Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Serial Quantification of Urinary Protein Biomarkers to Predict Drug-induced Acute Kidney Injury

Author(s): Yi Da, K. Akalya, Tanusya Murali, Anantharaman Vathsala, Chuen-Seng Tan, Sanmay Low, Hui-Ning Lim, Boon-Wee Teo, Titus Lau, Lizhen Ong and Horng-Ruey Chua*

Volume 20, Issue 8, 2019

Page: [656 - 664] Pages: 9

DOI: 10.2174/1389200220666190711114504

Price: $65

Abstract

Background: Drug-induced Acute Kidney Injury (AKI) develops in 10-15% of patients who receive nephrotoxic medications. Urinary biomarkers of renal tubular dysfunction may detect nephrotoxicity early and predict AKI.

Methods: We prospectively studied patients who received aminoglycosides, vancomycin, amphotericin, or calcineurin inhibitors, and collected their serial urine while on therapy. Patients who developed drug-induced AKI (fulfilling KDIGO criteria) were matched with non-AKI controls in a 1:2 ratio. Their urine samples were batch-analyzed at time-intervals leading up to AKI onset; the latter benchmarked against the final day of nephrotoxic therapy in non- AKI controls. Biomarkers examined include clusterin, beta-2-microglobulin, KIM1, MCP1, cystatin-C, trefoil-factor- 3, NGAL, interleukin-18, GST-Pi, calbindin, and osteopontin; biomarkers were normalized with corresponding urine creatinine.

Results: Nine of 84 (11%) patients developed drug-induced AKI. Biomarkers from 7 AKI cases with pre-AKI samples were compared with those from 14 non-AKI controls. Corresponding mean ages were 55(±17) and 52(±16) years; baseline eGFR were 99(±21) and 101(±24) mL/min/1.73m2 (all p=NS). Most biomarker levels peaked before the onset of AKI. Median levels of 5 biomarkers were significantly higher in AKI cases than controls at 1-3 days before AKI onset (all µg/mmol): clusterin [58(8-411) versus 7(3-17)], beta-2-microglobulin [1632(913-3823) versus 253(61-791)], KIM1 [0.16(0.13-0.76) versus 0.07(0.05-0.15)], MCP1 [0.40(0.16-1.90) versus 0.07(0.04-0.17)], and cystatin-C [33(27-2990) versus 11(7-19)], all p<0.05; their AUROC for AKI prediction were >0.80 (confidence intervals >0.50), with average accuracy highest for clusterin (86%), followed by beta-2-microglobulin, cystatin-C, MCP1, and KIM1 (57%) after cross-validation.

Conclusion: Serial surveillance of these biomarkers could improve the lead time for nephrotoxicity detection by days.

Keywords: Antimicrobials, beta-2-microglobulin, biomarkers, calcineurin inhibitors, clusterin, drug-induced acute kidney injury, nephrotoxicity.

Graphical Abstract

[1]
Ong, L.Z.; Tambyah, P.A.; Lum, L.H.; Low, Z.J.; Cheng, I.; Murali, T.M.; Wan, M.Q.; Chua, H.R. Aminoglycoside-associated acute kidney injury in elderly patients with and without shock. J. Antimicrob. Chemother., 2016, 71(11), 3250-3257.
[http://dx.doi.org/10.1093/jac/dkw296] [PMID: 27494924]
[2]
Falagas, M.E.; Matthaiou, D.K.; Bliziotis, I.A. The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: A meta-analysis of comparative trials. J. Antimicrob. Chemother., 2006, 57(4), 639-647.
[http://dx.doi.org/10.1093/jac/dkl044] [PMID: 16501057]
[3]
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl., 2012, 2, 1-138.
[4]
Paul, M.; Benuri-Silbiger, I.; Soares-Weiser, K.; Leibovici, L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ, 2004, 328(7441), 668.
[http://dx.doi.org/10.1136/bmj.38028.520995.63] [PMID: 14996699]
[5]
Moellering, R.C. Jr Vancomycin: A 50-year reassessment. Clin. Infect. Dis., 2006, 42(Suppl. 1), S3-S4.
[http://dx.doi.org/10.1086/491708] [PMID: 16323117]
[6]
Levine, D.P. Vancomycin: A history. Clin. Infect. Dis., 2006, 42(Suppl. 1), S5-S12.
[http://dx.doi.org/10.1086/491709] [PMID: 16323120]
[7]
Rybak, M.J.; Albrecht, L.M.; Boike, S.C.; Chandrasekar, P.H. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J. Antimicrob. Chemother., 1990, 25(4), 679-687.
[http://dx.doi.org/10.1093/jac/25.4.679] [PMID: 2351627]
[8]
Sinha Ray, A.; Haikal, A.; Hammoud, K.A.; Yu, A.S. Vancomycin and the risk of AKI: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol., 2016, 11(12), 2132-2140.
[http://dx.doi.org/10.2215/CJN.05920616] [PMID: 27895134]
[9]
Trejtnar, F.; Mandíková, J.; Kočíncová, J.; Volková, M. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug-drug interactions with selected antivirals. Antimicrob. Agents Chemother., 2014, 58(10), 5650-5657.
[http://dx.doi.org/10.1128/AAC.02829-14] [PMID: 24957831]
[10]
Ouderkirk, J.P.; Nord, J.A.; Turett, G.S.; Kislak, J.W. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gram-negative bacteria. Antimicrob. Agents Chemother., 2003, 47(8), 2659-2662.
[http://dx.doi.org/10.1128/AAC.47.8.2659-2662.2003] [PMID: 12878536]
[11]
Busauschina, A.; Schnuelle, P.; van der Woude, F.J. Cyclosporine nephrotoxicity. Transplant. Proc., 2004, 36(2)(Suppl.), 229S-233S.
[http://dx.doi.org/10.1016/j.transproceed.2004.01.021] [PMID: 15041343]
[12]
Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int., 2002, 62(1), 237-244.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x] [PMID: 12081583]
[13]
Westhuyzen, J.; Endre, Z.H.; Reece, G.; Reith, D.M.; Saltissi, D.; Morgan, T.J. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol. Dial. Transplant., 2003, 18(3), 543-551.
[http://dx.doi.org/10.1093/ndt/18.3.543] [PMID: 12584277]
[14]
Smith, C.R.; Lipsky, J.J.; Laskin, O.L.; Hellmann, D.B.; Mellits, E.D.; Longstreth, J.; Lietman, P.S. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. N. Engl. J. Med., 1980, 302(20), 1106-1109.
[http://dx.doi.org/10.1056/NEJM198005153022002] [PMID: 6988713]
[15]
Wargo, K.A.; Edwards, J.D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract., 2014, 27(6), 573-577.
[http://dx.doi.org/10.1177/0897190014546836] [PMID: 25199523]
[16]
Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol., 2012, 68(9), 1243-1255.
[http://dx.doi.org/10.1007/s00228-012-1259-9] [PMID: 22411630]
[17]
Rinnert, M.; Hinz, M.; Buhtz, P.; Reiher, F.; Lessel, W.; Hoffmann, W. Synthesis and localization of Trefoil Factor Family (TFF) peptides in the human urinary tract and TFF2 excretion into the urine. Cell Tissue Res., 2010, 339(3), 639-647.
[http://dx.doi.org/10.1007/s00441-009-0913-8] [PMID: 20063012]
[18]
Zhou, W.; Guan, Q.; Kwan, C.C.; Chen, H.; Gleave, M.E.; Nguan, C.Y.; Du, C. Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol., 2010, 298(3), F568-F578.
[http://dx.doi.org/10.1152/ajprenal.00399.2009] [PMID: 20007348]
[19]
Han, M.; Li, Y.; Wen, D.; Liu, M.; Ma, Y.; Cong, B. NGAL protects against endotoxin-induced renal tubular cell damage by suppressing apoptosis. BMC Nephrol., 2018, 19(1), 168.
[http://dx.doi.org/10.1186/s12882-018-0977-3] [PMID: 29980183]
[20]
Ichimura, T.; Asseldonk, E.J.; Humphreys, B.D.; Gunaratnam, L.; Duffield, J.S.; Bonventre, J.V. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest., 2008, 118(5), 1657-1668.
[http://dx.doi.org/10.1172/JCI34487] [PMID: 18414680]
[21]
Munshi, R.; Johnson, A.; Siew, E.D.; Ikizler, T.A.; Ware, L.B.; Wurfel, M.M.; Himmelfarb, J.; Zager, R.A. MCP-1 gene activation marks acute kidney injury. J. Am. Soc. Nephrol., 2011, 22(1), 165-175.
[http://dx.doi.org/10.1681/ASN.2010060641] [PMID: 21071523]
[22]
Wu, H.; Craft, M.L.; Wang, P.; Wyburn, K.R.; Chen, G.; Ma, J.; Hambly, B.; Chadban, S.J. IL-18 contributes to renal damage after ischemia-reperfusion. J. Am. Soc. Nephrol., 2008, 19(12), 2331-2341.
[http://dx.doi.org/10.1681/ASN.2008020170] [PMID: 18815244]
[23]
Lee, C.T.; Ng, H.Y.; Lee, Y.T.; Lai, L.W.; Lien, Y.H. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics. Am. J. Physiol. Renal Physiol., 2016, 310(3), F230-F236.
[http://dx.doi.org/10.1152/ajprenal.00057.2015] [PMID: 26582761]
[24]
Townsend, D.M.; Tew, K.D.; He, L.; King, J.B.; Hanigan, M.H. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed. Pharmacother., 2009, 63(2), 79-85.
[http://dx.doi.org/10.1016/j.biopha.2008.08.004] [PMID: 18819770]
[25]
Inker, L.A.; Tighiouart, H.; Coresh, J.; Foster, M.C.; Anderson, A.H.; Beck, G.J.; Contreras, G.; Greene, T.; Karger, A.B.; Kusek, J.W.; Lash, J.; Lewis, J.; Schelling, J.R.; Navaneethan, S.D.; Sondheimer, J.; Shafi, T.; Levey, A.S. GFR estimation using β-trace protein and β2-microglobulin in CKD. Am. J. Kidney Dis., 2016, 67(1), 40-48.
[http://dx.doi.org/10.1053/j.ajkd.2015.07.025] [PMID: 26362696]
[26]
Zeng, X.; Hossain, D.; Bostwick, D.G.; Herrera, G.A.; Zhang, P.L. Urinary β2-microglobulin Is a good indicator of proximal tubule injury: A correlative study with renal biopsies. J. Biomark., 2014, 2014492838
[http://dx.doi.org/10.1155/2014/492838] [PMID: 26317034]
[27]
Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; Coresh, J. A new equation to estimate glomerular filtration rate. Ann. Intern. Med., 2009, 150(9), 604-612.
[http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006] [PMID: 19414839]
[28]
Nicolau, D.P.; Freeman, C.D.; Belliveau, P.P.; Nightingale, C.H.; Ross, J.W.; Quintiliani, R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob. Agents Chemother., 1995, 39(3), 650-655.
[http://dx.doi.org/10.1128/AAC.39.3.650] [PMID: 7793867]
[29]
Jansen, D.; Peters, E.; Heemskerk, S.; Koster-Kamphuis, L.; Bouw, M.P.; Roelofs, H.M.; Van Oeveren, W.; Van Heijst, A.F.; Pickkers, P. Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit. Am. J. Perinatol., 2016, 33(2), 180-187.
[http://dx.doi.org/10.1055/s-0035-1563714] [PMID: 26344007]
[30]
McWilliam, S.J.; Antoine, D.J.; Sabbisetti, V.; Turner, M.A.; Farragher, T.; Bonventre, J.V.; Park, B.K.; Smyth, R.L.; Pirmohamed, M. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: A proof-of-concept study. PLoS One, 2012, 7(8)e43809
[http://dx.doi.org/10.1371/journal.pone.0043809] [PMID: 22937100]
[31]
George, B.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.W.; Hu, Y.; Hogan, S.L.; Joy, M.S.; Aleksunes, L.M. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in the absence of clinical nephrotoxicity. Clin. Pharmacol. Ther., 2017, 101(4), 510-518.
[http://dx.doi.org/10.1002/cpt.606] [PMID: 28002630]
[32]
Pavkovic, M.; Riefke, B.; Gutberlet, K.; Raschke, M.; Ellinger-Ziegelbauer, H. Comparison of the MesoScale discovery and Luminex multiplex platforms for measurement of urinary biomarkers in a cisplatin rat kidney injury model. J. Pharmacol. Toxicol. Methods, 2014, 69(2), 196-204.
[http://dx.doi.org/10.1016/j.vascn.2013.11.003] [PMID: 24333954]
[33]
Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int., 2011, 79(1), 33-45.
[http://dx.doi.org/10.1038/ki.2010.337] [PMID: 20861826]
[34]
Nishino, Y.; Takemura, S.; Minamiyama, Y.; Hirohashi, K.; Ogino, T.; Inoue, M.; Okada, S.; Kinoshita, H. Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic. Res., 2003, 37(4), 373-379.
[http://dx.doi.org/10.1080/1071576031000061002] [PMID: 12747731]
[35]
Kopp, J.B.; Klotman, P.E. Cellular and molecular mechanisms of cyclosporin nephrotoxicity. J. Am. Soc. Nephrol., 1990, 1(2), 162-179.
[PMID: 2104260]
[36]
Rouse, R.L.; Zhang, J.; Stewart, S.R.; Rosenzweig, B.A.; Espandiari, P.; Sadrieh, N.K. Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int., 2011, 79(11), 1186-1197.
[http://dx.doi.org/10.1038/ki.2010.463] [PMID: 21150870]
[37]
Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; Davison, D.L.; Feldkamp, T.; Forni, L.G.; Gong, M.N.; Gunnerson, K.J.; Haase, M.; Hackett, J.; Honore, P.M.; Hoste, E.A.; Joannes-Boyau, O.; Joannidis, M.; Kim, P.; Koyner, J.L.; Laskowitz, D.T.; Lissauer, M.E.; Marx, G.; McCullough, P.A.; Mullaney, S.; Ostermann, M.; Rimmelé, T.; Shapiro, N.I.; Shaw, A.D.; Shi, J.; Sprague, A.M.; Vincent, J.L.; Vinsonneau, C.; Wagner, L.; Walker, M.G.; Wilkerson, R.G.; Zacharowski, K.; Kellum, J.A. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care, 2013, 17(1), R25.
[http://dx.doi.org/10.1186/cc12503] [PMID: 23388612]
[38]
Jung, G.S.; Kim, M.K.; Jung, Y.A.; Kim, H.S.; Park, I.S.; Min, B.H.; Lee, K.U.; Kim, J.G.; Park, K.G.; Lee, I.K. Clusterin attenuates the development of renal fibrosis. J. Am. Soc. Nephrol., 2012, 23(1), 73-85.
[http://dx.doi.org/10.1681/ASN.2011010048] [PMID: 22052058]
[39]
Gautier, J.C.; Zhou, X.; Yang, Y.; Gury, T.; Qu, Z.; Palazzi, X.; Léonard, J.F.; Slaoui, M.; Veeranagouda, Y.; Guizon, I.; Boitier, E.; Filali-Ansary, A.; van den Berg, B.H.J.; Poetz, O.; Joos, T.; Zhang, T.; Wang, J.; Detilleux, P.; Li, B. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin. Toxicol. Appl. Pharmacol., 2016, 303, 1-10.
[http://dx.doi.org/10.1016/j.taap.2016.04.012] [PMID: 27105553]
[40]
Chen, Y.; Dale Thurman, J.; Kinter, L.B.; Bialecki, R.; Eric McDuffie, J. Perspectives on using a multiplex human kidney safety biomarker panel to detect cisplatin-induced tubular toxicity in male and female Cynomolgus monkeys. Toxicol. Appl. Pharmacol., 2017, 336, 66-74.
[http://dx.doi.org/10.1016/j.taap.2017.10.010] [PMID: 29051111]
[41]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[42]
Ichimura, T.; Hung, C.C.; Yang, S.A.; Stevens, J.L.; Bonventre, J.V. Kidney injury molecule-1: A tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol., 2004, 286(3), F552-F563.
[http://dx.doi.org/10.1152/ajprenal.00285.2002] [PMID: 14600030]
[43]
Conti, M.; Moutereau, S.; Zater, M.; Lallali, K.; Durrbach, A.; Manivet, P.; Eschwège, P.; Loric, S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin. Chem. Lab. Med., 2006, 44(3), 288-291.
[http://dx.doi.org/10.1515/CCLM.2006.050] [PMID: 16519600]
[44]
Vinken, P.; Starckx, S.; Barale-Thomas, E.; Looszova, A.; Sonee, M.; Goeminne, N.; Versmissen, L.; Buyens, K.; Lampo, A. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol. Pathol., 2012, 40(7), 1049-1062.
[http://dx.doi.org/10.1177/0192623312444765] [PMID: 22581811]
[45]
Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int., 2010, 78(5), 486-494.
[http://dx.doi.org/10.1038/ki.2010.165] [PMID: 20555318]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy