摘要
高尿酸血症定义为血清尿酸(sUA)升高,可能导致尿酸盐沉积在关节,腱,肾脏和其他组织中。 高尿酸血症是独立的危险因素,在肾脏疾病的病因和病情发展过程中很常见。 尿酸是内源性和饮食中嘌呤代谢的可溶终产物,可在肾小球中自由过滤,其中约90%的尿酸被重吸收。 大量研究表明,可溶性尿酸参与了肾小动脉病变,肾小管损伤,肾小管间质纤维化以及肾小球肥大和肾小球硬化的病理生理。 在这篇综述中,我们总结了与可溶性尿酸相关的肾脏疾病的机理研究。
关键词: 可溶性尿酸,高尿酸血症,肾脏损伤,尿酸(UA),肾小动脉病变,尿酸引起的肾脏损伤。
[1]
Richette, P.; Bardin, T. Gout. Lancet, 2010, 375(9711), 318-328.
[http://dx.doi.org/10.1016/S0140-6736(09)60883-7] [PMID: 19692116]
[http://dx.doi.org/10.1016/S0140-6736(09)60883-7] [PMID: 19692116]
[2]
Grassi, D.; Ferri, L.; Desideri, G.; Di Giosia, P.; Cheli, P.; Del Pinto, R.; Properzi, G.; Ferri, C. Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Curr. Pharm. Des., 2013, 19(13), 2432-2438.
[http://dx.doi.org/10.2174/1381612811319130011] [PMID: 23173592]
[http://dx.doi.org/10.2174/1381612811319130011] [PMID: 23173592]
[3]
Yoo, T.W.; Sung, K.C.; Shin, H.S.; Kim, B.J.; Kim, B.S.; Kang, J.H.; Lee, M.H.; Park, J.R.; Kim, H.; Rhee, E.J.; Lee, W.Y.; Kim, S.W.; Ryu, S.H.; Keum, D.G. Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ. J., 2005, 69(8), 928-933.
[http://dx.doi.org/10.1253/circj.69.928] [PMID: 16041161]
[http://dx.doi.org/10.1253/circj.69.928] [PMID: 16041161]
[4]
Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med., 2008, 359(17), 1811-1821.
[http://dx.doi.org/10.1056/NEJMra0800885] [PMID: 18946066]
[http://dx.doi.org/10.1056/NEJMra0800885] [PMID: 18946066]
[5]
Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003, 41(6), 1183-1190.
[http://dx.doi.org/10.1161/01.HYP.0000069700.62727.C5] [PMID: 12707287]
[http://dx.doi.org/10.1161/01.HYP.0000069700.62727.C5] [PMID: 12707287]
[6]
Johnson, R.J.; Kivlighn, S.D.; Kim, Y.G.; Suga, S.; Fogo, A.B. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am. J. Kidney Dis., 1999, 33(2), 225-234.
[http://dx.doi.org/10.1016/S0272-6386(99)70295-7] [PMID: 10023633]
[http://dx.doi.org/10.1016/S0272-6386(99)70295-7] [PMID: 10023633]
[7]
Gonick, H.C.; Rubini, M.E.; Gleason, I.O.; Sommers, S.C. The renal lesion in gout. Ann. Intern. Med., 1965, 62, 667-674.
[http://dx.doi.org/10.7326/0003-4819-62-4-667] [PMID: 14274831]
[http://dx.doi.org/10.7326/0003-4819-62-4-667] [PMID: 14274831]
[8]
Talbott, J.H.; Terplan, K.L. The kidney in gout. Medicine (Baltimore), 1960, 39, 405-467.
[http://dx.doi.org/10.1097/00005792-196012000-00001] [PMID: 13775026]
[http://dx.doi.org/10.1097/00005792-196012000-00001] [PMID: 13775026]
[9]
Beck, L.H. Requiem for gouty nephropathy. Kidney Int., 1986, 30(2), 280-287.
[http://dx.doi.org/10.1038/ki.1986.179] [PMID: 3761864]
[http://dx.doi.org/10.1038/ki.1986.179] [PMID: 3761864]
[10]
Wu, J.; Chen, X.; Xie, Y.; Yamanaka, N.; Shi, S.; Wu, D.; Liu, S.; Cai, G. Characteristics and risk factors of intrarenal arterial lesions in patients with IgA nephropathy. Nephrol. Dial. Transplant., 2005, 20(4), 719-727.
[http://dx.doi.org/10.1093/ndt/gfh716] [PMID: 15701667]
[http://dx.doi.org/10.1093/ndt/gfh716] [PMID: 15701667]
[11]
Kohagura, K.; Kochi, M.; Miyagi, T.; Kinjyo, T.; Maehara, Y.; Nagahama, K.; Sakima, A.; Iseki, K.; Ohya, Y. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens. Res., 2013, 36(1), 43-49.
[http://dx.doi.org/10.1038/hr.2012.135] [PMID: 22951520]
[http://dx.doi.org/10.1038/hr.2012.135] [PMID: 22951520]
[12]
Mazzali, M.; Kanellis, J.; Han, L.; Feng, L.; Xia, Y.Y.; Chen, Q.; Kang, D.H.; Gordon, K.L.; Watanabe, S.; Nakagawa, T.; Lan, H.Y.; Johnson, R.J. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal Physiol., 2002, 282(6), F991-F997.
[http://dx.doi.org/10.1152/ajprenal.00283.2001] [PMID: 11997315]
[http://dx.doi.org/10.1152/ajprenal.00283.2001] [PMID: 11997315]
[13]
Sánchez-Lozada, L.G.; Tapia, E.; Santamaría, J.; Avila-Casado, C.; Soto, V.; Nepomuceno, T.; Rodríguez-Iturbe, B.; Johnson, R.J.; Herrera-Acosta, J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int., 2005, 67(1), 237-247.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00074.x] [PMID: 15610247]
[http://dx.doi.org/10.1111/j.1523-1755.2005.00074.x] [PMID: 15610247]
[14]
Sánchez-Lozada, L.G.; Tapia, E.; Avila-Casado, C.; Soto, V.; Franco, M.; Santamaría, J.; Nakagawa, T.; Rodríguez-Iturbe, B.; Johnson, R.J.; Herrera-Acosta, J. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol. Renal Physiol., 2002, 283(5), F1105-F1110.
[http://dx.doi.org/10.1152/ajprenal.00170.2002] [PMID: 12372787]
[http://dx.doi.org/10.1152/ajprenal.00170.2002] [PMID: 12372787]
[15]
Hunt, B.J. The endothelium in atherogenesis. Lupus, 2000, 9(3), 189-193.
[http://dx.doi.org/10.1191/096120300678828244] [PMID: 10805486]
[http://dx.doi.org/10.1191/096120300678828244] [PMID: 10805486]
[16]
Gimbrone, M.A. Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am. J. Cardiol., 1995, 75(6), 67B-70B.
[http://dx.doi.org/10.1016/0002-9149(95)80016-L] [PMID: 7532351]
[http://dx.doi.org/10.1016/0002-9149(95)80016-L] [PMID: 7532351]
[17]
Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res., 2000, 87(10), 840-844.
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[18]
Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 2001, 38(5), 1101-1106.
[http://dx.doi.org/10.1161/hy1101.092839] [PMID: 11711505]
[http://dx.doi.org/10.1161/hy1101.092839] [PMID: 11711505]
[19]
Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia induces endothelial dysfunction. Kidney Int., 2005, 67(5), 1739-1742.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00273.x] [PMID: 15840020]
[http://dx.doi.org/10.1111/j.1523-1755.2005.00273.x] [PMID: 15840020]
[20]
Kang, D.H.; Park, S.K.; Lee, I.K.; Johnson, R.J. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J. Am. Soc. Nephrol., 2005, 16(12), 3553-3562.
[http://dx.doi.org/10.1681/ASN.2005050572] [PMID: 16251237]
[http://dx.doi.org/10.1681/ASN.2005050572] [PMID: 16251237]
[21]
Zhao, Y.; Vanhoutte, P.M.; Leung, S.W. Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci., 2015, 129(2), 83-94.
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[22]
Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr. Pharm. Des., 2014, 20(22), 3548-3553.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[23]
Zharikov, S.; Krotova, K.; Hu, H.; Baylis, C.; Johnson, R.J.; Block, E.R.; Patel, J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol., 2008, 295(5), C1183-C1190.
[http://dx.doi.org/10.1152/ajpcell.00075.2008] [PMID: 18784379]
[http://dx.doi.org/10.1152/ajpcell.00075.2008] [PMID: 18784379]
[24]
Park, J.H.; Jin, Y.M.; Hwang, S.; Cho, D.H.; Kang, D.H.; Jo, I. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide, 2013, 32, 36-42.
[http://dx.doi.org/10.1016/j.niox.2013.04.003] [PMID: 23624269]
[http://dx.doi.org/10.1016/j.niox.2013.04.003] [PMID: 23624269]
[25]
Gersch, C.; Palii, S.P.; Kim, K.M.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids, 2008, 27(8), 967-978.
[http://dx.doi.org/10.1080/15257770802257952] [PMID: 18696365]
[http://dx.doi.org/10.1080/15257770802257952] [PMID: 18696365]
[26]
Hong, Q.; Qi, K.; Feng, Z.; Huang, Z.; Cui, S.; Wang, L.; Fu, B.; Ding, R.; Yang, J.; Chen, X.; Wu, D. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium, 2012, 51(5), 402-410.
[http://dx.doi.org/10.1016/j.ceca.2012.01.003] [PMID: 22361139]
[http://dx.doi.org/10.1016/j.ceca.2012.01.003] [PMID: 22361139]
[27]
Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cristóbal-García, M.; García-Arroyo, F.; Soto, V.; Cruz-Robles, D.; Nakagawa, T.; Yu, M.A.; Kang, D.H.; Johnson, R.J. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron, Exp. Nephrol., 2012, 121(3-4), e71-e78.
[http://dx.doi.org/10.1159/000345509] [PMID: 23235493]
[http://dx.doi.org/10.1159/000345509] [PMID: 23235493]
[28]
Yu, M.A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.H. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens., 2010, 28(6), 1234-1242.
[http://dx.doi.org/10.1097/HJH.0b013e328337da1d] [PMID: 20486275]
[http://dx.doi.org/10.1097/HJH.0b013e328337da1d] [PMID: 20486275]
[29]
Kang, D.H.; Han, L.; Ouyang, X.; Kahn, A.M.; Kanellis, J.; Li, P.; Feng, L.; Nakagawa, T.; Watanabe, S.; Hosoyamada, M.; Endou, H.; Lipkowitz, M.; Abramson, R.; Mu, W.; Johnson, R.J. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am. J. Nephrol., 2005, 25(5), 425-433.
[http://dx.doi.org/10.1159/000087713] [PMID: 16113518]
[http://dx.doi.org/10.1159/000087713] [PMID: 16113518]
[30]
Kırça, M.; Oğuz, N.; Çetin, A.; Uzuner, F.; Yeşilkaya, A. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J. Recept. Signal Transduct. Res., 2017, 37(2), 167-173.
[http://dx.doi.org/10.1080/10799893.2016.1203941] [PMID: 27400779]
[http://dx.doi.org/10.1080/10799893.2016.1203941] [PMID: 27400779]
[31]
Kanellis, J.; Watanabe, S.; Li, J.H.; Kang, D.H.; Li, P.; Nakagawa, T.; Wamsley, A.; Sheikh-Hamad, D.; Lan, H.Y.; Feng, L.; Johnson, R.J. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension, 2003, 41(6), 1287-1293.
[http://dx.doi.org/10.1161/01.HYP.0000072820.07472.3B] [PMID: 12743010]
[http://dx.doi.org/10.1161/01.HYP.0000072820.07472.3B] [PMID: 12743010]
[32]
Young, W.; Mahboubi, K.; Haider, A.; Li, I.; Ferreri, N.R. Cyclooxygenase-2 is required for tumor necrosis factor-alpha- and angiotensin II-mediated proliferation of vascular smooth muscle cells. Circ. Res., 2000, 86(8), 906-914.
[http://dx.doi.org/10.1161/01.RES.86.8.906] [PMID: 10785514]
[http://dx.doi.org/10.1161/01.RES.86.8.906] [PMID: 10785514]
[33]
Corry, D.B.; Eslami, P.; Yamamoto, K.; Nyby, M.D.; Makino, H.; Tuck, M.L. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J. Hypertens., 2008, 26(2), 269-275.
[http://dx.doi.org/10.1097/HJH.0b013e3282f240bf] [PMID: 18192841]
[http://dx.doi.org/10.1097/HJH.0b013e3282f240bf] [PMID: 18192841]
[34]
Rao, G.N.; Corson, M.A.; Berk, B.C. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J. Biol. Chem., 1991, 266(13), 8604-8608.
[PMID: 2022672]
[PMID: 2022672]
[35]
Tang, L.; Xu, Y.; Wei, Y.; He, X. Uric acid induces the expression of TNFα via the ROS-MAPK-NFκB signaling pathway in rat vascular smooth muscle cells. Mol. Med. Rep., 2017, 16(5), 6928-6933.
[http://dx.doi.org/10.3892/mmr.2017.7405] [PMID: 28901421]
[http://dx.doi.org/10.3892/mmr.2017.7405] [PMID: 28901421]
[36]
Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol., 2013, 9(1), 13-23.
[http://dx.doi.org/10.1038/nrrheum.2012.143] [PMID: 22945591]
[http://dx.doi.org/10.1038/nrrheum.2012.143] [PMID: 22945591]
[37]
Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, 16(2), 400.
[http://dx.doi.org/10.1007/s11926-013-0400-9] [PMID: 24357445]
[http://dx.doi.org/10.1007/s11926-013-0400-9] [PMID: 24357445]
[38]
Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; Stahl, E.; Weiner, D.E.; Chertow, G.M. Hyperuricemia, acute and chronic kidney disease, hypertension, and car-diovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am. J. Kidney Dis., 2018, 71(6), 851-865.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[39]
Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271.
[http://dx.doi.org/10.1172/JCI28075] [PMID: 16886064]
[http://dx.doi.org/10.1172/JCI28075] [PMID: 16886064]
[40]
Isaka, Y.; Takabatake, Y.; Takahashi, A.; Saitoh, T.; Yoshimori, T. Hyperuricemia-induced inflammasome and kidney diseases. Nephrol. Dial. Transplant., 2016, 31(6), 890-896.
[http://dx.doi.org/10.1093/ndt/gfv024] [PMID: 25829326]
[http://dx.doi.org/10.1093/ndt/gfv024] [PMID: 25829326]
[41]
Kang, D.H.; Nakagawa, T.; Feng, L.; Watanabe, S.; Han, L.; Mazzali, M.; Truong, L.; Harris, R.; Johnson, R.J. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol., 2002, 13(12), 2888-2897.
[http://dx.doi.org/10.1097/01.ASN.0000034910.58454.FD] [PMID: 12444207]
[http://dx.doi.org/10.1097/01.ASN.0000034910.58454.FD] [PMID: 12444207]
[42]
Chen, L.; Lan, Z. Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-κB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway. Food Funct., 2017, 8(5), 1785-1792.
[http://dx.doi.org/10.1039/C6FO01561A] [PMID: 28428988]
[http://dx.doi.org/10.1039/C6FO01561A] [PMID: 28428988]
[43]
Wang, M.; Zhao, J.; Zhang, N.; Chen, J. Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice. Biomed. Pharmacother., 2016, 83, 975-988.
[http://dx.doi.org/10.1016/j.biopha.2016.07.025] [PMID: 27522260]
[http://dx.doi.org/10.1016/j.biopha.2016.07.025] [PMID: 27522260]
[44]
Wang, M.X.; Liu, Y.L.; Yang, Y.; Zhang, D.M.; Kong, L.D. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharmacol., 2015, 747, 59-70.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.035] [PMID: 25499818]
[http://dx.doi.org/10.1016/j.ejphar.2014.11.035] [PMID: 25499818]
[45]
Wu, Y.; He, F.; Li, Y.; Wang, H.; Shi, L.; Wan, Q.; Ou, J.; Zhang, X.; Huang, D.; Xu, L.; Lin, P.; Yang, G.; He, L.; Gao, J. Effects of shizhifang on NLRP3 inflammasome activation and renal tubular injury in hyperuricemic rats. Evid. Based Complement. Alternat. Med., 2017.20177674240
[http://dx.doi.org/10.1155/2017/7674240] [PMID: 29358971]
[http://dx.doi.org/10.1155/2017/7674240] [PMID: 29358971]
[46]
Liu, N.; Wang, L.; Yang, T.; Xiong, C.; Xu, L.; Shi, Y.; Bao, W.; Chin, Y.E.; Cheng, S.B.; Yan, H.; Qiu, A.; Zhuang, S. EGF receptor inhibition alleviates hyperuricemic nephropathy. J. Am. Soc. Nephrol., 2015, 26(11), 2716-2729.
[http://dx.doi.org/10.1681/ASN.2014080793] [PMID: 25788532]
[http://dx.doi.org/10.1681/ASN.2014080793] [PMID: 25788532]
[47]
Hediger, M.A.; Johnson, R.J.; Miyazaki, H.; Endou, H. Molecular physiology of urate transport. Physiology (Bethesda), 2005, 20, 125-133.
[http://dx.doi.org/10.1152/physiol.00039.2004] [PMID: 15772301]
[http://dx.doi.org/10.1152/physiol.00039.2004] [PMID: 15772301]
[48]
Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature, 2002, 417(6887), 447-452.
[http://dx.doi.org/10.1038/nature742] [PMID: 12024214]
[http://dx.doi.org/10.1038/nature742] [PMID: 12024214]
[49]
Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; Palmer, C.N.; Knott, S.A.; Kolcic, I.; Polasek, O.; Graessler, J.; Wilson, J.F.; Marinaki, A.; Riches, P.L.; Shu, X.; Janicijevic, B.; Smolej-Narancic, N.; Gorgoni, B.; Morgan, J.; Campbell, S.; Biloglav, Z.; Barac-Lauc, L.; Pericic, M.; Klaric, I.M.; Zgaga, L.; Skaric-Juric, T.; Wild, S.H.; Richardson, W.A.; Hohenstein, P.; Kimber, C.H.; Tenesa, A.; Donnelly, L.A.; Fairbanks, L.D.; Aringer, M.; McKeigue, P.M.; Ralston, S.H.; Morris, A.D.; Rudan, P.; Hastie, N.D.; Campbell, H.; Wright, A.F. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet., 2008, 40(4), 437-442.
[http://dx.doi.org/10.1038/ng.106] [PMID: 18327257]
[http://dx.doi.org/10.1038/ng.106] [PMID: 18327257]
[50]
Anzai, N.; Ichida, K.; Jutabha, P.; Kimura, T.; Babu, E.; Jin, C.J.; Srivastava, S.; Kitamura, K.; Hisatome, I.; Endou, H.; Sakurai, H. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem., 2008, 283(40), 26834-26838.
[http://dx.doi.org/10.1074/jbc.C800156200] [PMID: 18701466]
[http://dx.doi.org/10.1074/jbc.C800156200] [PMID: 18701466]
[51]
Hagos, Y.; Stein, D.; Ugele, B.; Burckhardt, G.; Bahn, A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol., 2007, 18(2), 430-439.
[http://dx.doi.org/10.1681/ASN.2006040415] [PMID: 17229912]
[http://dx.doi.org/10.1681/ASN.2006040415] [PMID: 17229912]
[52]
Van Aubel, R.A.; Smeets, P.H.; van den Heuvel, J.J.; Russel, F.G. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol., 2005, 288(2), F327-F333.
[http://dx.doi.org/10.1152/ajprenal.00133.2004] [PMID: 15454390]
[http://dx.doi.org/10.1152/ajprenal.00133.2004] [PMID: 15454390]
[53]
Xu, L.; Shi, Y.; Zhuang, S.; Liu, N. Recent advances on uric acid transporters. Oncotarget, 2017, 8(59), 100852-100862.
[http://dx.doi.org/10.18632/oncotarget.20135] [PMID: 29246027]
[http://dx.doi.org/10.18632/oncotarget.20135] [PMID: 29246027]
[54]
Zhou, Y.; Fang, L.; Jiang, L.; Wen, P.; Cao, H.; He, W.; Dai, C.; Yang, J. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS One, 2012, 7(6), e39738.
[http://dx.doi.org/10.1371/journal.pone.0039738] [PMID: 22761883]
[http://dx.doi.org/10.1371/journal.pone.0039738] [PMID: 22761883]
[55]
Xiao, J.; Zhang, X.L.; Fu, C.; Han, R.; Chen, W.; Lu, Y.; Ye, Z. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int. J. Mol. Med., 2015, 35(5), 1347-1354.
[http://dx.doi.org/10.3892/ijmm.2015.2148] [PMID: 25813103]
[http://dx.doi.org/10.3892/ijmm.2015.2148] [PMID: 25813103]
[56]
Imig, J.D.; Ryan, M.J. Immune and inflammatory role in renal disease. Compr. Physiol., 2013, 3(2), 957-976.
[http://dx.doi.org/10.1002/cphy.c120028] [PMID: 23720336]
[http://dx.doi.org/10.1002/cphy.c120028] [PMID: 23720336]
[57]
Borges, F.T.; Dalboni, M.A.; Michelacci, Y.M.; Schor, N. Noncrystalline uric acid inhibits proteoglycan and glycosaminoglycan synthesis in distal tubular epithelial cells (MDCK). Braz. J. Med. Biol. Res., 2010, 43(10), 957-963.
[http://dx.doi.org/10.1590/S0100-879X2010007500095] [PMID: 20878016]
[http://dx.doi.org/10.1590/S0100-879X2010007500095] [PMID: 20878016]
[58]
Wang, Y.; Harris, D.C. Macrophages in renal disease. J. Am. Soc. Nephrol., 2011, 22(1), 21-27.
[http://dx.doi.org/10.1681/ASN.2010030269] [PMID: 21209251]
[http://dx.doi.org/10.1681/ASN.2010030269] [PMID: 21209251]
[59]
Kim, S.M.; Lee, S.H.; Kim, Y.G.; Kim, S.Y.; Seo, J.W.; Choi, Y.W.; Kim, D.J.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Won, K.Y.; Moon, J.Y. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2015, 308(9), F993-F1003.
[http://dx.doi.org/10.1152/ajprenal.00637.2014] [PMID: 25651569]
[http://dx.doi.org/10.1152/ajprenal.00637.2014] [PMID: 25651569]
[60]
Ryu, E.S.; Kim, M.J.; Shin, H.S.; Jang, Y.H.; Choi, H.S.; Jo, I.; Johnson, R.J.; Kang, D.H. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 304(5), F471-F480.
[http://dx.doi.org/10.1152/ajprenal.00560.2012] [PMID: 23283992]
[http://dx.doi.org/10.1152/ajprenal.00560.2012] [PMID: 23283992]
[61]
Grgic, I.; Duffield, J.S.; Humphreys, B.D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol., 2012, 27(2), 183-193.
[http://dx.doi.org/10.1007/s00467-011-1772-6] [PMID: 21311912]
[http://dx.doi.org/10.1007/s00467-011-1772-6] [PMID: 21311912]
[62]
Galichon, P.; Hertig, A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair, 2011, 4, 11.
[http://dx.doi.org/10.1186/1755-1536-4-11] [PMID: 21470408]
[http://dx.doi.org/10.1186/1755-1536-4-11] [PMID: 21470408]
[63]
Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol., 2010, 21(2), 212-222.
[http://dx.doi.org/10.1681/ASN.2008121226] [PMID: 20019167]
[http://dx.doi.org/10.1681/ASN.2008121226] [PMID: 20019167]
[64]
Zeisberg, M.; Duffield, J.S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol., 2010, 21(8), 1247-1253.
[http://dx.doi.org/10.1681/ASN.2010060616] [PMID: 20651165]
[http://dx.doi.org/10.1681/ASN.2010060616] [PMID: 20651165]
[65]
Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol., 2004, 15(1), 1-12.
[http://dx.doi.org/10.1097/01.ASN.0000106015.29070.E7] [PMID: 14694152]
[http://dx.doi.org/10.1097/01.ASN.0000106015.29070.E7] [PMID: 14694152]
[66]
Yang, Z.; Xiaohua, W.; Lei, J.; Ruoyun, T.; Mingxia, X.; Weichun, H.; Li, F.; Ping, W.; Junwei, Y. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells. Am. J. Physiol. Renal Physiol., 2010, 299(2), F336-F346.
[http://dx.doi.org/10.1152/ajprenal.00053.2010] [PMID: 20484295]
[http://dx.doi.org/10.1152/ajprenal.00053.2010] [PMID: 20484295]
[67]
Han, H.J.; Lim, M.J.; Lee, Y.J.; Lee, J.H.; Yang, I.S.; Taub, M. Uric acid inhibits renal proximal tubule cell proliferation via at least two signaling pathways involving PKC, MAPK, cPLA2, and NF-kappaB. Am. J. Physiol. Renal Physiol., 2007, 292(1), F373-F381.
[http://dx.doi.org/10.1152/ajprenal.00104.2006] [PMID: 16985215]
[http://dx.doi.org/10.1152/ajprenal.00104.2006] [PMID: 16985215]
[68]
Lin, S.L.; Kisseleva, T.; Brenner, D.A.; Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol., 2008, 173(6), 1617-1627.
[http://dx.doi.org/10.2353/ajpath.2008.080433] [PMID: 19008372]
[http://dx.doi.org/10.2353/ajpath.2008.080433] [PMID: 19008372]
[69]
Nakagawa, T.; Mazzali, M.; Kang, D.H.; Kanellis, J.; Watanabe, S.; Sanchez-Lozada, L.G.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Johnson, R.J. Hyperuricemia causes glomerular hypertrophy in the rat. Am. J. Nephrol., 2003, 23(1), 2-7.
[http://dx.doi.org/10.1159/000066303] [PMID: 12373074]
[http://dx.doi.org/10.1159/000066303] [PMID: 12373074]
[70]
Sánchez-Lozada, L.G.; Soto, V.; Tapia, E.; Avila-Casado, C.; Sautin, Y.Y.; Nakagawa, T.; Franco, M.; Rodríguez-Iturbe, B.; Johnson, R.J. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am. J. Physiol. Renal Physiol., 2008, 295(4), F1134-F1141.
[http://dx.doi.org/10.1152/ajprenal.00104.2008] [PMID: 18701632]
[http://dx.doi.org/10.1152/ajprenal.00104.2008] [PMID: 18701632]
[71]
Convento, M.S.; Pessoa, E.; Dalboni, M.A.; Borges, F.T.; Schor, N. Pro-inflammatory and oxidative effects of noncrystalline uric acid in human mesangial cells: contribution to hyperuricemic glomerular damage. Urol. Res., 2011, 39(1), 21-27.
[http://dx.doi.org/10.1007/s00240-010-0282-5] [PMID: 20524111]
[http://dx.doi.org/10.1007/s00240-010-0282-5] [PMID: 20524111]
[72]
Sautin, Y.Y.; Johnson, R.J. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 608-619.
[http://dx.doi.org/10.1080/15257770802138558] [PMID: 18600514]
[http://dx.doi.org/10.1080/15257770802138558] [PMID: 18600514]
[73]
Gersch, C.; Palii, S.P.; Imaram, W.; Kim, K.M.; Karumanchi, S.A.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Reactions of peroxynitrite with uric acid: formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleosides Nucleotides Nucleic Acids, 2009, 28(2), 118-149.
[http://dx.doi.org/10.1080/15257770902736400] [PMID: 19219741]
[http://dx.doi.org/10.1080/15257770902736400] [PMID: 19219741]
[74]
Xiao, J.; Fu, C.; Zhang, X.; Zhu, D.; Chen, W.; Lu, Y.; Ye, Z. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol. Immunol., 2015, 66(2), 310-318.
[http://dx.doi.org/10.1016/j.molimm.2015.03.250] [PMID: 25909495]
[http://dx.doi.org/10.1016/j.molimm.2015.03.250] [PMID: 25909495]
[75]
Albertoni, G.; Maquigussa, E.; Pessoa, E.; Barreto, J.A.; Borges, F.; Schor, N. Soluble uric acid increases intracellular calcium through an angiotensin II-dependent mechanism in immortalized human mesangial cells. Exp. Biol. Med. (Maywood), 2010, 235(7), 825-832.
[http://dx.doi.org/10.1258/ebm.2010.010007] [PMID: 20558836]
[http://dx.doi.org/10.1258/ebm.2010.010007] [PMID: 20558836]
[76]
Zhuang, Y.; Feng, Q.; Ding, G.; Zhao, M.; Che, R.; Bai, M.; Bao, H.; Zhang, A.; Huang, S. Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation. Am. J. Physiol. Renal Physiol., 2014, 307(4), F396-F406.
[http://dx.doi.org/10.1152/ajprenal.00565.2013] [PMID: 24573389]
[http://dx.doi.org/10.1152/ajprenal.00565.2013] [PMID: 24573389]
[77]
Li, S.; Zhao, F.; Cheng, S.; Wang, X.; Hao, Y. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrology (Carlton), 2013, 18(10), 682-689.
[http://dx.doi.org/10.1111/nep.12127] [PMID: 23841795]
[http://dx.doi.org/10.1111/nep.12127] [PMID: 23841795]
[78]
Asakawa, S.; Shibata, S.; Morimoto, C.; Shiraishi, T.; Nakamura, T.; Tamura, Y.; Kumagai, T.; Hosoyamada, M.; Uchida, S. Podocyte Injury and Albuminuria in experimental hyperuricemic model rats. Oxid. Med. Cell. Longev., 2017.20173759153
[http://dx.doi.org/10.1155/2017/3759153] [PMID: 28337250]
[http://dx.doi.org/10.1155/2017/3759153] [PMID: 28337250]
[79]
Wu, X.; Wakamiya, M.; Vaishnav, S.; Geske, R.; Montgomery, C., Jr.; Jones, P.; Bradley, A.; Caskey, C.T. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc. Natl. Acad. Sci. USA, 1994, 91(2), 742-746.
[http://dx.doi.org/10.1073/pnas.91.2.742] [PMID: 8290593]
[http://dx.doi.org/10.1073/pnas.91.2.742] [PMID: 8290593]
[80]
Hongyan, L.; Suling, W.; Weina, Z.; Yajie, Z.; Jie, R. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed. Pharmacother., 2016, 84, 1930-1936.
[http://dx.doi.org/10.1016/j.biopha.2016.11.009] [PMID: 27863839]
[http://dx.doi.org/10.1016/j.biopha.2016.11.009] [PMID: 27863839]
[81]
Li, J.M.; Zhang, X.; Wang, X.; Xie, Y.C.; Kong, L.D. Protective effects of cortex Fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol., 2011, 666(1-3), 196-204.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.021] [PMID: 21620826]
[http://dx.doi.org/10.1016/j.ejphar.2011.05.021] [PMID: 21620826]
[82]
Wang, R.; Ma, C.H.; Zhou, F.; Kong, L.D. Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice. Chin. J. Nat. Med., 2016, 14(7), 499-507.
[http://dx.doi.org/10.1016/S1875-5364(16)30059-0] [PMID: 27507200]
[http://dx.doi.org/10.1016/S1875-5364(16)30059-0] [PMID: 27507200]
[83]
Liu, N.; Xu, L.; Shi, Y.; Fang, L.; Gu, H.; Wang, H.; Ding, X.; Zhuang, S. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget, 2017, 8(20), 33807-33826.
[http://dx.doi.org/10.18632/oncotarget.16995] [PMID: 28442634]
[http://dx.doi.org/10.18632/oncotarget.16995] [PMID: 28442634]
[84]
Guo, Y.; Jiang, Q.; Gui, D.; Wang, N. Chinese herbal formulas Si-Wu-Tang and Er-Miao-San synergistically ameliorated hyperuricemia and renal impairment in rats induced by adenine and potassium oxonate. Cell. Physiol. Biochem., 2015, 37(4), 1491-1502.
[http://dx.doi.org/10.1159/000438517] [PMID: 26509423]
[http://dx.doi.org/10.1159/000438517] [PMID: 26509423]
[85]
He, L.; Fan, Y.; Xiao, W.; Chen, T.; Wen, J.; Dong, Y.; Wang, Y.; Li, S.; Xue, R.; Zheng, L.; He, J.C.; Wang, N. Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy. Oncotarget, 2017, 8(67), 111295-111308.
[http://dx.doi.org/10.18632/oncotarget.22784] [PMID: 29340054]
[http://dx.doi.org/10.18632/oncotarget.22784] [PMID: 29340054]
[86]
Huijuan, W.; Xiaoxu, C.; Rui, S.; Xinghui, L.; Beibei, T.; Jianchun, M. Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats. Biomed. Pharmacother., 2017, 91, 358-365.
[http://dx.doi.org/10.1016/j.biopha.2017.04.031] [PMID: 28463799]
[http://dx.doi.org/10.1016/j.biopha.2017.04.031] [PMID: 28463799]
[87]
Pan, J.; Shi, M.; Li, L.; Liu, J.; Guo, F.; Feng, Y.; Ma, L.; Fu, P. Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed. Pharmacother., 2019, 109, 1802-1808.
[http://dx.doi.org/10.1016/j.biopha.2018.11.022] [PMID: 30551434]
[http://dx.doi.org/10.1016/j.biopha.2018.11.022] [PMID: 30551434]
[88]
Kim, Y.G.; Huang, X.R.; Suga, S.; Mazzali, M.; Tang, D.; Metz, C.; Bucala, R.; Kivlighn, S.; Johnson, R.J.; Lan, H.Y. Involvement of macrophage migration inhibitory factor (MIF) in experimental uric acid nephropathy. Mol. Med., 2000, 6(10), 837-848.
[http://dx.doi.org/10.1007/BF03401822] [PMID: 11126199]
[http://dx.doi.org/10.1007/BF03401822] [PMID: 11126199]
[89]
Xu, W.; Huang, Y.; Li, L.; Sun, Z.; Shen, Y.; Xing, J.; Li, M.; Su, D.; Liang, X. Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism, 2016, 65(3), 73-83.
[http://dx.doi.org/10.1016/j.metabol.2015.10.026] [PMID: 26892518]
[http://dx.doi.org/10.1016/j.metabol.2015.10.026] [PMID: 26892518]
[90]
Long, C.L.; Qin, X.C.; Pan, Z.Y.; Chen, K.; Zhang, Y.F.; Cui, W.Y.; Liu, G.S.; Wang, H. Activation of ATP-sensitive potassium channels protects vascular endothelial cells from hypertension and renal injury induced by hyperuricemia. J. Hypertens., 2008, 26(12), 2326-2338.
[http://dx.doi.org/10.1097/HJH.0b013e328312c8c1] [PMID: 19008712]
[http://dx.doi.org/10.1097/HJH.0b013e328312c8c1] [PMID: 19008712]
[91]
Spencer, H.W.; Yarger, W.E.; Robinson, R.R. Alterations of renal function during dietary-induced hyperuricemia in the rat. Kidney Int., 1976, 9(6), 489-500.
[http://dx.doi.org/10.1038/ki.1976.63] [PMID: 940282]
[http://dx.doi.org/10.1038/ki.1976.63] [PMID: 940282]
[92]
Brown, E.A.; Kliger, A.S.; Hayslett, J.P.; Finkelstein, F.O. Renal function in rats with acute medullary injury. Nephron, 1980, 26(2), 64-68.
[http://dx.doi.org/10.1159/000181953] [PMID: 7412961]
[http://dx.doi.org/10.1159/000181953] [PMID: 7412961]
[93]
Hou, S.X.; Zhu, W.J.; Pang, M.Q.; Jeffry, J.; Zhou, L.L. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem. Toxicol., 2014, 64, 57-64.
[http://dx.doi.org/10.1016/j.fct.2013.11.022] [PMID: 24287205]
[http://dx.doi.org/10.1016/j.fct.2013.11.022] [PMID: 24287205]
[94]
Chen, L.; Lan, Z.; Zhou, Y.; Li, F.; Zhang, X.; Zhang, C.; Yang, Z.; Li, P. Astilbin attenuates hyperuricemia and ameliorates nephropathy in fructose-induced hyperuricemic rats. Planta Med., 2011, 77(16), 1769-1773.
[http://dx.doi.org/10.1055/s-0030-1271135] [PMID: 21614752]
[http://dx.doi.org/10.1055/s-0030-1271135] [PMID: 21614752]
[95]
Hu, Q.H.; Wang, C.; Li, J.M.; Zhang, D.M.; Kong, L.D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1080-F1091.
[http://dx.doi.org/10.1152/ajprenal.90767.2008] [PMID: 19605544]
[http://dx.doi.org/10.1152/ajprenal.90767.2008] [PMID: 19605544]
[96]
Zhang, D.M.; Li, Y.C.; Xu, D.; Ding, X.Q.; Kong, L.D. Protection of curcumin against fructose-induced hyperuricaemia and renal endothelial dysfunction involves NO-mediated JAK-STAT signalling in rats. Food Chem., 2012, 134(4), 2184-2193.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.026] [PMID: 23442673]
[http://dx.doi.org/10.1016/j.foodchem.2012.04.026] [PMID: 23442673]
[97]
Ma, C.H.; Kang, L.L.; Ren, H.M.; Zhang, D.M.; Kong, L.D. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats. J. Ethnopharmacol., 2015, 172, 108-117.
[http://dx.doi.org/10.1016/j.jep.2015.06.015] [PMID: 26117533]
[http://dx.doi.org/10.1016/j.jep.2015.06.015] [PMID: 26117533]
[98]
Yang, Y.; Zhang, D.M.; Liu, J.H.; Hu, L.S.; Xue, Q.C.; Ding, X.Q.; Kong, L.D. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice. J. Ethnopharmacol., 2015, 169, 49-59.
[http://dx.doi.org/10.1016/j.jep.2015.04.011] [PMID: 25914040]
[http://dx.doi.org/10.1016/j.jep.2015.04.011] [PMID: 25914040]
[99]
Feng, Y.; Sun, F.; Gao, Y.; Yang, J.; Wu, G.; Lin, S.; Hu, J. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury. Biochem. Biophys. Res. Commun., 2017, 489(3), 312-318.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.139] [PMID: 28552532]
[http://dx.doi.org/10.1016/j.bbrc.2017.05.139] [PMID: 28552532]
[100]
Wu, H.; Zhou, M.; Lu, G.; Yang, Z.; Ji, H.; Hu, Q. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed. Pharmacother., 2017, 96, 727-735.
[http://dx.doi.org/10.1016/j.biopha.2017.10.051] [PMID: 29045935]
[http://dx.doi.org/10.1016/j.biopha.2017.10.051] [PMID: 29045935]
[101]
Meng, Z.; Yan, Y.; Tang, Z.; Guo, C.; Li, N.; Huang, W.; Ding, G.; Wang, Z.; Xiao, W.; Yang, Z. Anti-hyperuricemic and nephroprotective effects of rhein in hyperuricemic mice. Planta Med., 2015, 81(4), 279-285.
[http://dx.doi.org/10.1055/s-0034-1396241] [PMID: 25760382]
[http://dx.doi.org/10.1055/s-0034-1396241] [PMID: 25760382]
[102]
Meng, X.; Mao, Z.; Li, X.; Zhong, D.; Li, M.; Jia, Y.; Wei, J.; Yang, B.; Zhou, H. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget, 2017, 8(25), 40305-40317.
[http://dx.doi.org/10.18632/oncotarget.16928] [PMID: 28445133]
[http://dx.doi.org/10.18632/oncotarget.16928] [PMID: 28445133]