Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Immunomodulatory Properties of Chitosan: Impact on Wound Healing and Tissue Repair

Author(s): Sapna Saini, Anju Dhiman* and Sanju Nanda

Volume 20, Issue 10, 2020

Page: [1611 - 1623] Pages: 13

DOI: 10.2174/1871530320666200503054605

Price: $65

Abstract

Objective: Chitosan, a natural polymer from shelled crustaceans, has been employed in an array of biomedical applications as it possesses a combination of fascinating attributes such as biocompatibility, biodegradability, non-toxicity and ease of chemical alteration into different active derivatives. The ability of chitosan to be tailored into different shapes has made it a very popular polymer for designing novel drug delivery systems for topical, transdermal and gene delivery. Recently, the multifunctional and immunomodulatory properties of chitosan have attracted a lot of attention. Since there are many patents and publications on medicated scaffolds, films and other topical dressings containing chitosan, an effort has been made to collate and synchronize the immunomodulatory properties of chitosan with its wound healing potential.

Methods: Literature and patent search was done using major search engines and websites. Based on the studies conducted by various research groups, the information was classified into important subheadings.

Results: Most of the studies suggested that due to remarkable immuno-stimulatory activities, chitosan stimulates the release of anti-inflammatory cytokines, chemokines, growth factors and hence promotes and supports every phase of wound healing, including hemostasis, inflammation, cell migration, proliferation, tissue repair and cell regeneration.

Conclusion: An understanding of the immunomodulatory activities of chitosan can help the researchers and formulation scientists to use this natural polymer and its derivatives to design controlled release, medicated, self–decomposable, environment-friendly scaffolds for better patient compliance and promising wound-healing effects.

Keywords: Biodegradable polymers, chitosan, cytokines, immune system, immunomodulatory activity, proliferation.

Graphical Abstract

[1]
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci., 2015, 6, 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[2]
Riteau, N.; Sher, A. Chitosan: An adjuvant with an unanticipated STING. Immunity, 2016, 44(3), 522-524.
[http://dx.doi.org/10.1016/j.immuni.2016.03.002] [PMID: 26982361]
[3]
Hartono, C.; Muthukumar, T.; Suthanthiran, M. Immunosuppressive drug therapy. Cold Spring Harb. Perspect. Med., 2013, 3(9)a015487
[http://dx.doi.org/10.1101/cshperspect.a015487] [PMID: 24003247]
[4]
Barman, D.; Nen, P.; Mandal, S.C.; Kumar, V. Immunostimulants for aquaculture health management. J. Mar. Sci. Res. Dev., 2013, 3(3), 1-11.
[http://dx.doi.org/10.4172/2155-9910.1000134]
[5]
Zhang, A.; Yang, X.; Li, Q.; Yang, Y.; Zhao, G.; Wang, B.; Wu, D. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo. PLoS One, 2018, 13(1)e0191356
[http://dx.doi.org/10.1371/journal.pone.0191356] [PMID: 29360858]
[6]
Larouche, J.; Sheoran, S.; Maruyama, K.; Martino, M.M. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv. Wound Care (New Rochelle), 2018, 7(7), 209-231.
[http://dx.doi.org/10.1089/wound.2017.0761] [PMID: 29984112]
[7]
Braiman-Wiksman, L.; Solomonik, I.; Spira, R.; Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicol. Pathol., 2007, 35(6), 767-779.
[http://dx.doi.org/10.1080/01926230701584189] [PMID: 17943650]
[8]
Leoni, G.; Neumann, P.A.; Sumagin, R.; Denning, T.L.; Nusrat, A. Wound repair: role of immune-epithelial interactions. Mucosal Immunol., 2015, 8(5), 959-968.
[http://dx.doi.org/10.1038/mi.2015.63] [PMID: 26174765]
[9]
Ortuño-Sahagún, D.; Zänker, K.; Rawat, A.K.S.; Kaveri, S.V.; Hegde, P. Natural Immunomodulators. J. Immunol. Res., 2017, 20177529408
[http://dx.doi.org/10.1155/2017/7529408] [PMID: 29387733]
[10]
Gonzalez, A.C.D.O.; Costa, T.F.; Andrade, Z.A.; Medrado, A.R.A.P. Wound healing - A literature review. An. Bras. Dermatol., 2016, 91(5), 614-620.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[11]
Saini, S.; Dhiman, A.; Nanda, S. Traditional Indian medicinal plants with potential wound healing activity: A review. Int. J. Pharm. Sci. Res., 2016, 7(5), 1809-1819.
[12]
Keast, D.H.; Orsted, H. The basic principles of wound care. Ostomy Wound Manage., 1998, 44(8), 24-28, 30-31.
[PMID: 9782957]
[13]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[14]
Laurent, P.; Jolivel, V.; Manicki, P.; Chiu, L.; Contin-Bordes, C.; Truchetet, M.E.; Pradeu, T. Immune-mediated repair: a matter of plasticity. Front. Immunol., 2017, 8(8), 454.
[http://dx.doi.org/10.3389/fimmu.2017.00454] [PMID: 28484454]
[15]
Julier, Z.; Park, A.J.; Briquez, P.S.; Martino, M.M. Promoting tissue regeneration by modulating the immune system. Acta Biomater., 2017, 53(53), 13-28.
[http://dx.doi.org/10.1016/j.actbio.2017.01.056] [PMID: 28119112]
[16]
Garraud, O.; Hozzein, W.N.; Badr, G. Wound healing: Time to look for intelligent, ‘natural’ immunological approaches? BMC Immunol., 2017, 18(23)(Suppl. 1), 23.
[http://dx.doi.org/10.1186/s12865-017-0207-y] [PMID: 28681702]
[17]
Matejuk, A. Skin Immunity. Arch. Immunol. Ther. Exp. (Warsz.), 2018, 66(1), 45-54.
[http://dx.doi.org/10.1007/s00005-017-0477-3] [PMID: 28623375]
[18]
Wound healing and the immune system. Available at: http://sitn.hms.harvard.edu/flash/2013/issue133a/ (Accessed on May 08, 2019).
[19]
Shah, B.; Burg, N.; Pillinger, M.H. Neutrophils. In: In: Kelley and Finestein’s Textbook of Rheumatology 10th Ed;; , 2017; 10, pp. 169-188.
[20]
Saini, S.; Dhiman, A.; Nanda, S. Wound healing and phytomedicine: A review. Immunol. Cell Biol., 2017, 97(3), 258-267.
[21]
Kim, S.Y.; Nair, M.G. Macrophages in wound healing: activation and plasticity. Immunol. Cell Biol., 2019, 97(3), 258-267.
[http://dx.doi.org/10.1111/imcb.12236] [PMID: 30746824]
[22]
Mills, C.D. M1 and M2 macrophages: Oracles of health and disease. Crit. Rev. Immunol., 2012, 32(6), 463-488.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i6.10] [PMID: 23428224]
[23]
Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol., 2018, 9, 419.
[http://dx.doi.org/10.3389/fphys.2018.00419] [PMID: 29765329]
[24]
Liu, W.J.; Gao, W.Q.; Kong, X.N. Polarization and functional plasticity of macrophages in regulating innate immune response. J. Shanghai Jiaotong Univ. (Sci.), 2014, 19(6), 646-650.
[http://dx.doi.org/10.1007/s12204-014-1561-z]
[25]
Thiruvoth, F.M.; Mohapatra, D.P.; Sivakumar, D.K.; Chittoria, R.K.; Nandhagopal, V. Current concepts in the physiology of adult wound healing. Plast. Aesthetic. Res., 2015, 2(5), 250-256.
[http://dx.doi.org/10.4103/2347-9264.158851]
[26]
Minutti, C.M.; Knipper, J.A.; Allen, J.E.; Zaiss, D.M. Tissue-specific contribution of macrophages to wound healing. In: Seminars in cell & developmental biology; , 2017; 61, pp. 3-1.1. Academic Press
[http://dx.doi.org/10.1016/j.semcdb.2016.08.006]
[27]
Harti, A.S.; Sulisetyawati, S.D.; Murharyati, A.; Oktariani, M.; Wijayanti, I.B. The effectiveness of snail slime and chitosan in wound healing. Int. J. Pharm. Med. Biol. Sci., 2016, 5(1), 76-80.
[28]
Ellis, S.; Lin, E.J.; Tartar, D. Immunology of Wound Healing. Curr. Dermatol. Rep., 2018, 7(4), 350-358.
[http://dx.doi.org/10.1007/s13671-018-0234-9] [PMID: 30524911]
[29]
Zaharoff, D.A.; Rogers, C.J.; Hance, K.W.; Schlom, J.; Greiner, J.W. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 2007, 25(11), 2085-2094.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.034] [PMID: 17258843]
[30]
Sinno, H.; Prakash, S. Complements and the wound healing cascade: an updated review. Plast. Surg. Int., 2013, 2013146764
[http://dx.doi.org/10.1155/2013/146764] [PMID: 23984063]
[31]
Ghadi, A.; Mahjoub, S.; Tabandeh, F.; Talebnia, F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian J. Intern. Med., 2014, 5(3), 156-161.
[PMID: 25202443]
[32]
Elgadir, M.A.; Uddin, M.S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Yao Wu Shi Pin Fen Xi, 2015, 23(4), 619-629.
[http://dx.doi.org/10.1016/j.jfda.2014.10.008] [PMID: 28911477]
[33]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. (India), 2004, 63, 20-31.
[34]
Gomes, L.P.; Paschoalin, V.M.F.; Del Aguila, E.M. Chitosan nanoparticles: production, physicochemical characteristics and nutraceutical applications. Rev. Virtual Quim, 2017, 9(1), 387-409.
[http://dx.doi.org/10.21577/1984-6835.20170022]
[35]
Mohandas, A.; Deepthi, S.; Biswas, R.; Jayakumar, R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater., 2017, 3(3), 267-277.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.003] [PMID: 29744466]
[36]
Zhao, L.; Mitomo, H.; Zhai, M.; Yoshii, F.; Nagasawa, N.; Kume, T. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr. Polym., 2003, 53, 439-446.
[http://dx.doi.org/10.1016/S0144-8617(03)00103-6]
[37]
Ignatova, M.; Manolova, N.; Rashkov, I. Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. Eur. Polym. J., 2007, 43, 1112-1122.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.01.012]
[38]
Dias, A.M.; Braga, M.E.; Seabra, I.J.; Ferreira, P.; Gil, M.H.; de Sousa, H.C. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm., 2011, 408(1-2), 9-19.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.063] [PMID: 21316432]
[39]
Goy, R.C.; Britto, D.D.; Assis, O.B. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19(3), 241-247.
[http://dx.doi.org/10.1590/S0104-14282009000300013]
[40]
Radhakrishan, Y.; Gopal, G.; Lakshmanan, C.C.; Nandakumar, K.S. Chitosan nanoparticles for generating novel systems for better applications: a review. J. Mol. Genet. Med., 2015, S4(005), 1-10.
[41]
Croisier, F.; Jerome, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[42]
Lizardi-Mendoza, J.; Monal, W.M.; Valencia, F.M. Chemical characteristics and functional properties of chitosan. In: Chitosan in the Preservation of Agricultural Commodities; Academic Press,; , 2016; 1, pp. 3-31.
[http://dx.doi.org/10.1016/B978-0-12-802735-6.00001-X]
[43]
Ahmed, S.; Ahmad, M.; Jayachandran, M.; Qureshi, M.A.; Ikram, S. Chitosan based dressings for wound care. Immunochem. Immunopathol., 2015, 1(2), 1-6.
[http://dx.doi.org/10.4172/2469-9756.1000106]
[44]
Gwak, J.H.; Sohn, S.Y. Identifying the trends in wound-healing patents for successful investment strategies. PLoS One, 2017, 12(3)e0174203
[http://dx.doi.org/10.1371/journal.pone.0174203] [PMID: 28306732]
[45]
Son, Y.S.; Youn, Y.H.; Hong, S.I.; Lee, S.H.; Gin, Y.J. Dermal scaffold using neutralized chitosan sponge or neutralized chitosan/collagen mixed sponge. U.S. Patent WO2000016817A1March 30;2000
[46]
Cullen, B.M.; Silcock, D.W. Wound dressing compositions comprising chitosan and an oxidised cellulose. U.S.Patent WO2004026200A2January 4;2004
[47]
Bok, C.Y.; Seong, K.D.; Gyung, K.S. Neutralized chitosan sponge for wound dressing and scaffold and method for preparation thereof, Korean Patent KR20040090033October 22;2004
[48]
Higbee, R.G.; Barber, G.N.; Kachurin, A.M.; Kachurina, O.M.; Gappa-Fahlekamp, H.; Warren, W.L.; Balachandran, S.; Parkhill, R. Immunotherapy compositions, method of making and method of use thereof. WO2005072088 December 13;2004
[49]
Scherr, G. Chitosan wound dressing. U.S. Patent October US20070237811A1 October 11;2007
[50]
Mojamdar, M.V.; Patel, D.M.; Vyas, A.P.; Gillet, D.S. Liquid filmogenic chitosan skin for wound healing and a method for preparation thereof. WO2011004399A2 January 13;2011
[51]
Filee, P.; Freichels, A.; Jerome, C.; Aquil, A.; Colige, A.; Tateu, V.T. Chitosan biomimetic scaffolds and methods for preparing the same. WO2011151225A1 December 8;2011
[52]
Sahoo, S.K.; Chandana, M. A process for preparing curcumin encapsulated chitosan alginate sponge useful for wound healing. WO2012056465A May 3;2012
[53]
Gregory, K.W.; Mccarthy, S. Method for producing a chitosan wound dressing. EP1401352B1 March 21;2012
[54]
Kim, S.H.; Son, M.W.; Jang, S.W.; Jun, J.H.; Han, S.D.; Choi, S.R.; Kim, D.H.; Sohn, Y.S.; Kwon, Y.S. Film-forming pharmaceutical composition for wound healing and method for preparing the same. WO2014126370A1 August 21;2014
[55]
Medina, J.G.; Sherman, E.G. Chitosan paste wound dressing. WO2015061612A1 April 30;2015
[56]
Bush, J.; Kuhn, S.; Mccarthy, S. Bioadhesive chitosan gel for controlling bleeding and for promoting healing with scar reduction without obscuring or interfering with access to a surgical field. WO2016164903A1 October 13;2016
[57]
Methods for producing a biodegradable chitosan composition and uses thereof. US9662400B2 May 30;2017
[58]
Mo, X.; Wang, X.; Wu, Z. A chitosan wound dressing and its method of manufacturing. EP2695622A1 December 26;2018
[59]
Gokarneshan, N. Role of chitosan in wound healing – A review of the recent advances. Add. Rehab. Med., 2017, 4(3), 1-3.
[60]
Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[61]
Wen, Z.S.; Xu, Y.L.; Zou, X.T.; Xu, Z.R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs, 2011, 9(6), 1038-1055.
[http://dx.doi.org/10.3390/md9061038] [PMID: 21747747]
[62]
Papadimitriou, L.; Kaliva, M.; Vamvakaki, M.; Chatzinikolaidou, M. Immunomodulatory potential of chitosan-graft-poly (ε-caprolactone) copolymers toward the polarization of bone-marrow-derived macrophages. ACS Biomater. Sci. Eng., 2016, 3(7), 1341-1349.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00440]
[63]
Tawab, A.E.; Ammar, A.M.; El-Hofy, M.I.; Mohamed, S.H.; Elmesalamy, E.S. Effect of Chitosan supplementation on immune response in mice. Benha Vet. Med. J., 2017, 32(2), 206-214.
[64]
Canali, M.M.; Porporatto, C.; Aoki, M.P.; Bianco, I.D.; Correa, S.G. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine, 2010, 28(35), 5718-5724.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.027] [PMID: 20598784]
[65]
Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll., 2012, 29(1), 48-56.
[http://dx.doi.org/10.1016/j.foodhyd.2012.02.013]
[66]
Mohamed, F.H.; El-sisi, A.F.; Ismail, S.A.; Hashem, A.M. The potentiality of using chitosan and its enzymatic depolymerized derivative chito-oligosaccharides as immunomodulators. J. Appl. Pharm. Sci., 2018, 8(12), 132-139.
[http://dx.doi.org/10.7324/JAPS.2018.81215]
[67]
Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci., 2016, 10, 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[68]
Diegelmann, R.F.; Dunn, J.D.; Lindblad, W.J.; Cohen, I.K. Analysis of the effects of chitosan on inflammation, angiogenesis, fibroplasia, and collagen deposition in polyvinyl alcohol sponge implants in rat wounds. Wound Repair Regen., 1996, 4(1), 48-52.
[http://dx.doi.org/10.1046/j.1524-475X.1996.40109.x] [PMID: 17129347]
[69]
Ueno, H.; Nakamura, F.; Murakami, M.; Okumura, M.; Kadosawa, T.; Fujinag, T. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials, 2001, 22(15), 2125-2130.
[http://dx.doi.org/10.1016/S0142-9612(00)00401-4] [PMID: 11432592]
[70]
Iacob, A.T.; Drăgan, M.; Ghețu, N.; Pieptu, D.; Vasile, C.; Buron, F.; Routier, S.; Giusca, S.E.; Caruntu, I.D.; Profire, L. Caruntu. ID.; Profire, L. Preparation, Characterization and wound healing effects of new membranes based on chitosan, hyaluronic acid and arginine derivatives. Polymers (Basel), 2018, 10(6), 1-19.
[http://dx.doi.org/10.3390/polym10060607] [PMID: 30966641]
[71]
Singh, B.; Maharjan, S.; Sindurakar, P.; Cho, K.H.; Choi, Y.J.; Cho, C.S. Needle-free immunization with chitosan-based systems. Int. J. Mol. Sci., 2018, 19(11), 1-25.
[http://dx.doi.org/10.3390/ijms19113639] [PMID: 30463211]
[72]
Carroll, E.C.; Jin, L.; Mori, A.; Muñoz-Wolf, N.; Oleszycka, E.; Moran, H.B.T.; Mansouri, S.; McEntee, C.P.; Lambe, E.; Agger, E.M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K.A.; Bowie, A.G.; Lavelle, E.C. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 2016, 44(3), 597-608.
[http://dx.doi.org/10.1016/j.immuni.2016.02.004] [PMID: 26944200]
[73]
Hoemann, C.D.; Fong, D. Immunological Responses to Chitosan for Biomedical Applications.Chitosan Based Biomaterials. In: Woodhead Publishing; , 2017; Vol 1, pp. 45-79.
[http://dx.doi.org/10.1016/B978-0-08-100230-8.00003-0]
[74]
Mudgal, J.; Mudgal, P.P.; Kinra, M.; Raval, R. Immunomodulatory role of chitosan-based nanoparticles and oligosaccharides in cyclophosphamide-treated mice. Scand. J. Immunol., 2019, 89(4)e12749
[http://dx.doi.org/10.1111/sji.12749] [PMID: 30664262]
[75]
Dai, T.; Tanaka, M.; Huang, Y.Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther., 2011, 9(7), 857-879.
[http://dx.doi.org/10.1586/eri.11.59] [PMID: 21810057]
[76]
Friedman, A.J.; Phan, J.; Schairer, D.O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P.T.; Modlin, R.L.; Kim, J. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens. J. Invest. Dermatol., 2013, 133(5), 1231-1239.
[http://dx.doi.org/10.1038/jid.2012.399] [PMID: 23190896]
[77]
Brodaczewska, K.; Wolaniuk, N.; Lewandowska, K.; Donskow-Łysoniewska, K.; Doligalska, M. Biodegradable chitosan decreases the immune response to Trichinella spiralis in Mice. Molecules, 2017, 22(11), 1-16.
[http://dx.doi.org/10.3390/molecules22112008] [PMID: 29156562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy