 890-896.
[http://dx.doi.org/10.1093/ndt/gfv024] [PMID: 25829326]
[41]
Kang, D.H.; Nakagawa, T.; Feng, L.; Watanabe, S.; Han, L.; Mazzali, M.; Truong, L.; Harris, R.; Johnson, R.J. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol., 2002, 13(12), 2888-2897.
[http://dx.doi.org/10.1097/01.ASN.0000034910.58454.FD] [PMID: 12444207]
[42]
Chen, L.; Lan, Z. Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-κB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway. Food Funct., 2017, 8(5), 1785-1792.
[http://dx.doi.org/10.1039/C6FO01561A] [PMID: 28428988]
[43]
Wang, M.; Zhao, J.; Zhang, N.; Chen, J. Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice. Biomed. Pharmacother., 2016, 83, 975-988.
[http://dx.doi.org/10.1016/j.biopha.2016.07.025] [PMID: 27522260]
[44]
Wang, M.X.; Liu, Y.L.; Yang, Y.; Zhang, D.M.; Kong, L.D. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharmacol., 2015, 747, 59-70.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.035] [PMID: 25499818]
[45]
Wu, Y.; He, F.; Li, Y.; Wang, H.; Shi, L.; Wan, Q.; Ou, J.; Zhang, X.; Huang, D.; Xu, L.; Lin, P.; Yang, G.; He, L.; Gao, J. Effects of shizhifang on NLRP3 inflammasome activation and renal tubular injury in hyperuricemic rats. Evid. Based Complement. Alternat. Med., 2017.20177674240
[http://dx.doi.org/10.1155/2017/7674240] [PMID: 29358971]
[46]
Liu, N.; Wang, L.; Yang, T.; Xiong, C.; Xu, L.; Shi, Y.; Bao, W.; Chin, Y.E.; Cheng, S.B.; Yan, H.; Qiu, A.; Zhuang, S. EGF receptor inhibition alleviates hyperuricemic nephropathy. J. Am. Soc. Nephrol., 2015, 26(11), 2716-2729.
[http://dx.doi.org/10.1681/ASN.2014080793] [PMID: 25788532]
[47]
Hediger, M.A.; Johnson, R.J.; Miyazaki, H.; Endou, H. Molecular physiology of urate transport. Physiology (Bethesda), 2005, 20, 125-133.
[http://dx.doi.org/10.1152/physiol.00039.2004] [PMID: 15772301]
[48]
Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature, 2002, 417(6887), 447-452.
[http://dx.doi.org/10.1038/nature742] [PMID: 12024214]
[49]
Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; Palmer, C.N.; Knott, S.A.; Kolcic, I.; Polasek, O.; Graessler, J.; Wilson, J.F.; Marinaki, A.; Riches, P.L.; Shu, X.; Janicijevic, B.; Smolej-Narancic, N.; Gorgoni, B.; Morgan, J.; Campbell, S.; Biloglav, Z.; Barac-Lauc, L.; Pericic, M.; Klaric, I.M.; Zgaga, L.; Skaric-Juric, T.; Wild, S.H.; Richardson, W.A.; Hohenstein, P.; Kimber, C.H.; Tenesa, A.; Donnelly, L.A.; Fairbanks, L.D.; Aringer, M.; McKeigue, P.M.; Ralston, S.H.; Morris, A.D.; Rudan, P.; Hastie, N.D.; Campbell, H.; Wright, A.F. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet., 2008, 40(4), 437-442.
[http://dx.doi.org/10.1038/ng.106] [PMID: 18327257]
[50]
Anzai, N.; Ichida, K.; Jutabha, P.; Kimura, T.; Babu, E.; Jin, C.J.; Srivastava, S.; Kitamura, K.; Hisatome, I.; Endou, H.; Sakurai, H. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem., 2008, 283(40), 26834-26838.
[http://dx.doi.org/10.1074/jbc.C800156200] [PMID: 18701466]
[51]
Hagos, Y.; Stein, D.; Ugele, B.; Burckhardt, G.; Bahn, A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol., 2007, 18(2), 430-439.
[http://dx.doi.org/10.1681/ASN.2006040415] [PMID: 17229912]
[52]
Van Aubel, R.A.; Smeets, P.H.; van den Heuvel, J.J.; Russel, F.G. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol., 2005, 288(2), F327-F333.
[http://dx.doi.org/10.1152/ajprenal.00133.2004] [PMID: 15454390]
[53]
Xu, L.; Shi, Y.; Zhuang, S.; Liu, N. Recent advances on uric acid transporters. Oncotarget, 2017, 8(59), 100852-100862.
[http://dx.doi.org/10.18632/oncotarget.20135] [PMID: 29246027]
[54]
Zhou, Y.; Fang, L.; Jiang, L.; Wen, P.; Cao, H.; He, W.; Dai, C.; Yang, J. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS One, 2012, 7(6), e39738.
[http://dx.doi.org/10.1371/journal.pone.0039738] [PMID: 22761883]
[55]
Xiao, J.; Zhang, X.L.; Fu, C.; Han, R.; Chen, W.; Lu, Y.; Ye, Z. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int. J. Mol. Med., 2015, 35(5), 1347-1354.
[http://dx.doi.org/10.3892/ijmm.2015.2148] [PMID: 25813103]
[56]
Imig, J.D.; Ryan, M.J. Immune and inflammatory role in renal disease. Compr. Physiol., 2013, 3(2), 957-976.
[http://dx.doi.org/10.1002/cphy.c120028] [PMID: 23720336]
[57]
Borges, F.T.; Dalboni, M.A.; Michelacci, Y.M.; Schor, N. Noncrystalline uric acid inhibits proteoglycan and glycosaminoglycan synthesis in distal tubular epithelial cells (MDCK). Braz. J. Med. Biol. Res., 2010, 43(10), 957-963.
[http://dx.doi.org/10.1590/S0100-879X2010007500095] [PMID: 20878016]
[58]
Wang, Y.; Harris, D.C. Macrophages in renal disease. J. Am. Soc. Nephrol., 2011, 22(1), 21-27.
[http://dx.doi.org/10.1681/ASN.2010030269] [PMID: 21209251]
[59]
Kim, S.M.; Lee, S.H.; Kim, Y.G.; Kim, S.Y.; Seo, J.W.; Choi, Y.W.; Kim, D.J.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Won, K.Y.; Moon, J.Y. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2015, 308(9), F993-F1003.
[http://dx.doi.org/10.1152/ajprenal.00637.2014] [PMID: 25651569]
[60]
Ryu, E.S.; Kim, M.J.; Shin, H.S.; Jang, Y.H.; Choi, H.S.; Jo, I.; Johnson, R.J.; Kang, D.H. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 304(5), F471-F480.
[http://dx.doi.org/10.1152/ajprenal.00560.2012] [PMID: 23283992]
[61]
Grgic, I.; Duffield, J.S.; Humphreys, B.D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol., 2012, 27(2), 183-193.
[http://dx.doi.org/10.1007/s00467-011-1772-6] [PMID: 21311912]
[62]
Galichon, P.; Hertig, A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair, 2011, 4, 11.
[http://dx.doi.org/10.1186/1755-1536-4-11] [PMID: 21470408]
[63]
Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol., 2010, 21(2), 212-222.
[http://dx.doi.org/10.1681/ASN.2008121226] [PMID: 20019167]
[64]
Zeisberg, M.; Duffield, J.S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol., 2010, 21(8), 1247-1253.
[http://dx.doi.org/10.1681/ASN.2010060616] [PMID: 20651165]
[65]
Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol., 2004, 15(1), 1-12.
[http://dx.doi.org/10.1097/01.ASN.0000106015.29070.E7] [PMID: 14694152]
[66]
Yang, Z.; Xiaohua, W.; Lei, J.; Ruoyun, T.; Mingxia, X.; Weichun, H.; Li, F.; Ping, W.; Junwei, Y. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells. Am. J. Physiol. Renal Physiol., 2010, 299(2), F336-F346.
[http://dx.doi.org/10.1152/ajprenal.00053.2010] [PMID: 20484295]
[67]
Han, H.J.; Lim, M.J.; Lee, Y.J.; Lee, J.H.; Yang, I.S.; Taub, M. Uric acid inhibits renal proximal tubule cell proliferation via at least two signaling pathways involving PKC, MAPK, cPLA2, and NF-kappaB. Am. J. Physiol. Renal Physiol., 2007, 292(1), F373-F381.
[http://dx.doi.org/10.1152/ajprenal.00104.2006] [PMID: 16985215]
[68]
Lin, S.L.; Kisseleva, T.; Brenner, D.A.; Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol., 2008, 173(6), 1617-1627.
[http://dx.doi.org/10.2353/ajpath.2008.080433] [PMID: 19008372]
[69]
Nakagawa, T.; Mazzali, M.; Kang, D.H.; Kanellis, J.; Watanabe, S.; Sanchez-Lozada, L.G.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Johnson, R.J. Hyperuricemia causes glomerular hypertrophy in the rat. Am. J. Nephrol., 2003, 23(1), 2-7.
[http://dx.doi.org/10.1159/000066303] [PMID: 12373074]
[70]
Sánchez-Lozada, L.G.; Soto, V.; Tapia, E.; Avila-Casado, C.; Sautin, Y.Y.; Nakagawa, T.; Franco, M.; Rodríguez-Iturbe, B.; Johnson, R.J. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am. J. Physiol. Renal Physiol., 2008, 295(4), F1134-F1141.
[http://dx.doi.org/10.1152/ajprenal.00104.2008] [PMID: 18701632]
[71]
Convento, M.S.; Pessoa, E.; Dalboni, M.A.; Borges, F.T.; Schor, N. Pro-inflammatory and oxidative effects of noncrystalline uric acid in human mesangial cells: contribution to hyperuricemic glomerular damage. Urol. Res., 2011, 39(1), 21-27.
[http://dx.doi.org/10.1007/s00240-010-0282-5] [PMID: 20524111]
[72]
Sautin, Y.Y.; Johnson, R.J. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 608-619.
[http://dx.doi.org/10.1080/15257770802138558] [PMID: 18600514]
[73]
Gersch, C.; Palii, S.P.; Imaram, W.; Kim, K.M.; Karumanchi, S.A.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Reactions of peroxynitrite with uric acid: formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleosides Nucleotides Nucleic Acids, 2009, 28(2), 118-149.
[http://dx.doi.org/10.1080/15257770902736400] [PMID: 19219741]
[74]
Xiao, J.; Fu, C.; Zhang, X.; Zhu, D.; Chen, W.; Lu, Y.; Ye, Z. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol. Immunol., 2015, 66(2), 310-318.
[http://dx.doi.org/10.1016/j.molimm.2015.03.250] [PMID: 25909495]
[75]
Albertoni, G.; Maquigussa, E.; Pessoa, E.; Barreto, J.A.; Borges, F.; Schor, N. Soluble uric acid increases intracellular calcium through an angiotensin II-dependent mechanism in immortalized human mesangial cells. Exp. Biol. Med. (Maywood), 2010, 235(7), 825-832.
[http://dx.doi.org/10.1258/ebm.2010.010007] [PMID: 20558836]
[76]
Zhuang, Y.; Feng, Q.; Ding, G.; Zhao, M.; Che, R.; Bai, M.; Bao, H.; Zhang, A.; Huang, S. Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation. Am. J. Physiol. Renal Physiol., 2014, 307(4), F396-F406.
[http://dx.doi.org/10.1152/ajprenal.00565.2013] [PMID: 24573389]
[77]
Li, S.; Zhao, F.; Cheng, S.; Wang, X.; Hao, Y. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrology (Carlton), 2013, 18(10), 682-689.
[http://dx.doi.org/10.1111/nep.12127] [PMID: 23841795]
[78]
Asakawa, S.; Shibata, S.; Morimoto, C.; Shiraishi, T.; Nakamura, T.; Tamura, Y.; Kumagai, T.; Hosoyamada, M.; Uchida, S. Podocyte Injury and Albuminuria in experimental hyperuricemic model rats. Oxid. Med. Cell. Longev., 2017.20173759153
[http://dx.doi.org/10.1155/2017/3759153] [PMID: 28337250]
[79]
Wu, X.; Wakamiya, M.; Vaishnav, S.; Geske, R.; Montgomery, C., Jr.; Jones, P.; Bradley, A.; Caskey, C.T. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc. Natl. Acad. Sci. USA, 1994, 91(2), 742-746.
[http://dx.doi.org/10.1073/pnas.91.2.742] [PMID: 8290593]
[80]
Hongyan, L.; Suling, W.; Weina, Z.; Yajie, Z.; Jie, R. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed. Pharmacother., 2016, 84, 1930-1936.
[http://dx.doi.org/10.1016/j.biopha.2016.11.009] [PMID: 27863839]
[81]
Li, J.M.; Zhang, X.; Wang, X.; Xie, Y.C.; Kong, L.D. Protective effects of cortex Fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol., 2011, 666(1-3), 196-204.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.021] [PMID: 21620826]
[82]
Wang, R.; Ma, C.H.; Zhou, F.; Kong, L.D. Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice. Chin. J. Nat. Med., 2016, 14(7), 499-507.
[http://dx.doi.org/10.1016/S1875-5364(16)30059-0] [PMID: 27507200]
[83]
Liu, N.; Xu, L.; Shi, Y.; Fang, L.; Gu, H.; Wang, H.; Ding, X.; Zhuang, S. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget, 2017, 8(20), 33807-33826.
[http://dx.doi.org/10.18632/oncotarget.16995] [PMID: 28442634]
[84]
Guo, Y.; Jiang, Q.; Gui, D.; Wang, N. Chinese herbal formulas Si-Wu-Tang and Er-Miao-San synergistically ameliorated hyperuricemia and renal impairment in rats induced by adenine and potassium oxonate. Cell. Physiol. Biochem., 2015, 37(4), 1491-1502.
[http://dx.doi.org/10.1159/000438517] [PMID: 26509423]
[85]
He, L.; Fan, Y.; Xiao, W.; Chen, T.; Wen, J.; Dong, Y.; Wang, Y.; Li, S.; Xue, R.; Zheng, L.; He, J.C.; Wang, N. Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy. Oncotarget, 2017, 8(67), 111295-111308.
[http://dx.doi.org/10.18632/oncotarget.22784] [PMID: 29340054]
[86]
Huijuan, W.; Xiaoxu, C.; Rui, S.; Xinghui, L.; Beibei, T.; Jianchun, M. Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats. Biomed. Pharmacother., 2017, 91, 358-365.
[http://dx.doi.org/10.1016/j.biopha.2017.04.031] [PMID: 28463799]
[87]
Pan, J.; Shi, M.; Li, L.; Liu, J.; Guo, F.; Feng, Y.; Ma, L.; Fu, P. Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed. Pharmacother., 2019, 109, 1802-1808.
[http://dx.doi.org/10.1016/j.biopha.2018.11.022] [PMID: 30551434]
[88]
Kim, Y.G.; Huang, X.R.; Suga, S.; Mazzali, M.; Tang, D.; Metz, C.; Bucala, R.; Kivlighn, S.; Johnson, R.J.; Lan, H.Y. Involvement of macrophage migration inhibitory factor (MIF) in experimental uric acid nephropathy. Mol. Med., 2000, 6(10), 837-848.
[http://dx.doi.org/10.1007/BF03401822] [PMID: 11126199]
[89]
Xu, W.; Huang, Y.; Li, L.; Sun, Z.; Shen, Y.; Xing, J.; Li, M.; Su, D.; Liang, X. Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism, 2016, 65(3), 73-83.
[http://dx.doi.org/10.1016/j.metabol.2015.10.026] [PMID: 26892518]
[90]
Long, C.L.; Qin, X.C.; Pan, Z.Y.; Chen, K.; Zhang, Y.F.; Cui, W.Y.; Liu, G.S.; Wang, H. Activation of ATP-sensitive potassium channels protects vascular endothelial cells from hypertension and renal injury induced by hyperuricemia. J. Hypertens., 2008, 26(12), 2326-2338.
[http://dx.doi.org/10.1097/HJH.0b013e328312c8c1] [PMID: 19008712]
[91]
Spencer, H.W.; Yarger, W.E.; Robinson, R.R. Alterations of renal function during dietary-induced hyperuricemia in the rat. Kidney Int., 1976, 9(6), 489-500.
[http://dx.doi.org/10.1038/ki.1976.63] [PMID: 940282]
[92]
Brown, E.A.; Kliger, A.S.; Hayslett, J.P.; Finkelstein, F.O. Renal function in rats with acute medullary injury. Nephron, 1980, 26(2), 64-68.
[http://dx.doi.org/10.1159/000181953] [PMID: 7412961]
[93]
Hou, S.X.; Zhu, W.J.; Pang, M.Q.; Jeffry, J.; Zhou, L.L. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem. Toxicol., 2014, 64, 57-64.
[http://dx.doi.org/10.1016/j.fct.2013.11.022] [PMID: 24287205]
[94]
Chen, L.; Lan, Z.; Zhou, Y.; Li, F.; Zhang, X.; Zhang, C.; Yang, Z.; Li, P. Astilbin attenuates hyperuricemia and ameliorates nephropathy in fructose-induced hyperuricemic rats. Planta Med., 2011, 77(16), 1769-1773.
[http://dx.doi.org/10.1055/s-0030-1271135] [PMID: 21614752]
[95]
Hu, Q.H.; Wang, C.; Li, J.M.; Zhang, D.M.; Kong, L.D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1080-F1091.
[http://dx.doi.org/10.1152/ajprenal.90767.2008] [PMID: 19605544]
[96]
Zhang, D.M.; Li, Y.C.; Xu, D.; Ding, X.Q.; Kong, L.D. Protection of curcumin against fructose-induced hyperuricaemia and renal endothelial dysfunction involves NO-mediated JAK-STAT signalling in rats. Food Chem., 2012, 134(4), 2184-2193.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.026] [PMID: 23442673]
[97]
Ma, C.H.; Kang, L.L.; Ren, H.M.; Zhang, D.M.; Kong, L.D. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats. J. Ethnopharmacol., 2015, 172, 108-117.
[http://dx.doi.org/10.1016/j.jep.2015.06.015] [PMID: 26117533]
[98]
Yang, Y.; Zhang, D.M.; Liu, J.H.; Hu, L.S.; Xue, Q.C.; Ding, X.Q.; Kong, L.D. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice. J. Ethnopharmacol., 2015, 169, 49-59.
[http://dx.doi.org/10.1016/j.jep.2015.04.011] [PMID: 25914040]
[99]
Feng, Y.; Sun, F.; Gao, Y.; Yang, J.; Wu, G.; Lin, S.; Hu, J. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury. Biochem. Biophys. Res. Commun., 2017, 489(3), 312-318.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.139] [PMID: 28552532]
[100]
Wu, H.; Zhou, M.; Lu, G.; Yang, Z.; Ji, H.; Hu, Q. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed. Pharmacother., 2017, 96, 727-735.
[http://dx.doi.org/10.1016/j.biopha.2017.10.051] [PMID: 29045935]
[101]
Meng, Z.; Yan, Y.; Tang, Z.; Guo, C.; Li, N.; Huang, W.; Ding, G.; Wang, Z.; Xiao, W.; Yang, Z. Anti-hyperuricemic and nephroprotective effects of rhein in hyperuricemic mice. Planta Med., 2015, 81(4), 279-285.
[http://dx.doi.org/10.1055/s-0034-1396241] [PMID: 25760382]
[102]
Meng, X.; Mao, Z.; Li, X.; Zhong, D.; Li, M.; Jia, Y.; Wei, J.; Yang, B.; Zhou, H. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget, 2017, 8(25), 40305-40317.
[http://dx.doi.org/10.18632/oncotarget.16928] [PMID: 28445133]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy