[2]
Global investments in Tuberculosis research and development: past, present and future. A policy paper prepared for the first WHO global ministerial conference on ending tuberculosis in the sustainable development era: A multisectoral response. Geneva: World Health Organization; 2017, Licence: CC BY-NC-SA 3.0 IGO.
[4]
Mishra, G.P.; Mulani, J.D. First National Anti-Tuberculosis Drug Resistance Survey (NDRS) from India - An Eye Opener. J. Infect., 2018, 1(2), 26-29.
[5]
Tiberi, S.; Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F. Mfinanga. S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[6]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[7]
Mishra, V.K.; Retherford, R.D.; Smith, K.R. Biomass cooking fuels and prevalence of tuberculosis in India. Int. J. Infect. Dis., 1999, 3, 119-129.
[8]
Kolappan, C.; Gopi, P.G.; Subramani, R.; Narayanan, P.R. Selected biological and behavioural risk factors associated with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis., 2007, 11(9), 999-1003.
[9]
Kim, M.J.; Kim, H.R.; Hwang, S.S.; Kim, Y.W.; Han, S.K.; Shim, Y.S.; Yim, J.J. Prevalence and its predictors of Extrapulmonary involvement in patients with pulmonary tuberculosis. J. Korean Med. Sci., 2009, 24(2), 237-241.
[10]
Bhat, J.; Rao, V.G.; Sharma, R.K.; Muniyandi, M.; Yadav, R.; Bhondley, M.K. Investigation of the risk factors for pulmonary tuberculosis: A case-control study among Saharia tribe in Gwalior district, Madhya Pradesh, India. Indian J. Med. Res., 2017, 146(1), 97-104.
[11]
Raviglione, M.C.; Uplekar, M.W. WHO’s new stop TB strategy. Lancet, 2006, 367(9514), 952-955.
[12]
Singh, J.; Sankar, M.M.; Kumar, S.; Gopinath, K.; Singh, N.; Mani, K.; Singh, S. Incidence and prevalence of tuberculosis among household contacts of pulmonary tuberculosis patients in a Peri-urban population of South Delhi, India. PLoS One, 2013, 8(7), 1-11.
[13]
Kan, X.; Chiang, C.Y.; Enarson, D.A.; Chen, W.; Yang, J.; Chen, G. Indoor solid fuel use and tuberculosis in China: A matched case-control study. BMC Public Health, 2011, 11(1), 498.
[14]
Behera, D.; Aggarwal, G. Domestic cooking fuel exposure and tuberculosis in Indian women. Indian J. Chest Dis. Allied Sci., 2010, 52, 139-143.
[15]
Jindal, S.K. Relationship of household air pollution from solid fuel combustion with tuberculosis? Indian J. Med. Res., 2014, 140(2), 167-170.
[16]
World Health Organization.Global tuberculosis report; , 2017. World Health Organization.
[17]
Cuevas, R.Z. Successes and failures in human tuberculosis vaccine development. Expert Opin. Biol. Ther., 2017, 17(12), 1481-1491.
[18]
Choudhary, S.; Kusum, D.V. Potential of nanotechnology as a delivery platform against tuberculosis: Current research review. J. Control. Release, 2015, 202, 65-75.
[19]
Varghese, S.; Anil, A.; Scaria, S.; Abraham, E. Nanoparticulate Technology in the treatment of tuberculosis: A review. Int. J. Pharm. Sci. Res., 2018, 9(10), 4109-4116.
[20]
Schrager, L.K.; Harris, R.C.; Vekeman, J. Research and development of new tuberculosis vaccines: A review. F1000 Res., 2018, 7, 1732.
[21]
Luca, S.; Mihaescu, T. History of BCG Vaccine. MAEDICA -. J. Clin. Med., 2013, 8(1), 53-58.
[22]
Montagnani, C.; Chiappini, E.; Galli, L.; de Martino, M. Vaccine against tuberculosis: What’s new? BMC Infect. Dis., 2014, 14(Suppl. 1), S2.
[23]
Singh, V.K.; Srivastava, R.; Srivastava, B.S. Manipulation of BCG vaccine: A double-edged sword. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35, 535-543.
[24]
da Costa, A.C.; Nogueira, S.V.; Kipnis, A.; Junqueira-Kipnis, A.P. Recombinant BCG: Innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory. Front. Immunol., 2014, 5, 152.
[25]
Oettinger, T.; Jorgensen, M.; Ladefoged, A.; Haslov, K.; Andersen, P. Development of the Mycobacterium bovis BCG vaccine: Review of the historical and biochemical evidence for a genealogical tree. Tuber. Lung Dis., 1999, 79(4), 243-250.
[26]
Behr, M.A. BCG-different strains, different vaccines? Lancet Infect. Dis., 2002, 2(2), 86-92.
[27]
Behr, M.A. Correlation between BCG genomics and protective efficacy. Sci. J. Infect. Dis., 2001, 33(4), 249-252.
[28]
Costa, C.D.; Costa, O.; Oliveira, M.D.; Rosa, J.D. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS One, 2014, 9(12), e122-e848.
[29]
Higgins, J.P.T.; Weiser, K.S.; Lopez, J.A.L.; Kakourou, A.; Chaplin, K.; Christensen, H.; Martin, N.K.; Sterne, J.A.C.; Reingold, A.L. Association of BCG, DTP, and measles containing vaccines with childhood mortality: Systematic review. Brit. Med. J., 2016, 355, i5170.
[30]
Merle, C.S.C.; Cunha, S.S.; Rodrigues, L.C. BCG vaccination and leprosy protection: Review of current evidence and status of BCG in leprosy control. Expert Rev. Vaccines, 2010, 9(2), 209-222.
[31]
Smith, P.G.; Revill, W.D.L.; Lukwago, E.; Rykushin, Y.P. The protective effect of BCG against Mycobacterium ulcerans disease: A controlled trial in an endemic area of Uganda. Trans. R. Soc. Trop. Med. Hyg., 1976, 70(5-6), 449-457.
[32]
Portaels, F.; Aguiar, J.; Debacker, M.; Guedenon, A.; Steunou, C.; Zinsou, C.; Meyers, W.M. Mycobacterium bovis BCG vaccination as prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease. Infect. Immun., 2004, 72(1), 62-65.
[33]
Colditz, G.A.; Berkey, C.S.; Mosteller, F.; Brewer, T.F.; Wilson, M.E.; Burdick, E.; Fineberg, H.V. The efficacy of Bacillus calmette-guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature. Pediatrics, 1995, 96(1), 29-35.
[34]
Lagranderie, M.R.; Balazuc, A.M.; Deriaud, E.; Leclerc, C.D.; Gheorghiu, M. Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. Infect. Immun., 1996, 64, 1-9.
[35]
Phillips, R.O.; Phanzu, D.M.; Beissner, M.; Badziklou, K.; Luzolo, E.K.; Sarfo, F.S.; Halatoko, W.A.; Amoako, Y.; Frimpong, M.; Kabiru, A.M.; Piten, E.; Maman, I.; Bidjada, B.; Koba, A.; Awoussi, K.S.; Kobara, B.; Nitschke, J.; Wiedemann, F.X.; Kere, A.B.; Adjei, O.; Loscher, T.; Fleischer, B.; Bretzel, G.; Herbinger, K.H. Effectiveness of routine BCG vaccination on buruli ulcer disease: A case-control study in the Democratic Republic of Congo, Ghana and Togo. Plos Neglected Trop. Dis., 2015, 9(1), e3457.
[36]
King, H.C.; Butler, T.K.; James, P.; Oakley, B.B.; Erenso, G.; Aseffa, A.; Knight, R.; Wellington, E.M.; Courtenay, O. Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLoS One, 2017, 12(3), e0173811.
[37]
World Health Organisation.Assessing the programmatic suitability of vaccine candidates for WHO prequalification; , 2014. World Health Organization
[38]
Houben, R.M.G.J.; Dodd, P.J. The global burden of latent tuberculosis infection: A reestimation using mathematical modelling. PLoS Med., 2016, 13(10), e1002152.
[39]
Harris, R.C.; Sumner, T.; Knight, G.M.; White, R.G. Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines. Hum. Vaccin. Immunother., 2016, 12(11), 2813-2832.
[41]
INDIA TB Report. Revised National TB Control Programme. Annual Status Report, 2018.
[42]
The Conversation. India’s ambitious new plan to conquer TB needs cash and commitment., 2017.
[44]
Lopez, E.C.J.; Namugga, O.; Mumbowa, F.; Sebidandi, M.; Mbabazi, O.; Moine, S.; Mboowa, G.; Fox, M.P.; Reilly, N.; Ayakaka, I.; Kim, S.; Okwera, A.; Joloba, M.; Fennelly, K.P. Cough aerosols of Mycobacterium tuberculosis predict new infection. A household contact study. Am. J. Respir. Crit. Care Med., 2013, 187, 1007-1015.
[45]
Alamelu, R. Immunology of tuberculosis. Indian J. Med. Res., 2004, 120, 213-232.
[46]
Andersen, P.; Woodworth, J.S. Tuberculosis vaccines-rethinking the current paradigm. Trends Immunol., 2014, 35(8), 387-395.
[47]
Edwards, D.; Kirkpatrick, C.H. The immunology of mycobacterial diseases. Am. Rev. Respir. Dis., 1986, 134(5), 1062-1071.
[48]
Fleischmann, J.; Golde, D.W.; Weisbart, R.H.; Gasson, J.C. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood, 1986, 68, 708-711.
[49]
Ogata, K.; Linzer, B.A.; Zuberi, R.I.; Ganz, T.; Lehrer, R.I.; Catanzaro, A. Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium and Mycobacterium intracellulare. Infect. Immun., 1992, 60, 4720-4725.
[50]
Majeed, M.; Perskvist, N.; Ernst, J.D.; Orselius, K.; Stendahl, O. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb. Pathog., 1998, 24, 309-320.
[51]
Molloy, A.; Meyn, P.A.; Smith, K.D.; Kaplan, G. Recognition and destruction of bacillus Calmette-Guerin-infected human monocytes. J. Exp. Med., 1993, 177(6), 1691-1698.
[52]
Matucci, A.; Maggi, E.; Vultaggio, A. Cellular and humoral immune responses during tuberculosis infection: Useful knowledge in the era of biological agents. J. Rheumatol., 2014, 91, 17-23.
[53]
Saraav, I.; Singh, S.; Sharma, S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: Immune response or immune evasion? Immunol. Cell Biol., 2014, 92, 741-746.
[54]
Schlesinger, L.S. Role of mononuclear phagocytes in M. tuberculosis pathogenesis. J. Investig. Med., 1996, 44(6), 312-323.
[55]
Behar, S.M.; Martin, C.J.; Booty, M.G.; Nishimura, T.; Zhao, X.; Gan, H.X.; Divangahi, M.; Remold, H.G. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol., 2011, 4, 279-287.
[56]
Lambrecht, B.N.; Nety, K.; Kessel, C.H.G.; Hammad, H. Lung dendritic cells and pulmonary defence mechanisms to bacteria. Mucosal immunology of acute bacterial pneumonia; Prince A. (ed). , 2013, pp. 49-66.
[57]
Morris, D.; Gonzalez, B.; Khurasany, M.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Chu, M.; Chi, P.T.; Bui, S.; Guerra, C.; Chan, J.; Venketaraman, V. Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BioMed Res. Int., 2013, 2013, 402827.
[58]
Andersen, P.; Kaufmann, S.H.E. Novel vaccination strategies against tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 4, a018523.
[59]
Gopal, R.; Monin, L.; Slight, S.; Uche, U.; Blanchard, E.; Junecko, B.A.F.; Payan, R.R.; Stallings, C.L.; Reinhart, T.A.; Kolls, J.K.; Kaushal, D.; Nagarajan, U.; Moreno, J.R.; Khader, S.A. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog., 2014, 10, e1004099.
[60]
Usman, M.M.; Ismail, S.; Teoh, T.C. Vaccine research and development: Tuberculosis as a global health threat. Cent. Eur. J. Immunol., 2017, 42(2), 196-204.
[61]
Green, A.M.; DiFazio, R.; Flynn, J.L. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol., 2013, 190, 270-277.
[62]
Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis, 2014, 94(4), 389-396.
[63]
Hart, P.D.A.; Armstrong, J.A.; Brown, C.A.; Draper, P. Ultrastructural study of the behaviour of macrophages toward parasitic mycobacteria. Infect. Immun., 1972, 5, 803-807.
[64]
Goren, M.B.; Hart, P.D.; Young, M.R.; Armstrong, J.A. Prevention of phagosome lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 1976, 73, 2510-2514.
[65]
Goren, M.B.; Brokl, O.; Roller, P.; Fales, H.M.; Das, B.C. Sulfatides of Mycobacterium tuberculosis: The structure of the principal sulfatide (SL-I). Biochemistry, 1976, 15, 2728-2735.
[66]
Gordon, A.H.; Hart, P.D.; Young, M.R. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature, 1980, 286, 79-81.
[67]
Newport, M.; Levin, M.; Blackwell, J.; Shaw, M.A.; Williamson, R.; Huxley, C. Evidence for exclusion of a mutation in NRAMP as the cause of familial disseminated atypical mycobacterial infection in a Maltese kindred. J. Med. Genet., 1995, 32(11), 904-906.
[68]
Monin, L.; Khader, S.A. Chemokines in tuberculosis: The good, the bad and the ugly. Semin. Immunol., 2014, 26, 552558.
[69]
Kindt, T.J.; Goldsby, R.A.; Osborne, B.A.; Kuby, J. Kuby Immunology, 6th ed; New York: W.H. Freeman, 2007, pp. 458-460.
[70]
Leung, C.C.; Yam, W.C.; Yew, W.W.; Ho, P.L.; Tam, C.M.; Law, W.S.; Tsui, P.W. T-Spot. TB outperforms tuberculin skin test in predicting tuberculosis disease. Am. J. Respir. Crit. Care Med., 2010, 182(6), 834-840.
[71]
Walsh, K.F.; Souroutzidis, A.; Vilbrun, S.C.; Peeples, M.; Joissaint, G.; Delva, S.; Pape, J.W. Potentially high number of ineffective drugs with the standard shorter course regimen for multidrug-resistant tuberculosis treatment in Haiti. Am. J. Trop. Med. Hyg., 2019, 100(2), 392-398.
[72]
SATVI Annual report. South African Tuberculosis Vaccine Initiative. University of Cape Town 2017.
[73]
Grotz, E.; Tateosian, N.; Amiano, N.; Cagel, M.; Bernabeu, E.; Chiappetta, A.D.; Moretton, A.M. Nanotechnology in tuberculosis: State of the art and the challenges ahead. Pharm. Res., 2018, 35, 213.
[74]
Wang, C.C.; Zhu, B.; Fan, X.; Gicquel, B.; Zhang, Y. Systems approach to tuberculosis vaccine development. Respirology, 2013, 18(3), 412-420.
[75]
Beste, D.J.V.; Hooper, T.; Stewart, G.; Bonde, B.; Rossa, C.A.; Bushell, M.E.; Wheeler, P.; Klamt, S.; Kierzek, A.M.; McFadden, J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol., 2007, 8, R89.
[76]
Jamshidi, N.; Palsson, B.O. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst. Biol., 2007, 1, 26-46.
[77]
Raman, K.; Bhat, A.G.; Chandra, N. A systems perspective of host–pathogen interactions: Predicting disease outcome in tuberculosis. Mol. Biosyst., 2010, 6(3), 516-530.
[78]
Day, J.; Friedman, A.; Schlesinger, L.S. Modeling the immune rheostat of macrophages in the lung in response to infection. Proc. Natl. Acad. Sci. USA, 2009, 106, 11246-11251.
[79]
Sichani, M.F.; Schaller, M.A.; Kirschner, D.E.; Kunkel, S.L.; Linderman, J.J. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLOS Comput. Biol., 2010, 6, e1000778.
[80]
Marino, S.; Linderman, J.J.; Kirschner, D.E. A multifaceted approach to modeling the immune response in tuberculosis. Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, 3, 479-489.
[81]
Brodin, P.; Majlessi, L.; Marsollier, L.; de Jonge, M.I.; Bottai, D.; Demangel, C.; Hinds, J.; Neyrolles, O.; Butcher, P.D.; Leclerc, C.; Cole, S.T.; Brosch, R. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun., 2006, 74(1), 88-98.
[82]
Simeone, R.; Bottai, D.; Brosch, R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr. Opin. Microbiol., 2009, 12(1), 4-10.
[83]
Shabestari, M.S.; Vesal, S.; Bonyadi, M.J.; de Villatay, J.P.; Fischer, A.; Rezaei, N. Novel RAG2 mutation in a patient with TB-severe combined immunodeficiency and disseminated BCG disease. J. Investig. Allergol. Clin. Immunol., 2009, 19(6), 494-496.
[84]
Hoft, D.F.; Blazevic, A.; Abate, G.; Hanekom, W.A.; Kaplan, G.; Soler, J.H.; Weichold, F.; Geiter, L.; Sadoff, J.C.; Horwitz, M.A. A new recombinant bacille Calmette-Guérin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J. Infect. Dis., 2008, 198(10), 1491-1501.
[85]
Olsen, A.W.; Williams, A.; Okkels, L.M.; Hatch, G.; Andersen, P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun., 2004, 72(10), 6148-6150.
[86]
Cuevas, R.Z. Update on the development of TB vaccines. Curr. Pharm. Biotechnol., 2013, 14, 940-946.
[87]
Lakshmi, P.S.; Verma, D.; Yang, X.; Lloyd, B.; Daniell, H. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One, 2013, 8(1), e54708.
[88]
Permyakova, N.V.; Zagorskaya, A.A.; Belavin, P.A.; Uvarova, E.A.; Nosareva, O.V.; Nesterov, A.E.; Deineko, E.V. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. BioMed Res. Int., 2015.
[89]
Soria-Guerra, R.E.; Moreno-Fierros, L.; Rosales-Mendoza, S. Two decades of plant-based candidate vaccines: A review of the chimeric protein approaches. Plant Cell Rep., 2011, 30(8), 1367-1382.
[90]
McShane, H. Tuberculosis vaccines: Beyond bacilli Calmette-Guerin. Philos. Trans. R. Soc. B.: Biol. Sci., 2011, 366, 2782-2789.
[91]
Nieuwenhuizen, N.E.; Kulkarni, P.S.; Shaligram, U.; Cotton, M.F.; Rentsch, C.A.; Eisele, B.; Kaufmann, S.H. The recombinant bacille Calmette-Guérin vaccine VPM1002: Ready for clinical efficacy testing. Front. Immunol., 2017, 8, 1147.
[92]
Gupta, M.; Kaushal, K. An update on newer vaccines in development phase for malaria, tuberculosis, and human immunodeficiency virus/acquired immune deficiency syndrome. Int. J. Non-commun. Dis., 2018, 3(5), 20.
[93]
Yao, J.; Weng, Y.; Dickey, A.; Wang, K.Y. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci., 2015, 16(12), 28549-28565.
[94]
Tschofen, M.; Knopp, D.; Hood, E.; Stoger, E. Plant molecular farming: Much more than medicines. Annu. Rev. Anal. Chem., 2016, 9, 271-294.
[95]
Kim, S.H.; Jang, Y.S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccine Res., 2017, 6, 15-21.
[96]
Stylianou, E.; Diogo, G.R.; Pepponi, I.; Dolleweerd, C.V.; Arias, M.A.; Locht, C.; Rider, C.C.; Sibley, L.; Cutting, S.M.; Loxley, A.; Julian, K.C. Ma, Reljic, R. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur. J. Immunol., 2014, 44, 440-449.
[97]
Reljic, R.; Sibley, L.; Huang, J.M.; Pepponi, I.; Hoppe, A.; Hong, H.A.; Cutting, S.M. Mucosal vaccination against tuberculosis using inert bioparticles. Infect. Immun., 2013, 81(11), 4071-4080.
[98]
Thakur, A.; Ingvarsson, P.T.; Schmidt, S.T.; Rose, F.; Andersen, P.; Christensen, D.; Foged, C. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine, 2018, 36(23), 3331-3339.
[99]
Poland, G.A.; Kennedy, R.B.; McKinney, B.A.; Ovsyannikova, I.G.; Lambert, N.D.; Jacobson, R.M.; Oberg, A.L. Vaccinomics, adversomics immune response network theory: Individualized vaccinology in the 21st century. Semin. Immunol., 2013, 25(2), 89-103.
[100]
Day, J.; Schlesinger, L.S.; Friedman, A. Tuberculosis research: Going forward with a powerful translational systems biology approach. Tuberculosis, 2010, 90, 7-8.
[101]
Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; Kennedy, K.; Wu, H.; Bennouna, S.; Oluoch, H.; Miller, J.; Vencio, R.Z.; Mulligan, M.; Aderem, A.; Ahmed, R.; Pulendran, B. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol., 2008, 10, 116-125.
[102]
Locht, C.; Hougardy, J.M.; Rouanet, C.; Place, S.; Mascart, F. Heparin-binding hemagglutinin, from an extrapulmonary dissemination factor to a powerful diagnostic and protective antigen against tuberculosis. Tuberculosis, 2006, 86, 303-309.
[103]
Wang, X.; Xie, G.; Liao, J.; Yin, D.; Wenyan, G.; Pan, M.; Li, J.; Li, Y. Design and evaluation of a multiepitope assembly peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice. Virol. J., 2011, 8, 232.
[104]
Yedidia, T.B.; Arnon, R. Epitope-based vaccine against influenza. Expert Rev. Vaccines, 2007, 6(6), 939-948.
[106]
Gothi, G.D.; Narayan, R.; Nair, S.S.; Chakraborty, A.K.; Srikantaramu, N. Estimation of prevalence of bacillary tuberculosis on the basis of chest X-ray and/or symptomatic screening. Indian J. Med. Res., 1976, 64(8), 1150-1159.
[107]
Steingart, K.R.; Ramsay, A.; Pai, M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev. Anti Infect. Ther., 2007, 5(3), 327-331.
[108]
Steingart, K.R.; Flores, L.L.; Dendukuri, N.; Schiller, I.; Laal, S.; Ramsay, A.; Pai, M. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: An updated systematic review and meta-analysis. PLoS Med., 2011, 8(8), e1001062.
[109]
Sester, M.; Sotgiu, G.; Lange, C.; Giehl, C.; Girardi, E.; Migliori, G.B.; Lipman, M. Interferon-γ release assays for the diagnosis of active tuberculosis: A systematic review and meta-analysis. Eur. Respir. J., 2011, 37(1), 100-111.
[110]
Zeka, A.N.; Tasbakan, S.; Cavusoglu, C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J. Clin. Microbiol., 2011, 49(12), 4138-4141.
[111]
Nikam, C.; Kazi, M.; Nair, C.; Jaggannath, M.; Manoj, M.; Vinaya, R.; Rodrigues, C. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int. J. Mycobacteriol., 2014, 3(3), 205-210.
[113]
Wingfield, C.; Jefferys, R. The Tuberculosis vaccine pipeline In: Pipeline report HIV, hepatitis C virus and tuberculosis drugs, diagnostics, vaccines, preventive technologies, 2nd ed.; HIV i-Base/ Treatment action group: London, 2011, pp. 155-162.
[114]
Frick, M. The tuberculosis vaccines pipeline: A new path to the same destination? In: Pipeline report HIV, hepatitis C virus and tuberculosis drugs, diagnostics, vaccines, preventive technologies towards a cure and immune-based and gene therapies in development; Anderea B, Ed.; HIV i-Base/Treatment action group: London, 2015, pp. 163-178.
[116]
Pang, Y.; Zhao, A.; Cohen, C.; Kang, W.; Lu, J.; Wang, G.; Zhao, Y.; Zheng, S. Current status of new tuberculosis vaccine in children. Hum. Vaccin. Immunother., 2016, 12(4), 960-970.
[118]
Rigano, M.M.; Dreitz, S.; Kipnis, A.P.; Izzo, A.A.; Walmsley, A.M. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine, 2006, 24(5), 691-695.
[120]
Matvieieva, N.A.; Vasylenko, M.Y.; Shahovsky, A.M.; Bannykova, M.O.; Kvasko, O.Y.; Kuchu, N.V. Effective agrobacterium mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. Tsitol. Genet., 2011, 45, 11-17.
[121]
Uvarova, E.A.; Belavin, P.A.; Permyakova, N.V.; Zagorskaya, A.A.; Nosareva, O.V.; Kakimzhanova, A.A.; Deineko, E.V. Oral immunogenicity of plant-made Mycobacterium tuberculosis ESAT6 and CFP10. BioMed Res. Int., 2013, 2013, 316304.
[122]
Zhang, Y.; Chen, S.; Li, J.; Liu, Y.; Hu, Y.; Cai, H. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim. Biophys. Sin., 2012, 44, 823-830.