Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

美金刚和6-氯罗他林的组合作为新型抗阿尔茨海默氏病的多目标化合物

卷 16, 期 9, 2019

页: [821 - 833] 页: 13

弟呕挨: 10.2174/1567205016666190228122218

价格: $65

摘要

背景:阿尔茨海默氏病(AD)是老年人中最常见的痴呆形式。它被表征为具有普遍遗传成分的多因素疾病。由于病因不明,目前基于乙酰胆碱酯酶(AChE)抑制剂和N-甲基-D-天冬氨酸受体(NMDAR)拮抗剂的治疗仅是暂时有效的。由于该疾病的多因素性质,看来治愈性治疗必将是复杂的。在这种情况下,已经建立了所谓的“多目标”方法。 目的:这项研究的目的是开发一种多目标定向配体(MTDL),通过抑制AChE结合对胆碱能系统的支持,同时减轻由NMDAR受体介导的谷氨酸兴奋性毒性引起的负担。 方法:我们采用有机化学的常用方法制备了6-氯他克林和美金刚的混合物。然后,我们调查了其对AChE和NMDRS的体外阻断能力,以及在NMDA诱导的减退模型中的体内神经保护功效。我们还研究了该化合物的细胞毒性潜力,并预测了穿越血脑屏障的能力。 结果:由6-氯他克林和美金刚结合形成的新型分子被证明是一种有前途的多能杂种,能够阻断AChE和NMDAR的作用。提出的杂种超过母体化合物6-Cl-THA的AChE抑制活性两倍。根据结果,我们的新杂种以与美金刚相同的方式阻断NMDAR,有效抑制AChE,并预计将通过被动扩散穿过血脑屏障。最后,体内结果表明了MTDL设计策略,该结果表明新型6-Cl-THA-美金刚杂种比母体化合物美金刚在定量上表现出更好的神经保护作用。 结论:我们得出的结论是,将具有共同作用机制的两种药效基团组合成一个分子,为治疗与NMDAR介导的认知能力下降和/或兴奋性毒性相关的CNS疾病提供了巨大的潜力。

关键词: 6-氯罗他命,美金刚,乙酰胆碱酯酶,NMDA受体,阿尔茨海默氏病,离子通道,膜片钳技术。

[1]
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8): 1467-72. (1993).
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[2]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558): 408-14. (1982).
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[3]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297(5580): 353-6. (2002).
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32(5): 367-81. (2001).
[http://dx.doi.org/10.1016/S0188-4409(01)00316-2] [PMID: 11578751]
[5]
Swomley AM, Butterfield DA. Oxidative stress in Alzheimer disease and mild cognitive impairment: Evidence from human data provided by redox proteomics. Arch Toxicol 89(10): 1669-80. (2015).
[http://dx.doi.org/10.1007/s00204-015-1556-z] [PMID: 26126631]
[6]
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of alzheimer’s disease: an update. Ann Neurosci 24(1): 46-54. (2017).
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[7]
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17(9): 641-52. (2003).
[http://dx.doi.org/10.2165/00023210-200317090-00004] [PMID: 12828500]
[8]
Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 10(5): 593-602. (1989).
[http://dx.doi.org/10.1016/0197-4580(89)90143-7] [PMID: 2554168]
[9]
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2): 137-47. (1999).
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[10]
Adem A. Putative mechanisms of action of tacrine in Alzheimer’s disease. Acta Neurol Scand Suppl 139: 69-74. (1992).
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb04458.x] [PMID: 1384265]
[11]
Horak M, Holubova K, Nepovimova E, Krusek J, Kaniakova M, Korabecny J, et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog Neuropsychopharmacol Biol Psychiatry 75: 54-62. (2017).
[http://dx.doi.org/10.1016/j.pnpbp.2017.01.003] [PMID: 28089695]
[12]
Qizilbash N, Birks J, Lopez Arrieta J, Lewington S, Szeto S. WITHDRAWN: tacrine for Alzheimer’s disease. Cochrane Database Syst Rev (3): CD000202 (2007).
[PMID: 17636619]
[13]
Maresova P, Klimova B, Novotny M, Kuca K. Alzheimer’s and Parkinson’s diseases: expected economic impact on europe-a call for a uniform european strategy. J Alzheimers Dis 54(3): 1123-33. (2016).
[http://dx.doi.org/10.3233/JAD-160484] [PMID: 27567862]
[14]
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3): 347-72. (2008).
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[15]
Prati F, Cavalli A, Bolognesi ML. Navigating the chemical space of multitarget-directed ligands: from hybrids to fragments in Alzheimer’s disease. Molecules 21(4): 466. (2016).
[http://dx.doi.org/10.3390/molecules21040466] [PMID: 27070562]
[16]
Zhang X, Rakesh KP, Bukhari SNA, Balakrishna M, Manukumar HM, Qin H-L. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: current view and upcoming advice. Bioorg Chem 80: 86-93. (2018).
[http://dx.doi.org/10.1016/j.bioorg.2018.06.009] [PMID: 29890362]
[17]
Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem 33(1): 583-606. (2018).
[http://dx.doi.org/10.1080/14756366.2018.1443326] [PMID: 29529892]
[18]
Simoni E, Daniele S, Bottegoni G, Trincavelli ML, Goldoni L, Tarozzo G, et al. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J Med Chem 2012; 55(22): 9708-21.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[19]
Misik J, Nepovimova E, Pejchal J, Kassa J, Korabecny J, Soukup O. Cholinesterase inhibitor 6-chlorotacrine - in vivo toxicological profile and behavioural effects. Curr Alzheimer Res 15(6): 552-60. (2018).
[http://dx.doi.org/10.2174/1567205015666171212105412] [PMID: 29231138]
[20]
Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022): 872-9. (1991).
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[21]
Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, et al. Tacrine-Trolox Hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22): 8985-9003. (2015).
[http://dx.doi.org/10.1021/acs.jmedchem.5b01325] [PMID: 26503905]
[22]
Roldán-Peña JM, Alejandre-Ramos D, López Ó, Maya I, Lagunes I, Padrón JM, et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur J Med Chem 2017; 138: 761-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.048] [PMID: 28728108]
[23]
Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22): 10282-6. (2012).
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[24]
Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, et al. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem J 453(3): 393-9. (2013).
[http://dx.doi.org/10.1042/BJ20130013] [PMID: 23679855]
[25]
Jeřábek J, Uliassi E, Guidotti L, Korábečný J, Soukup O, Sepsova V, et al. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur J Med Chem 127: 250-62. (2017).
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[26]
Janockova J, Dolezal R, Nepovimova E, Kobrlova T, Benkova M, Kuca K, et al. Investigation of new orexin 2 receptor modulators using in silico and in vitro methods. Mol Basel Switz 23: 11. (2018).
[PMID: 30423961 ]
[27]
Malinak D, Dolezal R, Marek J, Salajkova S, Soukup O, Vejsova M, et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: synthesis and antimicrobial activity. Bioorg Med Chem Lett 24(22): 5238-41. (2014).
[http://dx.doi.org/10.1016/j.bmcl.2014.09.060] [PMID: 25442318]
[28]
Kaniakova M, Krausova B, Vyklicky V, Korinek M, Lichnerova K, Vyklicky L, et al. Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J Biol Chem 287(31): 26423-34. (2012).
[http://dx.doi.org/10.1074/jbc.M112.339085] [PMID: 22711533]
[29]
Lichnerova K, Kaniakova M, Park SP, Skrenkova K, Wang YX, Petralia RS, et al. Two N-glycosylation sites in the glun1 subunit are essential for releasing n-methyl-d-aspartate (NMDA) receptors from the endoplasmic reticulum. J Biol Chem 290(30): 18379-90. (2015).
[http://dx.doi.org/10.1074/jbc.M115.656546] [PMID: 26045554]
[30]
Kaniakova M, Kleteckova L, Lichnerova K, Holubova K, Skrenkova K, Korinek M, et al. 7-Methoxyderivative of tacrine is a ‘foot-in-the-door’ open-channel blocker of GluN1/GluN2 and GluN1/GluN3 NMDA receptors with neuroprotective activity in vivo. Neuropharmacology 140: 217-32. (2018).
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.010] [PMID: 30099049]
[31]
Schmued LC, Albertson C, Slikker W Jr. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751(1): 37-46. (1997).
[http://dx.doi.org/10.1016/S0006-8993(96)01387-X] [PMID: 9098566]
[32]
Kleteckova L, Tsenov G, Kubova H, Stuchlik A, Vales K. Neuroprotective effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett 564: 11-5. (2014).
[http://dx.doi.org/10.1016/j.neulet.2014.01.057] [PMID: 24513236]
[33]
Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, et al. A systematic review on donepezil-based derivatives as potential cholinesterase inhibitors for Alzheimer’s disease. Curr Med Chem (2018). 10.2174/0929867325666180517094023.
[http://dx.doi.org/10.2174/0929867325666180517094023] [PMID: 29768996]
[34]
Arendt T, Brückner MK, Lange M, Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development--a study of molecular forms. Neurochem Int 21(3): 381-96. (1992).
[http://dx.doi.org/10.1016/0197-0186(92)90189-X] [PMID: 1303164]
[35]
Cheewakriengkrai L, Gauthier S. A 10-year perspective on donepezil. Expert Opin Pharmacother 14(3): 331-8. (2013).
[http://dx.doi.org/10.1517/14656566.2013.760543] [PMID: 23316713]
[36]
Hershkowitz N, Rogawski MA. Tetrahydroaminoacridine block of N-methyl-D-aspartate-activated cation channels in cultured hippocampal neurons. Mol Pharmacol 39(5): 592-8. (1991).
[PMID: 1709720]
[37]
Vorobjev VS, Sharonova IN. Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner. Eur J Pharmacol 253(1-2): 1-8. (1994).
[http://dx.doi.org/10.1016/0014-2999(94)90750-1] [PMID: 8013535]
[38]
Costa AC, Albuquerque EX. Dynamics of the actions of tetrahydro-9-aminoacridine and 9-aminoacridine on glutamatergic currents: concentration-jump studies in cultured rat hippocampal neurons. J Pharmacol Exp Ther 268(1): 503-14. (1994).
[PMID: 7507997]
[39]
Sobolevskii AI, Khodorov BI. Blocker studies of the functional architecture of the NMDA receptor channel. Neurosci Behav Physiol 32(2): 157-71. (2002).
[http://dx.doi.org/10.1023/A:1013927409034] [PMID: 11942695]
[40]
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, et al. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep 5: 10935. (2015).
[http://dx.doi.org/10.1038/srep10935] [PMID: 26086919]
[41]
Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol 77(1): 309-23. (1997).
[http://dx.doi.org/10.1152/jn.1997.77.1.309] [PMID: 9120573]
[42]
Kotermanski SE, Wood JT, Johnson JW. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol 587(Pt 19): 4589-604. (2009).
[http://dx.doi.org/10.1113/jphysiol.2009.176297] [PMID: 19687120]
[43]
Rambousek L, Kleteckova L, Kubesova A, Jirak D, Vales K, Fritschy J-M. Rat intra-hippocampal NMDA infusion induces cell-specific damage and changes in expression of NMDA and GABAA receptor subunits. Neuropharmacology 105: 594-606. (2016).
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.035] [PMID: 26930443]
[44]
Orgogozo J-M, Rigaud A-S, Stöffler A, Möbius H-J, Forette F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke 33(7): 1834-9. (2002).
[http://dx.doi.org/10.1161/01.STR.0000020094.08790.49] [PMID: 12105362]
[45]
Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14): 1333-41. (2003).
[http://dx.doi.org/10.1056/NEJMoa013128] [PMID: 12672860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy