Review Article

铂类抗癌化合物在联合治疗中的应用及给药的挑战

卷 27, 期 18, 2020

页: [3055 - 3078] 页: 24

弟呕挨: 10.2174/0929867325666181105115849

价格: $65

摘要

铂类药物是目前金属类药物中最重要的药物之一,广泛应用于实体恶性肿瘤的治疗。尽管铂的显著副作用和获得性耐药限制了其临床应用,但它对多种肿瘤均有较强的抑制作用。使用脂质体、树状大分子、聚合物、纳米管和其他纳米组合物等新兴技术的药物给药系统都显示出了安全给药铂基化合物的前景。由于纳米配方的特殊性;可在很大程度上避免不必要的副作用和耐药性。此外,联合治疗已被证明是提高铂类抗肿瘤药物疗效的有效途径。本文首先介绍了铂给药系统和联合治疗给药系统。然后,我们重点介绍了联合治疗给药领域的一些最新进展;特别是在利用以铂为基础的药物的细胞毒性、其他药物与铂的联合效应、评估药物靶向性、减少副作用和基于纳米技术的给药平台的位点特异性等方面的进展。

关键词: 给药,药物组合,铂类药物,纳米颗粒,抗肿瘤药物,纳米技术给药。

[1]
Albain, K.S.; Swann, R.S.; Rusch, V.W.; Turrisi, A.T., III; Shepherd, F.A.; Smith, C.; Chen, Y.; Livingston, R.B.; Feins, R.H.; Gandara, D.R.; Fry, W.A.; Darling, G.; Johnson, D.H.; Green, M.R.; Miller, R.C.; Ley, J.; Sause, W.T.; Cox, J.D. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet, 2009, 374(9687), 379-386.
[http://dx.doi.org/10.1016/S0140-6736(09)60737-6] [PMID: 19632716]
[2]
Kim, E.S.; Putnam, J.B.; Komaki, R.; Walsh, G.L.; Ro, J.Y.; Shin, H.J.; Truong, M.; Moon, H.; Swisher, S.G.; Fossella, F.V.; Khuri, F.R.; Hong, W.K.; Shin, D.M. Phase II study of a multidisciplinary approach with induction chemotherapy, followed by surgical resection, radiation therapy, and consolidation chemotherapy for unresectable malignant thymomas: final report. Lung Cancer, 2004, 44(3), 369-379.
[http://dx.doi.org/10.1016/j.lungcan.2003.12.010] [PMID: 15140551]
[3]
Kwon, J.H.; Bae, S.H.; Kim, J.Y.; Choi, B.O.; Jang, H.S.; Jang, J.W.; Choi, J.Y.; Yoon, S.K.; Chung, K.W. Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer, 2010, 10, 475-485.
[http://dx.doi.org/10.1186/1471-2407-10-475] [PMID: 20813065]
[4]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[5]
Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; van der Burg, E.; Nygren, A.O.; Zander, S.A.; Derksen, P.W.; de Bruin, M.; Zevenhoven, J.; Lau, A.; Boulter, R.; Cranston, A.; O’Connor, M.J.; Martin, N.M.; Borst, P.; Jonkers, J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17079-17084.
[http://dx.doi.org/10.1073/pnas.0806092105] [PMID: 18971340]
[6]
Rossof, A.H.; Slayton, R.E.; Perlia, C.P. Preliminary clinical experience with cis-diamminedichloroplatinum (II) (NSC 119875, CACP). Cancer, 1972, 30(6), 1451-1456.
[http://dx.doi.org/10.1002/1097-0142(197212)30:6<1451:AID-CNCR2820300606>3.0.CO;2-Q] [PMID: 4641756]
[7]
Kelland, L. Broadening the clinical use of platinum drug-based chemotherapy with new analogues. Satraplatin and picoplatin. Expert Opin. Investig. Drugs, 2007, 16(7), 1009-1021.
[http://dx.doi.org/10.1517/13543784.16.7.1009] [PMID: 17594186]
[8]
Song, Y. WAS; Peña D.; Jiang Y. Foamlike nanostructures created from dendritic platinum sheets on liposomes. Chem. Mater., 2016, 18, 2335-2346.
[http://dx.doi.org/10.1021/cm060384d]
[9]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[10]
Wang, X.; Guo, Z. Targeting and delivery of platinum-based anticancer drugs. Chem. Soc. Rev., 2013, 42(1), 202-224.
[http://dx.doi.org/10.1039/C2CS35259A] [PMID: 23042411]
[11]
Dai, Y.; Xiao, H.; Liu, J.; Yuan, Q.; Ma, P.; Yang, D.; Li, C.; Cheng, Z.; Hou, Z.; Yang, P.; Lin, J. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc., 2013, 135(50), 18920-18929.
[http://dx.doi.org/10.1021/ja410028q] [PMID: 24279316]
[12]
Rudnev, A.V.; Aleksenko, S.S.; Semenova, O.; Hartinger, C.G.; Timerbaev, A.R.; Keppler, B.K. Determination of binding constants and stoichiometries for platinum anticancer drugs and serum transport proteins by capillary electrophoresis using the Hummel-Dreyer method. J. Sep. Sci., 2005, 28(2), 121-127.
[http://dx.doi.org/10.1002/jssc.200401930] [PMID: 15754818]
[13]
Graham, J.; Muhsin, M.; Kirkpatrick, P. Fresh from the Pipeline: oxaliplatin. Dressnat. Rev. Drug Discov., 2003, 3, 11-12.
[http://dx.doi.org/10.1038/nrd1287]
[14]
Pasetto, L.M.; D’Andrea, M.R.; Rossi, E.; Monfardini, S. Oxaliplatin-related neurotoxicity: how and why? Crit. Rev. Oncol. Hematol., 2006, 59(2), 159-168.
[http://dx.doi.org/10.1016/j.critrevonc.2006.01.001] [PMID: 16806962]
[15]
Galanski, M.; Jakupec, M.A.; Keppler, B.K. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem., 2005, 12(18), 2075-2094.
[http://dx.doi.org/10.2174/0929867054637626] [PMID: 16101495]
[16]
Hall, M. The discovery and development of cisplatin. J. Chem. Educ., 2006, 83, 728-734.
[http://dx.doi.org/10.1021/ed083p728]
[17]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in E. coli by electrolysis produced from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[18]
Weiss, R.B.; Christian, M.C. New cisplatin analogues in development. A review. Drugs, 1993, 46(3), 360-377.
[http://dx.doi.org/10.2165/00003495-199346030-00003] [PMID: 7693428]
[19]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[20]
Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99(9), 2451-2466.
[http://dx.doi.org/10.1021/cr980420v] [PMID: 11749486]
[21]
Rosenberg, B. Noble metal complexes in cancer chemotherapy. Adv. Exp. Med. Biol., 1977, 91, 129-150.
[http://dx.doi.org/10.1007/978-1-4684-0796-9_10] [PMID: 343531]
[22]
Hill, J.M.; Speer, R.J. Organo-platinum complexes as antitumor agents (review). Anticancer Res., 1982, 2(3), 173-186.
[PMID: 6751211]
[23]
Reiman, H.M.; Goellner, J.R.; Woods, J.E.; Mixter, R.C. Desmoplastic melanoma of the head and neck. Cancer, 1987, 60(9), 2269-2274.
[http://dx.doi.org/10.1002/1097-0142(19871101)60:9<2269:AID-CNCR2820600928>3.0.CO;2-W] [PMID: 3440236]
[24]
Boulikas, T.; Vougiouka, M. Cisplatin and platinum drugs at the molecular level. (Review). Oncol. Rep., 2003, 10(6), 1663-1682.
[http://dx.doi.org/10.3892/or.10.6.1663] [PMID: 14534679]
[25]
Pil, P.M.; Lippard, S.J. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science, 1992, 256(5054), 234-237.
[http://dx.doi.org/10.1126/science.1566071] [PMID: 1566071]
[26]
Johnson, N.P.; Butour, J.L.; Villani, G.; Wimmer, F.L.; Defais, M.; Pierson, V. Metal antitumor compounds: the mechanism of action of platinum complexes. Prog. Clin. Biochem. Med., 1989, 10, 1-24.
[http://dx.doi.org/10.1007/978-3-642-74760-1_1]
[27]
Zhu, G.; Myint, M.; Ang, W.H.; Song, L.; Lippard, S.J. Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells. Cancer Res., 2012, 72(3), 790-800.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3151] [PMID: 22180496]
[28]
Comess, K.M.; Burstyn, J.N.; Essigmann, J.M.; Lippard, S.J. Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diamminedichloroplatinum(II) DNA adducts. Biochemistry, 1992, 31(16), 3975-3990.
[http://dx.doi.org/10.1021/bi00131a013] [PMID: 1314653]
[29]
Teni, B.; Alexandros, P.; Evagelos, B.; Petros, C. Designing platinum compounds in cancer: structures and mechanisms. Cancer Ther., 2007, 5, 537-583.
[30]
Fokas, E.; Prevo, R.; Hammond, E.M.; Brunner, T.B.; McKenna, W.G.; Muschel, R.J. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat. Rev., 2014, 40(1), 109-117.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.002] [PMID: 23583268]
[31]
N’soukpoé-Kossi, C.N.; Descôteaux, C.; Asselin, E.; Tajmir-Riahi, H.A.; Bérubé, G. N’soukpoéKossi C. N.DNA interaction with novel antitumor estradiol-platinum(II) hybrid molecule: a comparative study with cisplatin drug. DNA Cell Biol., 2008, 27(2), 101-107.
[http://dx.doi.org/10.1089/dna.2007.0669] [PMID: 17970617]
[32]
Damsma, G.E.; Alt, A.; Brueckner, F.; Carell, T.; Cramer, P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol., 2007, 14(12), 1127-1133.
[http://dx.doi.org/10.1038/nsmb1314] [PMID: 17994106]
[33]
Abu-Surrah, A.S.; Kettunen, M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem., 2006, 13(11), 1337-1357.
[http://dx.doi.org/10.2174/092986706776872970] [PMID: 16712474]
[34]
Li, W.; Jiang, M.; Cao, Y.; Yan, L.; Qi, R.; Li, Y.; Jing, X. Turning ineffective transplatin into a highly potent anticancer drug via a prodrug strategy for drug delivery and inhibiting cisplatin drug resistance. Bioconjug. Chem., 2016, 27(8), 1802-1806.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00302] [PMID: 27380489]
[35]
Du, R.; Xiao, H.; Guo, G.; Jiang, B.; Yan, X.; Li, W.; Yang, X.; Zhang, Y.; Li, Y.; Jing, X. Nanoparticle delivery of photosensitive Pt(IV) drugs for circumventing cisplatin cellular pathway and on-demand drug release. Colloids Surf. B Biointerfaces, 2014, 123, 734-741.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.015] [PMID: 25454669]
[36]
Song, H.; Li, W.; Qi, R.; Yan, L.; Jing, X.; Zheng, M.; Xiao, H. Delivering a photosensitive transplatin prodrug to overcome cisplatin drug resistance. Chem. Commun. (Camb.), 2015, 51(57), 11493-11495.
[http://dx.doi.org/10.1039/C5CC03692E] [PMID: 26094840]
[37]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[38]
Köberle, B.; Tomicic, M.T.; Usanova, S.; Kaina, B. Cisplatin resistance: preclinical findings and clinical implications. Biochim. Biophys. Acta, 2010, 1806(2), 172-182.
[http://dx.doi.org/10.1016/j.bbcan.2010.07.004] [PMID: 20647037]
[39]
Rajeswaran, A.; Trojan, A.; Burnand, B.; Giannelli, M. Efficacy and side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small cell lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer, 2008, 59(1), 1-11.
[http://dx.doi.org/10.1016/j.lungcan.2007.07.012] [PMID: 17720276]
[40]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[41]
Harmers, F.P.; Gispen, W.H.; Neijt, J.P. Neurotoxic side-effects of cisplatin. Eur. J. Cancer, 1991, 27(3), 372-376.
[http://dx.doi.org/10.1016/0277-5379(91)90549-S] [PMID: 1827334]
[42]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[43]
Extramiana, F.; Maison-Blanche, P.; Badilini, F.; Beaufils, P.; Leenhardt, A. Individual QT-R-R relationship: average stability over time does not rule out an individual residual variability: implication for the assessment of drug effect on the QT interval. Ann. Noninvasive Electrocardiol., 2005, 10(2), 169-178.
[http://dx.doi.org/10.1111/j.1542-474X.2005.05615.x] [PMID: 15842429]
[44]
Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.J. Panel members.Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol., 2011, 22(8), 1736-1747.
[http://dx.doi.org/10.1093/annonc/mdr304] [PMID: 21709140]
[45]
Yang, Q.; Qi, R.; Cai, J.; Kang, X.; Sun, S.; Xiao, H.; Jing, X.; Li, W.; Wang, Z. Biodegradable polymer-platinum drug conjugates to overcome platinum drug resistance. RSC Advances, 2015, 5, 83343-83349.
[http://dx.doi.org/10.1039/C5RA11297D]
[46]
Hartmann, J.T.; Fels, L.M.; Franzke, A.; Knop, S.; Renn, M.; Maess, B.; Panagiotou, P.; Lampe, H.; Kanz, L.; Stolte, H.; Bokemeyer, C. Comparative study of the acute nephrotoxicity from standard dose cisplatin +/- ifosfamide and high-dose chemotherapy with carboplatin and ifosfamide. Anticancer Res., 2000, 20(5C), 3767-3773.
[PMID: 11268452]
[47]
Ando, M.; Minami, H.; Ando, Y.; Saka, H.; Sakai, S.; Yamamoto, M.; Sasaki, Y.; Shimokata, K.; Hasegawa, Y. Multi-institutional validation study of carboplatin dosing formula using adjusted serum creatinine level. Clin. Cancer Res., 2000, 6(12), 4733-4738.
[PMID: 11156227]
[48]
Lipp, H.P.; Hartmann, J.T. [Platinum compounds: metabolism,toxicity and supportive strategies]. Praxis (Bern 1994), 2005, 94(6), 187-198.
[http://dx.doi.org/10.1024/0369-8394.94.6.187] [PMID: 15754530]
[49]
Lokich, J.; Anderson, N. Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann. Oncol., 1998, 9(1), 13-21.
[http://dx.doi.org/10.1023/A:1008215213739] [PMID: 9541678]
[50]
Wolf, M.; Tessen, H.W.; Goerg, C.; Achterrath, W.; Drings, P.; Havemann, K. Determining carboplatin/etoposide dosage in extensive stage small-cell lung cancer (SCLC). Ann. Oncol., 1991, 2(5), 361-364.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a057957] [PMID: 1659449]
[51]
Köster, W.; Stamatis, G.; Heider, A.; Avramidis, K.; Wilke, H.; Koch, J.A.; Stahl, M. Carboplatin in combination with bendamustine in previously untreated patients with extensive-Stage Small Cell Lung Cancer (SCLC). Clin. Drug Investig., 2004, 24(10), 611-618.
[http://dx.doi.org/10.2165/00044011-200424100-00007] [PMID: 17523723]
[52]
du Bois, A.; Lück, H.J.; Meier, W.; Adams, H.P.; Möbus, V.; Costa, S.; Bauknecht, T.; Richter, B.; Warm, M.; Schröder, W.; Olbricht, S.; Nitz, U.; Jackisch, C.; Emons, G.; Wagner, U.; Kuhn, W.; Pfisterer, J. Arbeitsgemeinschaft Gynäkologische Onkologie Ovarian Cancer Study Group.A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J. Natl. Cancer Inst., 2003, 95(17), 1320-1329.
[http://dx.doi.org/10.1093/jnci/djg036] [PMID: 12953086]
[53]
Osterberg, L.; Levan, K.; Partheen, K.; Helou, K.; Horvath, G. Cytogenetic analysis of carboplatin resistance in early-stage epithelial ovarian carcinoma. Cancer Genet. Cytogenet., 2005, 163(2), 144-150.
[http://dx.doi.org/10.1016/j.cancergencyto.2005.06.023] [PMID: 16337857]
[54]
Sharma, A.; Meena, A.S.; Bhat, M.K. Hyperthermia-associated carboplatin resistance: differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci., 2010, 101(5), 1186-1193.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01516.x] [PMID: 20180806]
[55]
Vuković, L.; Osmak, M. Reversal of carboplatin resistance in human laryngeal carcinoma cells. Neoplasma, 1999, 46(6), 335-341.
[PMID: 10732861]
[56]
Di Francesco, A.M.; Ruggiero, A.; Riccardi, R. Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell. Mol. Life Sci., 2002, 59(11), 1914-1927.
[http://dx.doi.org/10.1007/PL00012514] [PMID: 12530522]
[57]
Tesniere, A.; Schlemmer, F.; Boige, V.; Kepp, O.; Martins, I.; Ghiringhelli, F.; Aymeric, L.; Michaud, M.; Apetoh, L.; Barault, L.; Mendiboure, J.; Pignon, J.P.; Jooste, V.; van Endert, P.; Ducreux, M.; Zitvogel, L.; Piard, F.; Kroemer, G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010, 29(4), 482-491.
[http://dx.doi.org/10.1038/onc.2009.356] [PMID: 19881547]
[58]
André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; Tabah-Fisch, I.; de Gramont, A. Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators.Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med., 2004, 350(23), 2343-2351.
[http://dx.doi.org/10.1056/NEJMoa032709] [PMID: 15175436]
[59]
Arango, D.; Wilson, A.J.; Shi, Q.; Corner, G.A.; Arañes, M.J.; Nicholas, C.; Lesser, M.; Mariadason, J.M.; Augenlicht, L.H. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer, 2004, 91(11), 1931-1946.
[http://dx.doi.org/10.1038/sj.bjc.6602215] [PMID: 15545975]
[60]
Raymond, E.; Faivre, S.; Woynarowski, J.M.; Chaney, S.G. Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol., 1998, 25(2)(Suppl. 5), 4-12.
[PMID: 9609103]
[61]
Wu, S.N.; Chen, B.S.; Wu, Y.H.; Peng, H.; Chen, L.T. The mechanism of the actions of oxaliplatin on ion currents and action potentials in differentiated NG108-15 neuronal cells. Neurotoxicology, 2009, 30(4), 677-685.
[http://dx.doi.org/10.1016/j.neuro.2009.04.010] [PMID: 19422847]
[62]
Stathopoulos, G.P.; Boulikas, T. Lipoplatin formulation review article. J. Drug Deliv., 2012, 2012581363
[http://dx.doi.org/10.1155/2012/581363] [PMID: 21904682]
[63]
Boulikas, T. Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs, 2009, 18(8), 1197-1218.
[http://dx.doi.org/10.1517/13543780903114168] [PMID: 19604121]
[64]
Arienti, C.; Tesei, A.; Ravaioli, A.; Ratta, M.; Carloni, S.; Mangianti, S.; Ulivi, P.; Nicoletti, S.; Amadori, D.; Zoli, W. Activity of lipoplatin in tumor and in normal cells in vitro. Anticancer Drugs, 2008, 19(10), 983-990.
[http://dx.doi.org/10.1097/CAD.0b013e3283114fb2] [PMID: 18827563]
[65]
Doucette, K.A.; Hassell, K.N.; Crans, D.C. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. J. Inorg. Biochem., 2016, 165, 56-70.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.09.013] [PMID: 27751591]
[66]
Boulikas, T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol. Rep., 2004, 12(1), 3-12.
[http://dx.doi.org/10.3892/or.12.1.3] [PMID: 15201951]
[67]
Devarajan, P.; Tarabishi, R.; Mishra, J.; Ma, Q.; Kourvetaris, A.; Vougiouka, M.; Boulikas, T. Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res., 2004, 24(4), 2193-2200.
[PMID: 15330160]
[68]
Boulikas, T.; Stathopoulos, G.P.; Volakakis, N.; Vougiouka, M. Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res., 2005, 25(4), 3031-3039.
[PMID: 16080562]
[69]
Yamashita, H.; Nakagawa, K.; Tago, M.; Igaki, H.; Nakamura, N.; Shiraishi, K.; Sasano, N.; Ohtomo, K. Radiation therapy combined with cis-diammine-glycolatoplatinum (nedaplatin) and 5-fluorouracil for Japanese stage II-IV esophageal cancer compared with cisplatin plus 5-fluorouracil regimen: a retrospective study. Dis. Esophagus, 2006, 19(1), 15-19.
[http://dx.doi.org/10.1111/j.1442-2050.2006.00531.x] [PMID: 16364038]
[70]
Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 317-325.
[http://dx.doi.org/10.1016/S1040-8428(01)00219-0] [PMID: 12050023]
[71]
Kawai, Y.; Taniuchi, S.; Okahara, S.; Nakamura, M.; Gemba, M. Relationship between cisplatin or nedaplatin-induced nephrotoxicity and renal accumulation. Biol. Pharm. Bull., 2005, 28(8), 1385-1388.
[http://dx.doi.org/10.1248/bpb.28.1385] [PMID: 16079479]
[72]
Uehara, T.; Tsuchiya, N.; Torii, M.; Yamate, J.; Maruyama, T. Amelioration of nedaplatin-induced nephrotoxicity by continuous infusion in rats. J. Toxicol. Pathol., 2007, 20, 141-147.
[http://dx.doi.org/10.1293/tox.20.141]
[73]
Uehara, T.; Tsuchiya, N.; Masuda, A.; Torii, M.; Nakamura, M.; Yamate, J.; Maruyama, T. Time course of the change and amelioration of nedaplatin-induced nephrotoxicity in rats. J. Appl. Toxicol., 2008, 28(3), 388-398.
[http://dx.doi.org/10.1002/jat.1292] [PMID: 17685399]
[74]
Gao, Y.; Jiang, M.; Ma, Y.; Wu, S.; Li, W.; Yang, X.; Li, Y.; Jing, X.; Jiang, H. Overcoming cisplatin drug resistance by nanoparticle-mediated delivery of multinuclear platinum(IV) prodrugs. Anticancer Drugs, 2016, 27, 77-83.
[http://dx.doi.org/10.1097/CAD.0000000000000302] [PMID: 26473527]
[75]
Uehara, T.; Miyoshi, T.; Tsuchiya, N.; Masuno, K.; Okada, M.; Inoue, S.; Torii, M.; Yamate, J.; Maruyama, T. Comparative analysis of gene expression between renal cortex and papilla in nedaplatin-induced nephrotoxicity in rats. Hum. Exp. Toxicol., 2007, 26(10), 767-780.
[http://dx.doi.org/10.1177/0960327107084069] [PMID: 18025048]
[76]
Servidei, T.; Ferlini, C.; Riccardi, A.; Meco, D.; Scambia, G.; Segni, G.; Manzotti, C.; Riccardi, R. The novel trinuclear platinum complex BBR3464 induces a cellular response different from cisplatin. Eur. J. Cancer, 2001, 37(7), 930-938.
[http://dx.doi.org/10.1016/S0959-8049(01)00061-2] [PMID: 11313183]
[77]
Kasparkova, J.; Zehnulova, J.; Farrell, N.; Brabec, V. DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair. J. Biol. Chem., 2002, 277(50), 48076-48086.
[http://dx.doi.org/10.1074/jbc.M208016200] [PMID: 12226099]
[78]
Qu, Y.; Scarsdale, N.J.; Tran, M.C.; Farrell, N.P. Cooperative effects in long-range 1,4 DNA-DNA interstrand cross-links formed by polynuclear platinum complexes: an unexpected syn orientation of adenine bases outside the binding sites. J. Biol. Inorg. Chem., 2003, 8(1-2), 19-28.
[http://dx.doi.org/10.1007/s00775-002-0383-x] [PMID: 12459895]
[79]
Manzotti, C.; Pratesi, G.; Menta, E.; Di Domenico, R.; Cavalletti, E.; Fiebig, H.H.; Kelland, L.R.; Farrell, N.; Polizzi, D.; Supino, R.; Pezzoni, G.; Zunino, F. BBR 3464: a novel triplatinum complex, exhibiting a preclinical profile of antitumor efficacy different from cisplatin. Clin. Cancer Res., 2000, 6(7), 2626-2634.
[PMID: 10914703]
[80]
Di Blasi, P.; Bernareggi, A.; Beggiolin, G.; Piazzoni, L.; Menta, E.; Formento, M.L. Cytotoxicity, cellular uptake and DNA binding of the novel trinuclear platinun complex BBR 3464 in sensitive and cisplatin resistant murine leukemia cells. Anticancer Res., 1998, 18(4C), 3113-3117.
[PMID: 9713519]
[81]
Perego, P.; Caserini, C.; Gatti, L.; Carenini, N.; Romanelli, S.; Supino, R.; Colangelo, D.; Viano, I.; Leone, R.; Spinelli, S.; Pezzoni, G.; Manzotti, C.; Farrell, N.; Zunino, F. A novel trinuclear platinum complex overcomes cisplatin resistance in an osteosarcoma cell system. Mol. Pharmacol., 1999, 55(3), 528-534.
[PMID: 10051537]
[82]
Wang, X.; Guo, Z. Towards the rational design of platinum(II) and gold(III) complexes as antitumour agents. Dalton Trans., 2008, 12(12), 1521-1532.
[http://dx.doi.org/10.1039/B715903J] [PMID: 18335133]
[83]
Kjellström, J.; Oredsson, S.M.; Wennerberg, J. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion. Cancer Cell Int., 2012, 12(1), 20-20.
[http://dx.doi.org/10.1186/1475-2867-12-20] [PMID: 22640800]
[84]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[85]
Hu, C.M.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol., 2012, 83(8), 1104-1111.
[http://dx.doi.org/10.1016/j.bcp.2012.01.008] [PMID: 22285912]
[86]
Randolph, V.L.; Vallejo, A.; Spiro, R.H.; Shah, J.; Strong, E.W.; Huvos, A.G.; Wittes, R.E. Combination therapy of advanced head and neck cancer: induction of remissions with diamminedichloroplatinum (II), bleomycin and radiation therapy. Cancer, 1978, 41(2), 460-467.
[http://dx.doi.org/10.1002/1097-0142(197802)41:2 ‹460::AIDCNCR2820410213›3.0.CO;2-9] [PMID: 75760]
[87]
Conciatori, F.; Ciuffreda, L.; Bazzichetto, C.; Falcone, I.; Pilotto, S.; Bria, E.; Cognetti, F.; Milella, M. mTOR cross-talk in cancer and potential for combination therapy. Cancers (Basel), 2018, 10(1), 23-53.
[http://dx.doi.org/10.3390/cancers10010023] [PMID: 29351204]
[88]
Prabhakar, P.K.; Kumar, A.; Doble, M. Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine, 2014, 21(2), 123-130.
[http://dx.doi.org/10.1016/j.phymed.2013.08.020] [PMID: 24074610]
[89]
Ayyagari, V.N.; Hsieh, T.J.; Diaz-Sylvester, P.L.; Brard, L.; Laurent, B. Evaluation of the cytotoxicity of the Bithionol - cisplatin combination in a panel of human ovarian cancer cell lines. BMC Cancer, 2017, 17(1), 49-54.
[http://dx.doi.org/10.1186/s12885-016-3034-2] [PMID: 28086831]
[90]
Park, S.O.; Yoo, Y.B.; Kim, Y.H.; Baek, K.J.; Yang, J.H.; Choi, P.C.; Lee, J.H.; Lee, K.R.; Park, K.S. Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Ann. Surg. Treat. Res., 2015, 88(2), 55-62.
[http://dx.doi.org/10.4174/astr.2015.88.2.55] [PMID: 25692115]
[91]
Fløtten, Ø.; Grønberg, B.H.; Bremnes, R.; Amundsen, T.; Sundstrøm, S.; Rolke, H.; Hornslien, K.; Wentzel-Larsen, T.; Aasebø, U.; von Plessen, C. Vinorelbine and gemcitabine vs vinorelbine and carboplatin as first-line treatment of advanced NSCLC. A phase III randomised controlled trial by the Norwegian Lung Cancer Study Group. Br. J. Cancer, 2012, 107(3), 442-447.
[http://dx.doi.org/10.1038/bjc.2012.284] [PMID: 22759880]
[92]
Belani, C.P. Optimizing chemotherapy for advanced non-small cell lung cancer: focus on docetaxel. Lung Cancer, 2005, 50(Suppl. 2), S3-S8.
[http://dx.doi.org/10.1016/S0169-5002(05)81567-3] [PMID: 16557668]
[93]
Kubota, K.; Kawahara, M.; Ogawara, M.; Nishiwaki, Y.; Komuta, K. Vinorelbine, gemcitabine, docetaxel, carboplatin, paclitaxel, non-small-cell lung cancer, NSCLC. Lancet Oncol., 2008, 9, 1135-1142.
[http://dx.doi.org/10.1016/S1470-2045(08)70261-4] [PMID: 19013107]
[94]
Pandha, H.S.; Heinemann, L.; Simpson, G.R.; Melcher, A.; Prestwich, R.; Errington, F.; Coffey, M.; Harrington, K.J.; Morgan, R. Synergistic effects of oncolytic reovirus and cisplatin chemotherapy in murine malignant melanoma. Clin. Cancer Res., 2009, 15(19), 6158-6166.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0796] [PMID: 19773377]
[95]
Lokich, J.J.; Anderson, N.; Bern, M.; Coco, F.; Dow, E. The multifractionated, twice-weekly dose schedule for a three-drug chemotherapy regimen: a phase I-II study of paclitaxel, cisplatin, and vinorelbine. Cancer, 1999, 85(2), 499-503.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990115)85:2<499:AID-CNCR31>3.0.CO;2-V] [PMID: 10023721]
[96]
Ozols, R.F.; Deisseroth, A.B.; Javadpour, N.; Barlock, A.; Messerschmidt, G.L.; Young, R.C. Treatment of poor prognosis nonseminomatous testicular cancer with a “high-dose” platinum combination chemotherapy regimen. Cancer, 1983, 51(10), 1803-1807.
[http://dx.doi.org/10.1002/1097-0142(19830515)51:10<1803:AID-CNCR2820511008>3.0.CO;2-F] [PMID: 6187426]
[97]
Buti, S.; Lazzarelli, S.; Chiesa, M.D.; Simonelli, C.; Re, G.L.; Lheshi, A.; Simon, S.; Mattioli, R.; Caminiti, C.; Mazza, G.; Donini, M.; Passalacqua, R. GOIRC (Italian Oncology Group for Clinical Research).Dose-finding trial of a combined regimen with bevacizumab, immunotherapy, and chemotherapy in patients with metastatic renal cell cancer: An Italian Oncology Group for Clinical Research (GOIRC) study. J. Immunother., 2010, 33(7), 735-741.
[http://dx.doi.org/10.1097/CJI.0b013e3181eb8289] [PMID: 20664353]
[98]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[99]
Valletregí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int., 2010, 46, 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488]
[100]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[101]
Wakaskar, R.R. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target., 2018, 26(4), 311-318.
[http://dx.doi.org/10.1080/1061186X.2017.1367006] [PMID: 28797169]
[102]
Cao, W.; Zhou, J.; Mann, A.; Wang, Y.; Zhu, L. Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery. Biomacromolecules, 2011, 12(7), 2697-2707.
[http://dx.doi.org/10.1021/bm200487h] [PMID: 21619062]
[103]
Ambade, A.V.; Savariar, E.N.; Thayumanavan, S. Dendrimeric micelles for controlled drug release and targeted delivery. Mol. Pharm., 2005, 2(4), 264-272.
[http://dx.doi.org/10.1021/mp050020d] [PMID: 16053329]
[104]
Wang, X.; Xue, M.; Gu, J.; Fang, X.; Sha, X. Transdermal microemulsion drug delivery system for impairing male reproductive toxicity and enhancing efficacy of Tripterygium Wilfordii Hook f. Fitoterapia, 2012, 83(4), 690-698.
[http://dx.doi.org/10.1016/j.fitote.2012.02.006] [PMID: 22391023]
[105]
Xinluan, W.; Yuxiao, L.; Helena, N.H.; Zhijun, Y.; Ling, Q. Systemic drug delivery systems for bone tissue regeneration- a mini review. Curr. Pharm. Des., 2015, 21(12), 1575-1583.
[http://dx.doi.org/10.2174/1381612821666150115152841] [PMID: 25594406]
[106]
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popovic, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2426-2431.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[107]
Pawar, P.V.; Domb, A.J.; Kumar, N. Systemic targeting systems-EPR effect, ligand targeting systems; Adv. Delivery Sci. Technol, 2014, pp. 61-91.
[http://dx.doi.org/10.1007/978-1-4614-9434-8_3]
[108]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[109]
Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv., 2013, 4(4), 421-423.
[http://dx.doi.org/10.4155/tde.13.8] [PMID: 23557281]
[110]
Najer, A.; Wu, D.; Nussbaumer, M.G.; Schwertz, G.; Schwab, A.; Witschel, M.C.; Schäfer, A.; Diederich, F.; Rottmann, M.; Palivan, C.G.; Beck, H.P.; Meier, W. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale, 2016, 8(31), 14858-14869.
[http://dx.doi.org/10.1039/C6NR04290B] [PMID: 27452350]
[111]
Lim, D.J.; Sim, M.; Oh, L.; Lim, K.; Park, H. Carbon-based drug delivery carriers for cancer therapy. Arch. Pharm. Res., 2014, 37(1), 43-52.
[http://dx.doi.org/10.1007/s12272-013-0277-1] [PMID: 24234911]
[112]
Zhang, L.; Zhang, N. How nanotechnology can enhance docetaxel therapy. Int. J. Nanomedicine, 2013, 8, 2927-2941.
[http://dx.doi.org/10.2147/IJN.S46921] [PMID: 23950643]
[113]
Iwamoto, T. Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol. Pharm. Bull., 2013, 36(5), 715-718.
[http://dx.doi.org/10.1248/bpb.b12-01102] [PMID: 23649331]
[114]
Brandon, T.H.; Goniewicz, M.L.; Hanna, N.H.; Hatsukami, D.K.; Herbst, R.S.; Hobin, J.A.; Ostroff, J.S.; Shields, P.G.; Toll, B.A.; Tyne, C.A.; Viswanath, K.; Warren, G.W. Electronic nicotine delivery systems: a policy statement from the American Association for Cancer Research and the American Society of Clinical Oncology. Clin. Cancer Res., 2015, 21(3), 514-525.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2544] [PMID: 25573384]
[115]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14(2), 83-93.
[http://dx.doi.org/10.1007/s12094-012-0766-6] [PMID: 22301396]
[116]
Kang, X.; Xiao, H.H.; Song, H.Q.; Jing, X.B.; Yan, L.S.; Qi, R.G. Advances in drug delivery system for platinum agents based combination therapy. Cancer Biol. Med., 2015, 12(4), 362-374.
[PMID: 26779373]
[117]
Dicko, A.; Mayer, L.D.; Tardi, P.G. Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin. Drug Deliv., 2010, 7(12), 1329-1341.
[http://dx.doi.org/10.1517/17425247.2010.538678] [PMID: 21118030]
[118]
Song, Z.; Wang, Y.; Li, C.; Zhang, D.; Wang, X. Molecular modification of Metadherin/MTDH impacts the sensitivity of breast cancer to doxorubicin. PLoS One, 2015, 10(5)e0127599
[http://dx.doi.org/10.1371/journal.pone.0127599] [PMID: 25993398]
[119]
Young, R.J.; Natukunda, A.; Litière, S.; Woll, P.J.; Wardelmann, E.; van der Graaf, W.T. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. Eur. J. Cancer, 2014, 50(18), 3178-3186.
[http://dx.doi.org/10.1016/j.ejca.2014.10.004] [PMID: 25459395]
[120]
Pearlman, L.F.; Chuang, R.Y.; Israel, M.; Simpkins, H. Interaction of three second-generation anthracyclines with polynucleotides, RNA, DNA, and nucleosomes. Cancer Res., 1986, 46(1), 341-346.
[PMID: 2415249]
[121]
Shen, Q.; Yao, Q.; Sun, J.; Feng, L.; Lu, H.; Ma, Y.; Liu, L.; Wang, F.; Li, J.; Yue, Y.; Jin, H.; Wang, X. Downregulation of histone deacetylase 1 by microRNA-520h contributes to the chemotherapeutic effect of doxorubicin. FEBS Lett., 2014, 588(1), 184-191.
[http://dx.doi.org/10.1016/j.febslet.2013.11.034] [PMID: 24316511]
[122]
Israel, M.; Idriss, J.M.; Koseki, Y.; Khetarpal, V.K. Comparative effects of adriamycin and DNA-non-binding analogues on DNA, RNA, and protein synthesis in vitro. Cancer Chemother. Pharmacol., 1987, 20(4), 277-284.
[http://dx.doi.org/10.1007/BF00262577] [PMID: 2446792]
[123]
Adwas, A.A.; Elkhoely, A.A.; Kabel, A.M.; Abdel-Rahman, M.N.; Eissa, A.A. Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J. Infect. Chemother., 2016, 22(1), 36-43.
[http://dx.doi.org/10.1016/j.jiac.2015.10.001] [PMID: 26603425]
[124]
Giri, S.N.; Al-Bayati, M.A.; Du, X.; Schelegle, E.; Mohr, F.C.; Margolin, S.B. Amelioration of doxorubicin-induced cardiac and renal toxicity by pirfenidone in rats. Cancer Chemother. Pharmacol., 2004, 53(2), 141-150.
[http://dx.doi.org/10.1007/s00280-003-0703-z] [PMID: 14564477]
[125]
Leopold, W.R.; Nelson, J.M.; Plowman, J.; Jackson, R.C. Anthrapyrazoles, a new class of intercalating agents with high-level, broad spectrum activity against murine tumors. Cancer Res., 1985, 45(11 Pt 1), 5532-5539.
[PMID: 4053027]
[126]
Chen, Y.; Wan, Y.; Wang, Y.; Zhang, H.; Jiao, Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomedicine, 2011, 6, 2321-2326.
[http://dx.doi.org/10.2147/IJN.S25460] [PMID: 22072869]
[127]
Zhu, Z.F.; Chen, L.J.; Lu, R.; Jia, J.; Liang, Y.; Xu, Q.; Zhou, C.L.; Wang, L.; Wang, S.; Yao, Z. Tripeptide tyroserleutide plus doxorubicin: therapeutic synergy and side effect attenuation. BMC Cancer, 2008, 8, 342-354.
[http://dx.doi.org/10.1186/1471-2407-8-342] [PMID: 19025669]
[128]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[129]
Richly, H.; Henning, B.F.; Kupsch, P.; Passarge, K.; Grubert, M.; Hilger, R.A.; Christensen, O.; Brendel, E.; Schwartz, B.; Ludwig, M.; Flashar, C.; Voigtmann, R.; Scheulen, M.E.; Seeber, S.; Strumberg, D. Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann. Oncol., 2006, 17(5), 866-873.
[http://dx.doi.org/10.1093/annonc/mdl017] [PMID: 16500908]
[130]
Martin, M.; Villar, A.; Sole-Calvo, A.; Gonzalez, R.; Massuti, B.; Lizon, J.; Camps, C.; Carrato, A.; Casado, A.; Candel, M.T.; Albanell, J.; Aranda, J.; Munarriz, B.; Campbell, J.; Diaz-Rubio, E. GEICAM Group (Spanish Breast Cancer Research Group), Spain.Doxorubicin in combination with fluorouracil and cyclophosphamide (i.v. FAC regimen, day 1, 21) versus methotrexate in combination with fluorouracil and cyclophosphamide (i.v. CMF regimen, day 1, 21) as adjuvant chemotherapy for operable breast cancer: a study by the GEICAM group. Ann. Oncol., 2003, 14(6), 833-842.
[http://dx.doi.org/10.1093/annonc/mdg260] [PMID: 12796019]
[131]
Lappalainen, S.; Salonen, H.; Salmi, K.; Reijula, K. Indoor air particles in office buildings with suspected indoor air problems in the Helsinki area. Int. J. Occup. Med. Environ. Health, 2013, 26(1), 155-164.
[http://dx.doi.org/10.2478/s13382-013-0091-5] [PMID: 23576153]
[132]
Saleem, A.; Ibrahim, N.; Patel, M.; Li, X.G.; Gupta, E.; Mendoza, J.; Pantazis, P.; Rubin, E.H. Mechanisms of resistance in a human cell line exposed to sequential topoisomerase poisoning. Cancer Res., 1997, 57(22), 5100-5106.
[PMID: 9371509]
[133]
Sacristán, J.A.; Kennedy-Martin, T.; Rosell, R.; Cardenal, F.; Antón, A.; Lomas, M.; Alberola, V.; Massuti, B.; Carrato, A.; Minshall, M. Economic evaluation in a randomized phase III clinical trial comparing gemcitabine/cisplatin and etoposide/cisplatin in non-small cell lung cancer. Lung Cancer, 2000, 28(2), 97-107.
[http://dx.doi.org/10.1016/S0169-5002(99)00120-8] [PMID: 10717327]
[134]
Kim, K.H.; Jelovac, D.; Armstrong, D.K.; Schwartz, B.; Weil, S.C.; Schweizer, C.; Alvarez, R.D.; Phase, I.I. Phase 1b safety study of farletuzumab, carboplatin and pegylated liposomal doxorubicin in patients with platinum-sensitive epithelial ovarian cancer. Gynecol. Oncol., 2016, 140(2), 210-214.
[http://dx.doi.org/10.1016/j.ygyno.2015.11.031] [PMID: 26644263]
[135]
Thigpen, J.T.; Brady, M.F.; Homesley, H.D.; Malfetano, J.; DuBeshter, B.; Burger, R.A.; Liao, S. Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a gynecologic oncology group study. J. Clin. Oncol., 2004, 22(19), 3902-3908.
[http://dx.doi.org/10.1200/JCO.2004.02.088] [PMID: 15459211]
[136]
Hanwen, L.; Huijuan, Yu.; Caiying, Z. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Advances, 2016, 6, 94160-94169.
[http://dx.doi.org/10.1039/C6RA17213J]
[137]
Lin, J.; Tang, Z.; Li, M.; Chen, X. Cisplatin complexes stabilized poly(glutamic acid) for controlled delivery of doxorubicin. J. Control. Release, 2015, 213, e48-e49.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.079] [PMID: 27005178]
[138]
Wu, H.; Jin, H.; Wang, C.; Zhang, Z.; Ruan, H.; Sun, L.; Yang, C.; Li, Y.; Qin, W.; Wang, C. Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery. ACS Appl. Mater. Interfaces, 2017, 9(11), 9426-9436.
[http://dx.doi.org/10.1021/acsami.6b16844] [PMID: 28247750]
[139]
Yu, T.; Xu, B.; He, L.; Xia, S.; Chen, Y.; Zeng, J.; Liu, Y.; Li, S.; Tan, X.; Ren, K.; Yao, S.; Song, X. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration. Int. J. Nanomedicine, 2016, 11, 743-759.
[http://dx.doi.org/10.2147/IJN.S97223] [PMID: 26955272]
[140]
Xu, B.; Xia, S.; Wang, F.; Jin, Q.; Yu, T.; He, L.; Chen, Y.; Liu, Y.; Li, S.; Tan, X.; Ren, K.; Yao, S.; Zeng, J.; Song, X. Polymeric nanomedicine for combined gene/chemo-therapy elicits enhanced tumor suppression. Mol. Pharm., 2016, 13(2), 663-676.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00922] [PMID: 26695934]
[141]
Li, H.; Liu, Y.; Zhang, Y.; Fang, D.; Xu, B.; Zhang, L.; Chen, T.; Ren, K.; Nie, Y.; Yao, S.; Song, X. Liposomes as a novel ocular delivery system for brinzolamide: In vitro and in vivo studies. AAPS PharmSciTech, 2016, 17(3), 710-717.
[http://dx.doi.org/10.1208/s12249-015-0382-1] [PMID: 26335415]
[142]
Chee, F.C.; Siew, Q.Y.; Jian, L.; Giorgia, P.; Wee, H.A. Ratiometric delivery of cisplatin and doxorubicin using tumour-targeting carbon-nanotubes entrapping platinum(IV) prodrugs. Chem. Sci. (Camb.), 2014, 5, 2265-2270.
[http://dx.doi.org/10.1039/C3SC53106F]
[143]
Lee, S.M.; O’Halloran, T.V.; Nguyen, S.T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc., 2010, 132(48), 17130-17138.
[http://dx.doi.org/10.1021/ja107333g] [PMID: 21077673]
[144]
Liao, L.; Liu, J.; Dreaden, E.C.; Morton, S.W.; Shopsowitz, K.E.; Hammond, P.T.; Johnson, J.A. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc., 2014, 136(16), 5896-5899.
[http://dx.doi.org/10.1021/ja502011g] [PMID: 24724706]
[145]
Dvorak, H.F. Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. Breast Diseases: A Y. B. Quarterly., 2008, 19, 272-273.
[146]
Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 2006, 355(24), 2542-2550.
[http://dx.doi.org/10.1056/NEJMoa061884] [PMID: 17167137]
[147]
Hauschild, A.; Agarwala, S.S.; Trefzer, U.; Hogg, D.; Robert, C.; Hersey, P.; Eggermont, A.; Grabbe, S.; Gonzalez, R.; Gille, J.; Peschel, C.; Schadendorf, D.; Garbe, C.; O’Day, S.; Daud, A.; White, J.M.; Xia, C.; Patel, K.; Kirkwood, J.M.; Keilholz, U. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol., 2009, 27(17), 2823-2830.
[http://dx.doi.org/10.1200/JCO.2007.15.7636] [PMID: 19349552]
[148]
Aapro, M.; Tjulandin, S.; Bhar, P.; Gradishar, W. Weekly nab-paclitaxel is safe and effective in ≥65 years old patients with metastatic breast cancer: a post-hoc analysis. Breast, 2011, 20(5), 468-474.
[http://dx.doi.org/10.1016/j.breast.2011.07.005] [PMID: 21843943]
[149]
Danhier, F.; Magotteaux, N.; Ucakar, B.; Lecouturier, N.; Brewster, M.; Préat, V. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for paclitaxel. Eur. J. Pharm. Biopharm., 2009, 73(2), 230-238.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.015] [PMID: 19577643]
[150]
Marth, C.; Windbichler, G.H.; Hausmaninger, H.; Petru, E.; Estermann, K.; Pelzer, A.; Mueller-Holzner, E. Interferon-gamma in combination with carboplatin and paclitaxel as a safe and effective first-line treatment option for advanced ovarian cancer: results of a phase I/II study. Int. J. Gynecol. Cancer, 2006, 16(4), 1522-1528.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00622.x] [PMID: 16884360]
[151]
Horwitz, S.B. Taxol (paclitaxel): mechanisms of action. Ann. Oncol., 1994, 5(Suppl. 6), S3-S6.
[PMID: 7865431]
[152]
Yardley, D.A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Release, 2013, 170(3), 365-372.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.041] [PMID: 23770008]
[153]
Pertusini, E.; Ratajczak, J.; Majka, M.; Vaughn, D.; Ratajczak, M.Z.; Gewirtz, A.M. Investigating the platelet-sparing mechanism of paclitaxel/carboplatin combination chemotherapy. Blood, 2001, 97(3), 638-644.
[http://dx.doi.org/10.1182/blood.V97.3.638] [PMID: 11157479]
[154]
Wu, C.H.; Yang, C.H.; Lee, J.N.; Hsu, S.C.; Tsai, E.M. Weekly and monthly regimens of paclitaxel and carboplatin in the management of advanced ovarian cancer. A preliminary report on side effects. Int. J. Gynecol. Cancer, 2001, 11(4), 295-299.
[http://dx.doi.org/10.1136/ijgc-00009577-200107000-00007] [PMID: 11520368]
[155]
Fuse, K.; Tanaka, T.; Kagaya, H.; Suzuki, T.; Kimura, A. [Adverse effect of paclitaxel plus carboplatin combination therapy related to administration schedule in patients with ovarian cancer]. Gan To Kagaku Ryoho, 2001, 28(9), 1295-1297.
[PMID: 11579644]
[156]
Pedersen, S.S.; Daemen, J.; van de Sande, M.; Sonnenschein, K.; Serruys, P.W.; Erdman, R.A.; van Domburg, R.T. Type-D personality exerts a stable, adverse effect on vital exhaustion in PCI patients treated with paclitaxel-eluting stents. J. Psychosom. Res., 2007, 62(4), 447-453.
[http://dx.doi.org/10.1016/j.jpsychores.2006.12.015] [PMID: 17383496]
[157]
Cao, L.; Zeng, Q.; Xu, C.; Shi, S.; Zhang, Z.; Sun, X. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12. Mol. Pharm., 2013, 10(5), 1804-1814.
[http://dx.doi.org/10.1021/mp300602j] [PMID: 23534449]
[158]
Zhou, M.; Li, X.; Li, Y.; Yao, Q.; Ming, Y.; Li, Z.; Lu, L.; Shi, S. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv., 2017, 24(1), 1230-1242.
[http://dx.doi.org/10.1080/10717544.2017.1370619] [PMID: 28856937]
[159]
Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33(27), 6507-6519.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.049] [PMID: 22727463]
[160]
Cai, L.; Xu, G.; Shi, C.; Guo, D.; Wang, X.; Luo, J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials, 2015, 37, 456-468.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.044] [PMID: 25453973]
[161]
Li, J.; Li, Z.; Li, M.; Zhang, H.; Xie, Z. Synergistic effect and drug-resistance relief of paclitaxel and cisplatin caused by co-delivery using polymeric micelles. J. Appl. Polym. Sci., 2015, 132, 41440-41449.
[http://dx.doi.org/10.1002/app.41440]
[162]
Song, W.; Tang, Z.; Li, M.; Lv, S.; Sun, H.; Deng, M.; Liu, H.; Chen, X. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater., 2014, 10(3), 1392-1402.
[http://dx.doi.org/10.1016/j.actbio.2013.11.026] [PMID: 24316362]
[163]
He, Z.; Huang, J.; Xu, Y.; Zhang, X.; Teng, Y.; Huang, C.; Wu, Y.; Zhang, X.; Zhang, H.; Sun, W. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget, 2015, 6(39), 42150-42168.
[http://dx.doi.org/10.18632/oncotarget.6243] [PMID: 26517524]
[164]
Yang, J.; Ju, Z.; Dong, S. Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv., 2016, 24(1), 792-799.
[http://dx.doi.org/10.1080/10717544.2016.1236849] [PMID: 28494629]
[165]
Liu, B.; Han, L.; Liu, J.; Han, S.; Chen, Z.; Jiang, L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int. J. Nanomedicine, 2017, 12, 955-968.
[http://dx.doi.org/10.2147/IJN.S115136] [PMID: 28203075]
[166]
Tian, J.; Min, Y.; Rodgers, Z.; Au, K.M.; Hagan, C.T., IV; Zhang, M.; Roche, K.; Yang, F.; Wagner, K.; Wang, A.Z. Co-delivery of paclitaxel and cisplatin with biocompatible PLGA-PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(30), 6049-6057.
[http://dx.doi.org/10.1039/C7TB01370A] [PMID: 28868145]
[167]
Shen, W.; Chen, X.; Luan, J.; Wang, D.; Yu, L.; Ding, J. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces, 2017, 9(46), 40031-40046.
[http://dx.doi.org/10.1021/acsami.7b11998] [PMID: 29131563]
[168]
Anupama, M.; Phaneendra, K.; Deepak, C.; Neeraj, K. In vitro release behavior of paclitaxel and carboplatin from poly(l-lactide) microspheres dispersed in thermosensitive biodegradable gel for combination therapy. Int. J. Drug Deliv., 2011, 3(2), 245-259.
[169]
Zhang, W.; Li, C.; Shen, C.; Liu, Y.; Zhao, X.; Liu, Y.; Zou, D. Zhenfa Gao & Chunwen Yue, Prodrug-based nano-drug delivery system for coencapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv., 2016, 23, 2575-2580.
[PMID: 26056720]
[170]
Zhang, X.; Liu, Y.; Kim, Y.J.; Mac, J.; Zhuang, R.; Wang, P. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Advances, 2017, 7(32), 19685-19693.
[http://dx.doi.org/10.1039/C7RA01100H] [PMID: 28603607]
[171]
Mo, J.; Wang, L.; Huang, X.; Lu, B.; Zou, C.; Wei, L.; Chu, J.; Eggers, P.K.; Chen, S.; Raston, C.L.; Wu, J.; Lim, L.Y.; Zhao, W. Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis. Nanoscale, 2017, 9(35), 13142-13152.
[http://dx.doi.org/10.1039/C7NR04473A] [PMID: 28849826]
[172]
Reithofer, M.R.; Valiahdi, S.M.; Galanski, M.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Novel endothall-containing platinum(IV) complexes: synthesis, characterization, and cytotoxic activity. Chem. Biodivers., 2008, 5(10), 2160-2170.
[http://dx.doi.org/10.1002/cbdv.200890197] [PMID: 18972539]
[173]
Zhou, D.; Xiao, H.; Jing, X.; Huang, Y. Co-delivery of multiple drugs via a polymer-(demethylcantharidin-platinum) conjugate for enhanced cancer chemotherapy. J. Control. Release, 2013, 172, e14-e97.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.062]
[174]
Cong, Y.; Xiao, H.; Xiong, H.; Wang, Z.; Ding, J.; Li, C.; Chen, X.; Liang, X.J.; Zhou, D.; Huang, Y. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater., 2018, 30(11), 1706220-1706231.
[http://dx.doi.org/10.1002/adma.201706220] [PMID: 29349918]
[175]
Wang, E.; Xiong, H.; Zhou, D.; Xie, Z.; Huang, Y.; Jing, X.; Sun, X. Co-delivery of oxaliplatin and demethylcantharidin via a polymer-drug conjugate. Macromol. Biosci., 2014, 14(4), 588-596.
[http://dx.doi.org/10.1002/mabi.201300402] [PMID: 24254404]
[176]
Babu, A.; Wang, Q.; Muralidharan, R.; Shanker, M.; Munshi, A.; Ramesh, R. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol. Pharm., 2014, 11(8), 2720-2733.
[http://dx.doi.org/10.1021/mp500259e] [PMID: 24922589]
[177]
Poon, C.; Duan, X.; Chan, C.; Han, W.; Lin, W. Nanoscale coordination polymers codeliver carboplatin and gemcitabine for highly effective treatment of platinum-resistant ovarian cancer. Mol. Pharm., 2016, 13(11), 3665-3675.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00466] [PMID: 27712076]
[178]
Zhang, Z.; Liu, S.; Qi, Y.; Zhou, D.; Xie, Z.; Jing, X.; Chen, X.; Huang, Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release, 2016, 235, 125-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.046] [PMID: 27221069]
[179]
Zhang, Y.; Guo, G.; Ma, B.; Du, R.; Xiao, H.; Yang, X.; Li, W.; Gao, Y.; Li, Y.; Jing, X. A hybrid platinum drug DCA-Pt(II) overcomes cisplatin drug resistance via dual organelle targeting. Anticancer Drugs, 2015, 26(7), 698-705.
[http://dx.doi.org/10.1097/CAD.0000000000000234] [PMID: 25811961]
[180]
Levina, A.; Crans, D.C.; Lay, P.A. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord. Chem. Rev., 2017, 352, 473-498.
[http://dx.doi.org/10.1016/j.ccr.2017.01.002]
[181]
Crans, D.C.; Yang, L.; Haase, A.; Yang, X. Health benefits of vanadium and its potential as an anticancer agent. Met. Ions Life Sci., 2018, 18, 251-279.
[http://dx.doi.org/10.1515/9783110470734-009] [PMID: 29394028]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy