[1]
Suleria H, Osborne S, Masci P, Gobe G. Marine-based nutraceutical: An innovative trend in the food and supplement industries. Mar Drugs 2015; 13(10): 6336-51.
[2]
Jimeno J, Faircloth G, Sousa-Faro J, Scheuer P, Rinehart K. New marine derived anticancer therapeutics- A journey from the sea to clinical trials. Mar Drugs 2004; 2(1): 14-29.
[3]
Skropeta D. Deep-sea natural products. Nat Prod Rep 2008; 25(6): 1131-66.
[4]
Faulkner DJ. Chemical riches from the ocean. Chem Br 1995; 39(1): 680-4.
[5]
Kim SK. Marine Pharmacognosy: Trends and Applications. 1st ed. CRC Press: Boca Raton 2013.
[6]
Malve H. Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 2016; 8(2): 83-91.
[7]
Van der Westhuyzen A, Frolova L, Kornienko A, VanOtterlo WAL. The rigidins: Isolation, bioactivity, and total synthesis-novel pyrrolo [2,3- d] pyrimidine analogues using multicomponent reactions. J Med Chem 2013; 56(17): 6886-900.
[8]
Lindequist U. Marine-derived pharmaceuticals- Challenges and opportunities. Biomol and Ther 2016; 24(6): 561-71.
[9]
Suleria H, Masci P, Addepalli R, Chen W, Gobe G, Osborne S. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysatein RAW. Anal Bioanal Chem 2017; 409(17): 4195-205.
[10]
Suleia H, Masci P, Addepalli R, Gobe G, Osborne S. In vitro anti-inflammatory activities of blacklip abalone (Haliotis rubra) in RAW 264.7 macrophages. Food and Agric Immunol 2017; 28(4): 711-24.
[11]
Dysghlovoy S, Honecker F. Marine compound and cancer: 2017 Updates. Mar Drugs 2018; 16(2): 41.
[12]
Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1 generation. Clin Exp Immunol 2007; 147(2): 227-35.
[13]
Kemp W, Burns D, Brown T. From Pathology: The Big Picture. InInflammation and Repair. 1st ed. New York: McGraw Hill Professional 2017; pp. 13-22.
[14]
González Y, Torres-Mendoza D, Jones G, Fernandez P. Marine diterpenoids as potential anti-inflammatory agents. Mediators Inflamm 2015; 2015263543
[15]
Litalien C, Beaulieu P. In Hardman JG, Limbird LE, Gilman AG,
Eds. The Pharmacological Basis of Therapeutics. New York:
McGraw- Hill Education 2011; 41-72.
[16]
Kijjoa A, Sawangwong P. Drugs and cosmetics from the sea. J Pharm Bioallied Sci 2018; 8(2): 83-91.
[18]
Freitas H. Chlorella vulgaris as a source of essential fatty acids and micronutrients: A brief commentary. TOPSJ 2017; 10: 92-9.
[19]
Suleria H, Gobe G, Masci P, Osborne S. Marine bioactive compounds and health promoting perspectives; Innovation pathways for drug discovery. Trends Food Sci Technol 2016; 50: 44-55.
[20]
Sibi G, Rabina S. Inhibition of pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacognosy Res 2016; 8(2): 118-22.
[21]
Tadashi M, Haruko T, Hideki M, Hiroko Y. Marine microalgae. Adv Biochem Eng Biotechnol 2005; 96: 165-88.
[22]
Carolina de Los Reyes. Maria JO, Azahara Rodriguez-L, Elena T, Virginia M, Eva Z. Molecular characterization and anti-inflammatory activity of galactosylglycerides and galactosylceramides from the microalga Isochrysis galbana. J Agric Food Chem 2016; 64(46): 8783-94.
[23]
Rodríguez-Luna A, Talero E, Terencio M, González-Rodríguez M, Rabasco A, de los Reyes C, et al. Topical application of glycolipids from Isochrysis galbana prevents epidermal hyperplasia in mice. Mar Drugs 2018; 16(1)E2
[24]
Hibberd D. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 1981; 82(2): 93-119.
[25]
Lubián L, Montero O, Moreno-Garrido I, et al. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 2000; 12: 249-55.
[26]
Assaf S, Yael C, Tamar B. Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. J Phycol 1989; 25(4): 686-92.
[27]
Ma XN, Chen TP, Yang B, Liu J, Chen F. Lipid production from Nannochloropsis. Mar Drugs 2016; 14(4): 61.
[28]
El-Feky AM, Aboulthana WM, Abo El-Khair B. El-Sayed, Ibrahim NE. Chemical and therapeutic study of Nannochloropsis oculata on spleen of Streptozotocin induced diabetes in rats. Der Pharma Chem 2017; 9(18): 36-43.
[29]
Keisuke T, Takashi Y, Hiromi T. Anti-inflammatory compounds.
JP2015174850 2010).
[30]
Hui Z, Zunting P, Chunchao H. Undaria pinnatifida (wakame): A seaweed with pharmacological properties. Sci Int 2014; 2: 32-6.
[31]
Khan MN, Cho JY, Lee MC, Kang JY, Park NG, Fujii H, et al. Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. J Agric Food Chem 2007; 55(17): 6984-8.
[32]
Winget RR. Anti-inflammatory compositions containing eicosapentaenoic
acid bearing monogalactosyldiacylglycerol and methods
relating thereto. WO1994024984 (1994).
[33]
Winget RR. Anti-inflammatory compositions containing monogalactosyldieicosapentaenoyl
glycerol and methods of relating thereto.
US5620962 (1997).
[34]
James R, Lane D, David F, Kelly G. Methods and compositions
for modulating hair growth or regrowth. US20070036742
(2007).
[35]
Yong-Ki H. An extract of Undaria pinnatifida having antiinflammatory
activity. KR100807758 (2008).
[36]
John AM, Hill WS, Moerck RE. Composition and method to
improve blood lipid profiles and reduce Low Density Lipoprotein
(LDL) per-oxidation in humans using algae based oils and astaxanthin.
US20140205627 (2014).
[37]
Zanella L, Pertelle P. Extracts of Nannochloropsis sp. and their
applications. CN107148264 (2017).
[38]
Toralf S, Jorg B, Laurent M. Fatty acid desaturases, elongases,
elongation components and uses thereof. WO2006008401 (2016).
[39]
Santhi LS, Prasad Talluri VSSL, Nagendra SY, Radha Krishna E. Bioactive compounds from marine sponge associates: Antibiotics from Bacillus sp. Nat Prod Chem Res 2017; 5: 266.
[40]
Stamatios P, Thomais V, Athanasios V. Bioactive natural substances from marine sponges: New developments and prospects for future pharmaceuticals. Nat Prod Chem Res 2013; 1: 3.
[41]
Anjum K, Abbas SQ, Shah SA, Akhter N, Batool S, Hassan SS. Marine sponges as a drug treasure. Biomol Ther 2016; 24(4): 347-62.
[42]
Kumar MS, Adki KM. Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother 2018; 105: 233-45.
[43]
Mayer AM, Aviles E, Rodríguez AD. Marine sponge Hymeniacidon sp. amphilectane metabolites potently inhibit rat brain microglia thromboxane B2 generation. Bioorg Med Chem 2012; 20(1): 279-82.
[44]
Elena C, Anna Maria M, Chiara L, Angelo F, Genoveffa N, Adele C, et al. Immuno-modulatory and anti-inflammatory effects of dihydrogracilin A, a terpene derived from the marine sponge Dendrilla membranosa. Int J Mol Sci 2017; 18(8): 1643.
[45]
Di X, Oskarsson JT, Omarsdottir S, Freysdottir J, Hardardottir I. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4+ T cells. Pharm Biol 2017; 55(1): 2116-22.
[46]
Jacobs RS, Faulkner DJ. Manoalide an anti-inflammatory analgesic
marine natural product. US4447445 (1984).
[47]
Philip BD, Gerald W. Method for measuring anti-inflammatory
properties of a composition. US4605618 (1986).
[48]
McConnell OJ, Gabriel S, Robert J. Novel use as antiinflammatory
agents for bis-heterocyclic compounds and pharmaceutical
compositions thereof. WO1994019343 and
WO1994019343 (1994).
[49]
Jacobs RS, Shirley P, Sarath G, Amy W. Anti-neurogenic
inflammatory compounds and compositions and methods of use
thereof. WO1998018466 (1998).
[50]
Wolfgang S, Joerg K, Muller WEG, Dieter S, Maria S. Method for isolating sponge collagen and producing nanoparticulate
collagen, and the use thereof. WO2001064046 (2002).
[51]
Nakamura K, Nakamura K. Skin care preparation for external
use. JP2004250357 (2004).
[52]
Bringmann G, Gerhard L, Muchlbacher J, Muller WEG, Schaumann K, Steffens S. New compounds sorbicillactone A and
derivatives, useful as antitumor, antiviral and anti-inflammatory
agents, obtained e.g. by culturing Penicillium fungi. DE10238257
(2004).
[57]
Sung P, Chen B, Lin M, Hwang T, Wang W, Sheu J, et al. Excavatoids E and F: Discovery of two new briaranes from the cultured octocoral Briareum excavatum. Mar Drugs 2009; 7: 472-82.
[58]
Lin Y, Lin S, Feng C, Chen P, Su Y, Li C, et al. Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide B isolated from the culture-type formosan gorgonian Briareum excavatum. Mar Drugs 2015; 13(5): 2559-79.
[59]
Horng Sheu J. Sun Yang, N., Chi Wei, W., Yao Huang, C. Pharmaceutical
uses of diterpene excavatolide B from a coral or an analogue
thereof. US8530513 (2013).
[60]
Bingzhen S, Weixian W, Zhihong W, Yishan W, Taiyan Z, Yinbin Z. Coral extract, extraction method and use thereof, and
coral extract skin care product. CN104095883 (2014).
[61]
Lai K, You W, Lin C, El-Shazly M, Liao Z, Su J. Anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Mar Drugs 2017; 15(10): 327.
[62]
Miyamoto T, Miyamoto S. Coral-derived therapeutic agent for
inflammation and allergic disease. JP2010222307 (2010).
[63]
Reddy NS, Goud TV, Venkateswarlu Y. Seco-sethukarailin, a novel diterpenoid from the soft coral Sinulariadissecta. J Nat Prod 2002; 65(7): 1059-60.
[64]
Nguyen P, Nguyen H, Nguyen X, Bui H, Tran H, Nguyen T, et al. Steroidal constituents from the soft coral Sinularia dissecta and their inhibitory effects on lipopolysaccharide-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells. Bulletin. JKCS 2013; 34(3): 949-51.
[65]
Faulkner DJ, Venkateswarlu KY, Yadav J, Raghavan V. Rameswaralide
and rameswaralide derivatives. WO2000027839 (2001).
[66]
Rahman MA, Yusoff F. M. Sea cucumber fisheries: Market potential, trade, utilization and challenges for expanding the production in the South-East Asia. IJACEBS 2017; 4(1): 26-30.
[67]
Ratih P, Zainal A. Medicinal and health benefit effects of functional sea cucumbers. J Tradit Complement Med 2018; 8(3): 341-51.
[68]
Sara B, Farooq A, Nazamid S. High-value components and bioactives from sea cucumbers for functional foods- A review. Mar Drugs 2011; 9(10): 1761-805.
[69]
Magdalena M, Stefaniak V, Varsha AK, María G, Gudrun M, Olafur F, et al. Bioactive effect of sulphated polysaccharides derived from orange-footed sea cucumber (Cucumaria frondosa) toward THP-1 macrophages. Bioact Carbohydr Dietary Fibre 2017; 12: 14-9.
[70]
Collin PD. Sea cucumber carotenoid lipid fraction products and
methods of use. US6399105 (2002).
[71]
Tae RK, Chang TO, Dong HB, Jong HK, Joon S, Jong HL, et al. Effects on skin of Stichopus japonicus viscera extracts detected with saponin including Holothurin A: Down-regulation of melanin synthesis and up-regulation of neocollagenesis mediated by ERK signaling pathway. J Ethnopharmacol 2018; 226: 73-81.
[72]
Himaya SW, Ryu B, Quian ZJ, Kim SK. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. Environ Toxicol Pharmacol 2010; 30(1): 68-75.
[73]
Se-Kwon K, Bomi R, Himaya SWA, Jung-Ji C. Sea cucumber
extra having anti-inflammatory and anti-inflammatory composition
comprising same. KR20120028153 (2012).
[74]
Soo-Bum P, Hyung-Min H, Won-Jong Y, Gil Nam K, Hwan Jung J, Wook Jae L. A composition as anti-inflammatory medicine
and a composition for an anti-cancer medicine. KR101166677
(2012).
[75]
Yanmei Z, Huirong Z, Lifeng G. Traditional Chinese medicine
formulation for treating cervicitis and preparation method of traditional
Chinese medicine formulation. CN103830517 (2014).
[77]
Leticia OC, Nuvia KM, Juan J, Acevedo F, Marili PS, Jorge M, et al. Sea cucumber (Isostichopus badionotus) body-wall preparations exert anti-inflammatory activity in vivo. PharmaNutrition 2018; 6(2): 74-80.
[78]
Collin PD. Tissue fractions of sea cucumber for the treatment of
inflammation. US5770205 (1998).
[79]
Yong-Woo L, Young-Ki K, Mi-Ae K, Yang-Sook O. Fermented
sea cucumber extract and its cosmetic usage. KR20140016461
(2014).
[80]
Bayne B. Marine mussels. J Mar Biol Assoc U K 2009; 56(4): 1056.
[83]
Grienke U, Silke J, Tasdemir D. Bioactive compounds from marine mussels and their effects on human health. Food Chem 2016; 148(1): 48-60.
[84]
Wang F, Fu Y, Cai W, Sinclair A, Li D. Anti-inflammatory activity and mechanisms of a lipid extract from hard-shelled mussel (Mytilus coruscus) in mice with dextran sulphate sodium-induced colitis. Mar Drugs 2014; 12(2): 568-88.
[85]
Ogawa A, Yamashita H. Skin care preparation for external use.
JP2003335651 (2002).
[86]
Eun-Kyung K, Hyun-Jung KP. Anti-inflammatory composition
comprising enzymatic hydrolysates of Mytilus coruscus.
KR20120049043 (2012).
[88]
Kim Y, Ahn C, Je J. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem 2016; 202(1): 9-14.
[89]
Macrides T, Kalafatis N. Anti-inflammatory preparation.
WO1996005164 (1996).
[90]
Macrides T, Kalafatis N. Super-critical lipid extract from mussels
having anti-inflammatory activity. US6083536 (2000).
[91]
Bui LM, Bierer TL, Hodge J, Bektash R, Blackwood G. Pet
food for maintenance of joint health and alleviation of arthritic
symptoms in companion animals. US6596303 (2003).
[92]
Davis PF. Mussel extract composition with enhanced antiinflammatory
activity. WO2006052150 (2006).
[93]
Wakimoto T, Kondo H, Nii H, Kimura K, Egami Y, Oka Y, et al. Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc Natl Acad Sci USA 2011; 108(42): 17533-7.
[94]
Treschow A, Hodges L, Wright P, Wynne P, Kalafatis N, Macrides T. Novel anti-inflammatory ω-3 PUFAs from the New Zealand green-lipped mussel, Perna canaliculus. Comp Biochem Physiol B Biochem Mol Biol 2007; 147(4): 645-56.
[95]
Halpern M. Anti-inflammatory effect on stabilized lipid extract of Perna canaliculus (Lyprinol®). Allerg Immunol (Paris) 2000; 32(7): 272-8.
[96]
Kendall RV. Composition comprising an extract of Perna canaliculus,
methylsulfonylmethane and glucosamine. WO2001001976
(2020).
[97]
Chandler A. combinations of hyaluronic acid and polyunsaturated
fatty acids. US20070270376 (2007).
[98]
Chandler A. Treatment for asthma and arthritis and other inflammatory
diseases. US20080234362 (2008).
[99]
Jae-Gun K, Ki-Ho K, Dong-Hyun K, et al. Cosmetic composition containing extracts of Perna canaliculus.
KR100852864 (2008).
[100]
Min G. Mussel adhesive protein product and use thereof for inhibiting
mucosal inflammation. WO2017028025 (2015).
[101]
Min G. Mussel adhesive protein product, and use thereof in preventing
and suppressing neuronal inflammation. WO2017088177
(2015).
[102]
Minatell JA, Hill WS, Rudi E, Moerck RE. Composition and
method to alleviate joint pain using algae based oils. US9238043
(2016).
[103]
Toralf S, Jorg B, Laurent M. Fatty acid desaturases, elongases,
elongation components and uses thereof. WO2006008401 (2016).
[104]
Houwen L, Weihua J. Sesquiterpene quinone compound dysiherbols
A, and preparation method and application thereof.
CN105541562 (2016).
[105]
Renxuzn Z. Method for preparing functional raw material from
Stichopus japonicas. CN106137896 (2016).
[106]
Zanella L, Pertelle P. Extracts of Nannochloropsis sp. and their
applications. CN107148264 (2017).
[107]
Min G. Mussel adhesive protein product and use thereof for inhibiting
soft tissue inflammation. WO2017181977 (2017).
[108]
Bingda C, Chengxun Z, Youxiang P, Mingshu J, Shunyu C. Composition comprising extract of mixture of Undaria pinnatifida
sporophylls and ascidian shells for treating atopicdermatitis.
CN104379155 (2018).