Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Virtual Screening, Docking, Synthesis and Bioactivity Evaluation of Thiazolidinediones as Potential PPARγ Partial Agonists for Preparation of Antidiabetic Agents

Author(s): Beina Zhang, Mao Shu*, Chunmei Xu, Chunhong An, Rui Wang and Zhihua Lin*

Volume 16, Issue 6, 2019

Page: [608 - 617] Pages: 10

DOI: 10.2174/1570180815666180827123512

Price: $65

Abstract

Background: Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the key targets of insulin resistance research, in addition to being ligand-activated transcription factors of the nuclear hormone receptor superfamily with a leading role in adiposeness activation and insulin sensitivity. They regulate cholesterol and carbohydrate metabolism through direct actions on gene expression. Despite their therapeutic importance, there are dose limiting side effects associated with PPARγ drug treatments, thus a new generation of safer PPARγ drugs are being actively sought after treatment.

Methods: In this study, we used computer aided drug design to screen new series of PPARγ ligands, and synthesized a series of potential thiazolidinedione derivatives such as 5,7- dibenzyloxybenzyl-3-hydroxymethyl-4H-coumarin-4-ketone, using 4-steps to synthesize the target compounds and built streptozotocin (STZ) induced insulin resistance rat model to measure their antidiabetic activity.

Results: We found that 10 mg/kg concentration of compound 0701C could significantly decrease blood glucose and serum PPARγ, serum insulin levels in insulin resistance model rat.

Conclusion: We would conclude that compound 0701C might serve as a potential PPARγ partial agonist.

Keywords: Antidiabetic, docking, PPARγ, partial agonist, ELISA, streptozotocin.

Graphical Abstract

[1]
Saif, M.W. Capecitabine versus continuous-infusion 5-fluorouracil for colorectal cancer: A retrospective efficacy and safety comparison. Clin. Colorectal Cancer, 2005, 5, 89-100.
[2]
Saif, M.W.; Eloubeidi, M.A.; Russo, S.; Steg, A.; Thornton, J.; Fiveash, J.; Carpenter, M.; Blanquicett, C.; Diasio, R.B.; Johnson, M.R. Phase I study of capecitabine with concomitant radiotherapy for patients with locally advanced pancreatic cancer: Expression analysis of genes related to outcome. J. Clin. Oncol., 2005, 23, 8679-8687.
[3]
Comandone, A.; Bretti, S.; La Grotta, G.; Manzoni, S.; Bonardi, G.; Berardo, R.; Bumma, C. Palmar-plantar erythrodysestasia syndrome associated with 5-fluorouracil treatment. Anticancer Res., 1993, 13, 1781-1783.
[4]
Saif, M.W. Capecitabine and hand-foot syndrome. Expert Opin. Drug Saf., 2011, 10, 159-169.
[5]
Lopez, A.M.; Wallace, L.; Dorr, R.T.; Koff, M.; Hersh, E.M.; Alberts, D.S. Topical DMSO treatment for pegylated liposomal doxorubicin-induced palmar-plantar erythrodysesthesia. Cancer Chemother. Pharmacol., 1999, 44, 303-306.
[6]
Komamura, H.; Higashiyama, M.; Hashimoto, K.; Takeda, K.; Kimura, H.; Tani, Y.; Ogawa, H.; Yoshikawa, K. Three cases of chemotherapy-induced acral erythema. J. Dermatol., 1995, 22, 116-121.
[7]
Marsé, H.; Van Cutsem, E.; Grothey, A.; Valverde, S. Management of adverse events and other practical considerations receiving capecitabine (Xeloda®). Eur. J. Oncol. Nurs., 2004, 8, S16-S30.
[8]
Mortimer, J.E.; Lawman, M.K.; Tan, B.; Dempsey, C.L.; Shillington, A.C.; Hutchinson, K.S. Pyridoxine treatment and prevention of hand-foot syndrome in patients receiving capecitabine. J. Oncol. Pharm. Pract., 2003, 9, 161-166.
[9]
Saif, M.W.; Diasio, R. Is capecitabine safe in patients with gastrointestinal cancer and dihydropyrimidine dehydrogenase deficiency? Clin. Colorectal Cancer, 2006, 5, 359-362.
[10]
Saif, M.W.; Elfiky, A.A.; Frye, D. Identifying and treating fluoropyrimidine-associated hand-and-foot syndrome in white and non-white patients. J. Support. Oncol., 2007, 5, 337-343.
[11]
Shahrokni, A.; Rajebi, M.R.; Saif, M.W. Toxicity and efficacy of 5-fluorouracil and capecitabine in a patient with TYMS gene polymorphism: A challenge or a dilemma? Clin. Colorectal Cancer, 2009, 8, 231-234.
[12]
Dundes, A. The Evil Eye: A casebook; University of Wisconsin Press: Madison, USA, 1992.
[13]
Khodaparast, M.H.H.; Dezashib, Z. Phenolic compounds and antioxidant activity of henna leaves extracts (Lawsonia Inermis). World J. Dairy Food Sci., 2007, 2, 38-41.
[14]
Malekzadeh, F. Antimicrobial activity of Lawsonia inermis L. Appl. Microbiol., 1968, 16, 663-664.
[15]
Muhammad, H.; Muhammad, S. The use of Lawsonia inermis Linn. (henna) in the management of burn wound infections. Afr. J. Biotechnol., 2005, 4, 934-937.
[16]
Oda, Y.; Nakashima, S.; Nakamura, S.; Yano, M.; Akiyama, M.; Imai, K.K.; Kimura, T.; Nakata, A.; Tani, M.; Matsuda, H. New potent accelerator of neurite outgrowth from Lawsonia inermis flower under non-fasting condition. J. Nat. Med., 2016, 70, 384-390.
[17]
Yucel, I.; Guzin, G. Topical henna for capecitabine induced hand-foot syndrome. Invest. New Drugs, 2008, 26, 189-192.
[18]
Ilyas, S.; Wasif, K.; Saif, M.W. Topical henna ameliorated capecitabine-induced hand-foot syndrome. Cutan. Ocul. Toxicol., 2014, 33, 253-255.
[19]
Tommasi, G. Henna (Lawsonia inermis). Chemical constitution of lawsone. Gazz. Chim. Ital., 1920, 50, 263.
[20]
Oesterle, D.A. Henna. Schweizerische Apotheker. Zeitung, 1923, 61, 541-543.
[21]
El-Shaer, N.S.; Badr, J.M.; Aboul-Ela, M.A.; Gohar, Y.M. Determination of Lawsone in henna powders by high performance thin layer chromatography. J. Sep. Sci., 2007, 30, 3311-3315.
[22]
Ali, S.B. Examination of the active principle of Indian henna.Proc. 15th I Indian Sci. Congr, 1928, p. 173.
[23]
Lal, J.B.; Dutt, S.J. Constitution of the colouring matter of Lawsonia alba (or Indian mehndi). J. Indian Chem. Soc., 1933, 10, 577-582.
[24]
Antia, M.B.; Kaushal, R. Essential oil from the flowers of camphire or henna plant. Curr. Sci., 1950, 19, 284.
[25]
Baslas, K.K. Chemistry of Indian essential oils, Perfumery and essential oil record. J. Indian Chem. Soc., 1954, 31, 705.
[26]
Latif, A. Isolation of vitamin K-activity compound from the leaves of Lawsonia sp. Chemical composition of the airdried leaves. Indian J. Agric. Sci., 1959, 29, 147-150.
[27]
Agarwal, S.R.; Ghatak, S.N.; Dhingra, D.R. Chemical examination of the seed oil of Lawsonia alba. Indian Oil Soap J., 1959, 25, 145.
[28]
Sastri, B.N. The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products. Raw Materials, Vol. 6: L-M. The wealth of India. CSIR, New Delhi., 1962, 6, 47-49.
[29]
Karawya, M.S.; Wahhab, S.M.A.; Zaki, A.Y. A study of the lawsone content in henna. Lloydia, 1969, 32, 76-78.
[30]
El-Malek, Y.A.; El-Leithy, M.; Reda, F.; Khalil, M. Antimicrobial principles in leaves of Lawsonia inermis L. Landwirtschaftliche und Technische Mikrobiologie., 1973, 128, 61-67.
[31]
Kavalali, G. A study of identification of imported henna leaves. J. Fac. Pharm. Istanbul, 1974, 10, 21.
[32]
Chakrabortty, T. Isolation of N-triacontanyl tridecanate and lawsone from Lawsonia alba (= L. inermis) bark. Phytochemistry, 1975, 14, 2727-2728.
[33]
Bhardwaj, D.K.; Murari, R.; Seshadri, T.R.; Singh, R. Lacoumarin from Lawsonia inermis. Phytochemistry, 1976, 15, 1789.
[34]
Bhardwaj, D.K.; Seshadri, T.R.; Singh, R. Xanthones from Lawsonia inermis. Phytochemistry, 1977, 16, 1616-1617.
[35]
Chakrabority, T.; Podder, G.; Deshmukh, S. Triterpenoids and other constituents of Lawsonia-alba-Lam syn L-inermis-Linn. Indian J. Chem. Sect. B, 1977, 15, 96-97.
[36]
Bhardwaj, D.K.; Bisht, M.S.; Jain, R.K. Constituents of laxanthones II: Synthetic studies. Proc. Indian Nath. Sci. Acad., 1980, 46, 381-386.
[37]
Tripathi, R.; Srivastava, H.; Dixit, S. A fungitoxic principle from the leaves of Lawsonia inermis lam. Experientia, 1978, 34, 51-52.
[38]
Bhardwaj, D.K.; Jain, R.K.; Jain, B.C.; Mehta, C.K. 1-Hydroxy-3,7-dimethoxy-6-acetoxyxanthone, a new xanthone from Lawsonia inermis. Phytochemistry, 1978, 17, 1440-1441.
[39]
Bhardwaj, D.; Bisht, M. Jain. R. Constitutions of Laxanthones-II: Synthetic studies. Proc. Indian Nat. Sci. Acad., 1980, 46, 381-386.
[40]
Mahmoud, Z.F.; Abdel Salam, N.A.; Khafagy, S.M. Constituents of henna leaves (Lawsonia inermis L.) growing in Egypt. Fitoterapia, 1980, •••, 153-155.
[41]
Muhammad, A.; Galib, A.; Jasmin, M.A.; Nazar, M. Flavone glycosides from Lawsonia inermis. Heterocycles, 1980, 14, 1973-1976.
[42]
Nakhala, A.M.; Zakin, N.; Mahrous, T.S.; Ghali, Y.; Youssef, A.M. Isolation and identification of four aromatic compounds from henna leaves. Chem. Microbiol. Technol. Lebensm., 1980, 6, 103-105.
[43]
Chakrabartty, T.; Poddar, G.; Pyrek, J. Isolation of dihydroxylupene and dihydroxylupane from the bark of Lawsonia inermis. Phytochemistry, 1982, 21, 1814-1816.
[44]
Dzhuraev, K.S.; Nuraliev, Y.N.; Khisanov, M.; Akhmedova, L.F.; Abyshev, A.Z. Leaf coumarins of Lawsonia inermis grown in Tadzhikistan. Rastit. Resur., 1982, 18, 377-379.
[45]
Afzal, M.; Al-Oriquat, G.; Al-Hassan, J.M.; Muhammad, N. Isolation of 1,2-dihydroxy-4-glucosyloxynaphthalene from Lawsonia inermis. Heterocycles, 1984, 22, 813-816.
[46]
Shikhiev, A.S.; Safarova, N.; Nurieva, L. D-mannitol from Lawsonia inermis. Chem. Nat. Compd., 1987, 23, 245.
[47]
Takeda, Y.; Fatope, M.O. New phenolic glucosides from Lawsonia inermis. J. Nat. Prod., 1988, 51, 725-729.
[48]
Gupta, S.; Ali, M.; Alam, M.S.; Sakae, T.; Niwa, M. A new aliphatic hydrocarbon from Lawsonia inermis bark. Indian J. Chem. Sect. B, 1992, 31, 700-707.
[49]
Gupta, S.; Ali, M.; Alam, M.S.; Niwa, M.; Sakai, T. 24β-Ethylcholest-4-en-3β-ol from the roots of Lawsonia inermis. Phytochemistry, 1992, 31, 2558-2560.
[50]
Gupta, S.; Ali, M.; Alam, M.S. A naphthoquinone from Lawsonia inermis stem bark. Phytochemistry, 1993, 33, 723-724.
[51]
Gupta, S.; Ali, M.; Alam, M.S.; Niwa, M.; Sakai, T. Isolation and Characterization of a Dihydroxysterol from Lawsonia inermis. Nat. Prod. Lett., 1994, 4, 195-201.
[52]
Khan, M.A.A.; Singh, N.; Dhawan, K. Occurrence and identification of a new antiviral saponin from Lawsonia alba Lam fruits. Natl. Acad. Sci. Lett., 1996, 19, 145-148.
[53]
Mohamed, M.S. Phytochemical study on Lawsonia inermis (Henna) indigenous to Sudan. PhD Thesis, Khartoum,. 1996.
[54]
Bakkali, A-T.; Jaziri, M.; Ishimaru, K.; Tanaka, N.; Shimomura, K.; Yoshimatsu, K.; Homes, J.; Vanhaelen, M. Tannin production in hairy root cultures of Lawsonia inermis. J. Plant Physiol., 1997, 151, 505-508.
[55]
Handa, G.; Kapil, A.; Sharma, S.; Singh, J. A new anticomplementary triterpenoid from Lawsonia inermis seeds. Indian J. Chem. Sect. B, 1997, 36, 252-256.
[56]
Bosoglu, A.; Birdane, F.; Solmaz, H. The effect of henna (Folium Lawsonia) paste in ringworm in calves. Indian Vet. J., 1998, 75, 83-84.
[57]
Kawamura, T.; Hisata, Y.; Okuda, K.; Noro, Y.; Takeda, Y.; Tanaka, T. Quality evaluation of plant dye henna with glycosides. J. Nat. Med., 2000, 54, 86-89.
[58]
Siddiqui, B.S.; Kardar, M.N. Triterpenoids from Lawsonia alba. Phytochemistry, 2001, 58, 1195-1198.
[59]
Siddiqui, B.S.; Kardar, M.N.; Ali, S.T.; Khan, S. Two new and a known compound from Lawsonia inermis. Helv. Chim. Acta, 2003, 86, 2164-2169.
[60]
Mikhaeil, B.R.; Badria, F.A.; Maatooq, G.T.; Amer, M. Antioxidant and immunomodulatory constituents of henna leaves. Z. Naturforsch. Cell Biosci., 2004, 59, 468-476.
[61]
Kardar, M.N. Study on the chemical constituents of the aerial parts of Lawsonia Alba., PhD Thesis, University of Karachi: Karachi, Pakistan. 2005.
[62]
Siddiqui, B.S.; Kardar, M.N.; Khan, S. Two new triterpenoids from Lawsonia alba. Z. Naturforsch. B: Chem. Sci., 2005, 60, 37-40.
[63]
Mohammed, M.; Ramadhan, O.; Hamoshy, R. Study of the biological activity of compounds isolated from Lawsonia inermis. Natl J. Chem., 2006, 21, 102-112.
[64]
Rahmat, A.; Edrini, S.; Ismail, P.; Yap, T.; Hin, Y.; Bakar, M.A. Chemical constituents, antioxidant activity and cytotoxic effects of essential oil from Strobilanthes crispus and Lawsonia inermis. J. Biol. Sci., 2006, 6, 1005-1010.
[65]
Ogunbinu, A.O.; Ogunwande, I.A.; Walker, T.M.; Setzer, W.N. Study on the essential oil of Lawsonia inermis (L) Lythraceae. J. Essent. Oil Bear. Pl., 2007, 10, 184-188.
[66]
Binh, N.T.; Ky, P.T.; Thao, N.P.; Minh, C.V.; Cuong, N.X.; Kiem, P.V. Triterpenes and triterpene-glycoside from the leaves of Lawsonia inermis. Vietnam J. Chem., 2009, 47, 511-517.
[67]
Ostovari, A.; Hoseinieh, S.; Peikari, M.; Shadizadeh, S.; Hashemi, S. Corrosion inhibition of mild steel in 1M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corros. Sci., 2009, 51, 1935-1949.
[68]
Siddiqui, B.S.; Uddin, N.; Begum, S. Two new dioxin derivatives from the aerial parts of Lawsonia alba. Nat. Prod. Res., 2009, 23, 1740-1745.
[69]
Sultana, N.; Choudhary, M.I.; Khan, A. Protein glycation inhibitory activities of Lawsonia inermis and its active principles. J. Enzyme Inhib. Med. Chem., 2009, 24, 257-261.
[70]
Cuong, N.X.; Nhiem, N.X.; Thao, N.P.; Nam, N.H.; Dat, N.T.; Anh Hle, T. Huong le, M.; Kiem, P.V.; Minh, C.V.; Won, J.H.; Chung, W.Y.; Kim, Y.H. Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorg. Med. Chem. Lett., 2010, 20, 4782-4784.
[71]
Gevrenova, R. Determination of natural colorants in plant extracts by high-performance liquid chromatography. J. Serb. Chem. Soc., 2010, 75, 903-915.
[72]
Hiena, D.T.T.; Huong, T.T.; Cuong, N.X.; Thao, N.P.; Nam, N.H.; Dat, N.T.; Anh, H.L.T.; Huong, L.M.; Kiem, P.V. Triterpenoid constituents from Lawsonia inermis. J. Sci. Technol., 2010, 87, 22-26.
[73]
Meng, J.; Jiang, T.; Bhatti, H.A.; Siddiqui, B.S.; Dixon, S.; Kilburn, J.D. Synthesis of dihydrodehydrodiconiferyl alcohol: the revised structure of lawsonicin. Org. Biomol. Chem., 2010, 8, 107-113.
[74]
Muthumani, P.; Meera, R.; Devi, P.; Kameswari, B. Phytochemical investigation and determination of crude alkaloidal content (Solasodine) in dried and fresh fruits of Lawsonia inermis. Res. J. Pharm. Technol., 2010, 3, 736-739.
[75]
Ashnagar, A.; Shiri, A. Isolation and characterization of 2-hydroxy-1,4-naphthoquinone (lawsone) from the powdered leaves of henna plant marketed in Ahwaz city of Iran. Int. J. Chemtech Res., 2011, 3, 1941-1944.
[76]
Hsouna, A.B.; Trigui, M.; Culioli, G.; Blache, Y.; Jaoua, S. Antioxidant constituents from Lawsonia inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chem., 2011, 125, 193-200.
[77]
Uddin, N.; Siddiqui, B.S.; Begum, S.; Bhatti, H.A.; Khan, A.; Parveen, S.; Choudhary, M.I. Bioactive flavonoids from the leaves of Lawsonia alba (Henna). Phytochem. Lett., 2011, 4, 454-458.
[78]
Nizam Ud, D. Studies On The Bioactive Constituents Of Lawsonia Alba (henna) And Analysis Of Salicylic Acid And Its Derivatives Using MALDI-MS And HPCL-ESI-MS. PhD Thesis, University of Karachi: Karachi, Pakistan. 2011.
[79]
Almeida, P.J.; Borrego, L.; Pulido‐Melián, E.; González‐Díaz, O. Quantification of p-phenylenediamine and 2-hydroxy-1, 4-naphthoquinone in henna tattoos. Contact Dermat., 2012, 66, 33-37.
[80]
Musa, A.; Gasmelseed, G. Characterization of Lawsonia inermis (Henna) as vegetable tanning material. J. Forest Prod. Ind., 2012, 1, 35-40.
[81]
Zohourian, T.H.; Quitain, A.T.; Sasaki, M.; Goto, M. Extraction of bioactive compounds from leaves of Lawsonia inermis by green pressurized fluids. Sep. Sci. Technol., 2012, 47, 1006-1013.
[82]
Siddiqui, B.S.; Kardar, M.N.; Uddin, N.; Perwaiz, S.; Begum, S. Antituberculosis activity of the constituents from the aerial parts of Lawsonia alba Lam. J. Pharm. Res., 2012, 5, 5561-5563.
[83]
Hassan, R.A.; Hamed, H.B.; Hamail, A.F.; El-Hendawy, M.A. Phytochemical and free radical scavenging activity of henna leaves extracts. J. Agric. Chem. Biotechnol., 2013, 4, 333-345.
[84]
Jacob, P.P.; Saral, A.M. GC-MS analysis of Lawsonia inermis seed oil. Int. J. Pharm. Pharm. Sci., 2013, 5, 617-618.
[85]
Jacob, P.P.; Saral, A.M. Two harmala alkaloids from Lawsonia inermis seeds. Chem. Nat. Compd., 2013, 49, 780.
[86]
Kidanemariam, T.K.; Tesema, T.K.; Asressu, K.H.; Boru, A.D. Chemical investigation of Lawsonia inermis L. leaves from Afar region, Ethiopia. Orient. J. Chem., 2013, 29, 1129-1134.
[87]
Liou, J.R.; El-Shazly, M.; Du, Y.C.; Tseng, C.N.; Hwang, T.L.; Chuang, Y.L.; Hsu, Y.M.; Hsieh, P.W.; Wu, C.C.; Chen, S.L.; Hou, M.F.; Chang, F.R.; Wu, Y.C. Diphenylpent-3-en-1-ynes and methyl naphthalene carboxylates from Lawsonia inermis and their anti-inflammatory activity. Phytochemistry, 2013, 88, 67-73.
[88]
Trigui, M.; Hsouna, A.B.; Hammami, I.; Culioli, G.; Ksantini, M.; Tounsi, S.; Jaoua, S. Efficacy of Lawsonia inermis leaves extract and its phenolic compounds against olive knot and crown gall diseases. Crop Prot., 2013, 45, 83-88.
[89]
Saeed, S.M.G.; Sayeed, S.A.; Ashraf, S.; Naz, S.; Siddiqi, R.; Ali, R.; Mesaik, M.A. A new method for the isolation and purification of lawsone from Lawsonia inermis and its ROS inhibitory activity. Pak. J. Bot., 2013, 45, 1431-1436.
[90]
Uddin, N.; Siddiqui, B.S.; Begum, S. Chemical constituents and bioactivities of Lawsonia alba Lam. (Henna). J. Chem. Soc. Pak., 2013, 35, 476-485.
[91]
Uddin, N.; Siddiqui, B.S.; Begum, S.; Ali, M.I.; Marasini, B.P.; Khan, A.; Choudhary, M.I. Bioassay-guided isolation of urease and α-chymotrypsin inhibitory constituents from the stems of Lawsonia alba Lam.(Henna). Fitoterapia, 2013, 84, 202-207.
[92]
Kumar, M.; Kumar, S.; Kaur, S. Identification of polyphenols in leaf extracts of Lawsonia inermis L. with antioxidant, antigenotoxic and antiproliferative potential. Int. J. Green Pharm., 2014, 8, 23-36.
[93]
Kuo, Y.; Yang, C.; Huang, G. Anti-inflammatory chemical constituents from aerial part of Lawsonia inermis Linn. Planta. Med., 2014. 80, P2O69
[94]
Li, Q.; Gao, W.; Cao, J.; Bi, X.; Chen, G.; Zhang, X.; Xia, X.; Zhao, Y. New cytotoxic compounds from flowers of Lawsonia inermis L. Fitoterapia, 2014, 94, 148-154.
[95]
Mahkam, M.; Nabati, M.; Rahbar Kafshboran, H. Isolation, identification and characterization of lawsone from henna leaves powder with soxhlet technique. Iran. Chem. Commun., 2014, 2, 34-38.
[96]
Singh, M.; Kaur, M.; Dangi, C.; Singh, H. Phytochemical & TLC profile of Lawsonia inermis (Heena). IJPRS, 2014, 3, 624-634.
[97]
Zhang, J.; Liu, J.; Xu, B.; Zhuang, Y.; Yosikawa, M.; Yin, B. Isolation and identification of triterpenoids from flowers of Lawsonia inermis. Asian J. Chem., 2014, 26, 4521-4522.
[98]
Dhaouadi, K.; Meliti, W.; Dallali, S.; Belkhir, M.; Ouerghemmi, S.; Sebei, H.; Fattouch, S. Commercial Lawsonia inermis L. dried leaves and processed powder: Phytochemical composition, antioxidant, antibacterial, and allelopathic activities. Ind. Crops Prod., 2015, 77, 544-552.
[99]
Nakashima, S.; Oda, Y.; Nakamura, S.; Liu, J.; Onishi, K.; Kawabata, M.; Mili, H.; Himuro, Y.; Yoshikawa, M.; Matsuda, H. Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorg. Med. Chem. Lett., 2015, 25, 2702-2706.
[100]
Singhal, M. Isolation and characterization of trimethyl ether glycoside from Lawsonia inermis. Chem. Process Eng. Res., 2015, 35, 105-108.
[101]
Yang, J.Y.; Lee, H.S. Antimicrobial activities of active component isolated from Lawsonia inermis leaves and structure-activity relationships of its analogues against food-borne bacteria. J. Food Sci. Technol., 2015, 52, 2446-2451.
[102]
Elgailany, H.A.M. Antibacterial activity of Lawsonia inermis (Sudanese Henna) leaves extracts against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa among recurrent urinary tract infection patients in omdurman military hospital. World J. Pharm. Sci., 2016, 4, 183-194.
[103]
Rajeswari, J.; Rani, S. Isolation, structural elucidation of flavonoid constituents from Lawsonia Inermis Linn. Der. Pharm. Lett., 2016, 8, 79-84.
[104]
Singhal, M.; Singh, J.; Jijhotiya, A. Estrogenic activity of isoflavonoid obtained from Lawsonia inermis. Int. Educ. Res. J., 2016, 2, 29-30.
[105]
Yang, C.S.; Huang, H.C.; Wang, S.Y.; Sung, P.J.; Huang, G.J.; Chen, J.J.; Kuo, Y.H. New Diphenol and Isocoumarins from the Aerial Part of Lawsonia inermis and Their Inhibitory Activities against NO Production. Molecules, 2016, 21, 1299-1307.
[106]
Gaur, P.; Singh, D.K.; Luqman, S.; Shanker, K. Validated method for quality assessment of henna (Lawsonia inermis L.) leaves after postharvest blanching and its cosmetic application. Ind. Crops Prod., 2017, 95, 33-42.
[107]
Iqbal, K.; Jamal, Q.; Iqbal, J.; Afreen, M.S.; Sanhu, M.Z.A.; Dar, E.; Farooq, U.; Mushtaq, M.F.; Arshad, N.; Iqbal, M.M. Luteolin as a potent anti-leishmanial agent against intracellular Leishmania tropica parasite. Trop. J. Pharm. Res., 2017, 16, 337-342.
[108]
Rajeswari, J.; Rani, S. Anti-fertility efficacy of isolated compounds from leptadenia reticulata and lawsonia inermis. Int. J. Pharma Bio Sci., 2017, 8, 291-298.
[109]
Begum, J.; Anwar, M.; Sultana, S.; Hoque, M.; Chowdhury, J.; Yusuf, M. Antimicrobial activity of Lawsonia inermis Linn. Hamdard Med., 2009, 52, 22-27.
[110]
Kumar, M.; Chandel, M.; Kaur, P.; Pandit, K.; Kaur, V.; Kaur, S.; Kaur, S. Chemical composition and inhibitory effects of water extract of Henna leaves on reactive oxygen species, DNA scission and proliferation of cancer cells. EXCLI J., 2016, 15, 842-857.
[111]
Rajeswari, J.; Rani, S. Acute oral toxicity studies of isolated compounds in Lawsonia inermis and Leptadenia reticulate in swiss albino mice. Int. J. Res. Pharm. Sci., 2016, 7, 195-199.
[112]
Wong, K.; Teng, Y. Volatile components of Lawsonia inermis L. flowers. J. Essent. Oil Res., 1995, 7, 425-428.
[113]
Oyedeji, A.O.; Ekundayo, O.; Koenig, W.A. Essential oil composition of Lawsonia inermis L. leaves from Nigeria. J. Essent. Oil Res., 2005, 17, 403-404.
[114]
Hema, R.; Kumaravel, S.; Gomathi, S.; Sivasubramaniam, C. Gas chromatography-mass spectroscopic analysis of Lawsonia inermis leaves. Life Sci. J., 2010, 7, 48-50.
[115]
Satyal, P.; Paudel, P.; Poudel, A.; Setzer, W. Antimicrobial activities and constituents of the leaf essential oil of Lawsonia inermis growing in Nepal. Pharmacologyonline, 2012, 1, 31-35.
[116]
Sharma, A.; Sharma, K. Efficacy of Lawsonia inermis linn. and Eucalyptus citriodora hook. essential oils and their combination as antifungal and antiaflatoxin agent. Int. J. Biol. Pharm. Res., 2013, 4, 130-143.
[117]
Rajeswari, J.; Rani, S. GC-MS analysis of phytochemical compounds in the ethanolic extract of root of Lawsonia inermis Linn. Int. J. Chemtech Res., 2014, 7, 389-399.
[118]
Wagini, N.H.; Soliman, A.S.; Abbas, M.S.; Hanafy, Y.A.; Badawy, E.S.M. Phytochemical analysis of Nigerian and Egyptian henna (Lawsonia inermis L.) leaves using TLC, FTIR and GCMS. J. Plant, 2014, 2, 27-32.
[119]
Dev, S.N.C.; De, K.; Khan, M.W. GC-MS analysis of phytochemicals of methanolic extract of leaves of Lawsonia inermis Linn. Indian J. Med. Res. Pharm. Sci., 2016, 3, 77-82.
[120]
Mengoni, T.; Vargas Peregrina, D.; Censi, R.; Cortese, M.; Ricciutelli, M.; Maggi, F.; Di Martino, P. SPME-GC-MS analysis of commercial henna samples (Lawsonia inermis L.). Nat. Prod. Res., 2016, 30, 268-275.
[121]
Thamaraiselvi, A.; Umavathi, S.; Thangam, Y.; Revathi, S. Pediculocidal activity of Lawsonia inermis L. against the head lice pediculus humanus capitis de geer (Phthiraptera: Pediculidae). Int. J. Innov. Res. Sci. Eng. Technol., 2016, 5, 1385-1390.
[122]
Krieger, E.; Vriend, G. YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics, 2014, 30, 2981-2982.
[123]
El Omari, K.; Bronckaers, A.; Liekens, S.; Pérez-Pérez, M.J.; Balzarini, J.; Stammers, D.K. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design. Biochem. J., 2006, 399, 199-204.
[124]
Mitsiki, E.; Papageorgiou, A.C.; Iyer, S.; Thiyagarajan, N.; Prior, S.H.; Sleep, D.; Finnis, C.; Acharya, K.R. Structures of native human thymidine phosphorylase and in complex with 5-iodouracil. Biochem. Biophys. Res. Commun., 2009, 386, 666-670.
[125]
Trott, O.; Olsson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[126]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[127]
Pérez-Pérez, M.I.; Priego, E.M.; Hernández, A.I.; Camarasa, M.I.; Balzarini, J.; Liekens, S. Thymidine phosphorylase inhibitors: recent developments and potential therapeutic applications. Mini Rev. Med. Chem., 2005, 5, 1113-1123.
[128]
Bera, H.; Tan, B.J.; Sun, L.; Dolzhenko, A.V.; Chui, W.K.; Chiu, G.N.C. A structure–activity relationship study of 1,2,4-triazolo [1,5-a][1,3,5]triazin-5,7-dione and its 5- thioxo analogues on anti-thymidine phosphorylase and associated anti-angio- genic activities. Eur. J. Med. Chem., 2013, 67, 325-334.
[129]
Khan, K.M.; Ambreen, N.; Hussain, S.; Perveen, S.; Choudhary, M.I. Schiff bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorg. Med. Chem., 2009, 17, 2983-2988.
[130]
Kita, T.; Takahashi, H.; Hashimoto, Y. Thymidine phosphorylase inhibitors with a homophthalimide skeleton. Biol. Pharm. Bull., 2001, 24, 860-862.
[131]
Bera, H.; Kumar Ojha, P.; Tan, B.J.; Sun, L.; Dolzhenko, A.V.; Chui, W.K.; Chiu, G.N. Discovery of mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic properties: Synthesis, pharmacological evaluation and molecular docking study of 2-thioxo-pyrazolo [1,5-a][1,3,5] triazin-4-ones. Part II. Eur. J. Med. Chem., 2014, 78, 294-303.
[132]
Bera, H.; Lee, M.H.; Sun, L.; Dolzhenko, A.V.; Chui, W.K. Synthesis, anti-thymidine phosphorylase activity and molecular docking of 5-thioxo-[1,2,4]triazolo [1,5-a][1,3,5]triazin-7-ones. Bioorg. Chem., 2013, 50, 34-40.
[133]
Sun, L.; Bera, H.; Chui, W.K. Synthesis of pyrazolo [1, 5-a][1, 3, 5] triazine derivatives as inhibitors of thymidine phosphorylase. Eur. J. Med. Chem., 2013, 65, 1-11.
[134]
Sun, L.; Li, J.; Bera, H.; Dolzhenko, A.V.; Chiu, G.N.; Chui, W.K. Fragment-based approach to the design of 5-chlorouracil-linked-pyrazolo [1,5-a][1,3,5] triazines as thymidine phosphorylase inhibitors. Eur. J. Med. Chem., 2013, 70, 400-410.
[135]
Nijveldt, R.J.; van Nood, E.L.S.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74, 418-425.
[136]
Balzarini, J.; Gamboa, A.E.; Esnouf, R.; Liekens, S.; Neyts, J.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS Lett., 1998, 438, 91-95.
[137]
Klein, R.S.; Lenzi, M.; Lim, T.H.; Hotchkiss, K.A.; Wilson, P.; Schwartz, E.L. Novel 6-substituted uracil analogs as inhibitors of the angiogenic actions of thymidine phosphorylase. Biochem. Pharmacol., 2001, 62, 1257-1263.
[138]
Liekens, S.; Hernández, A.I.; Ribatti, D.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J.; Balzarini, J. The nucleoside derivative 5′-O-trityl-inosine (KIN59) suppresses thymidine phosphorylase-triggered angiogenesis via a noncompetitive mechanism of action. J. Biol. Chem., 2004, 279, 29598-29605.
[139]
Yano, S.; Kazuno, H.; Sato, T.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashida, J.I.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 2: Optimization of inhibitors of human thymidine phosphorylase and their selectivity with uridine phosphorylase. Bioorg. Med. Chem., 2004, 12, 3443-3450.
[140]
Mařák, D.; Otmar, M.; Votruba, I.; Dračínský, M.; Krečmerová, M. 8-Aza-7,9-dideazaxanthine acyclic nucleoside phosphonate inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. Lett., 2011, 21, 652-654.
[141]
Nencka, R.; Votruba, I.; Hřebabecký, H.; Tloušt’ová, E.; Horská, K.; Masojídková, M.; Holý, A. Design and synthesis of novel 5,6-disubstituted uracil derivatives as potent inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. Lett., 2006, 16, 1335-1337.
[142]
Taha, M.; Ismail, N.H.; Imran, S.; Rahim, F.; Wadood, A.; Al Muqarrabun, L.M.R.; Khan, K.M.; Ghufran, M.; Ali, M. In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorg. Chem., 2016, 68, 80-89.
[143]
Norman, R.A.; Barry, S.T.; Bate, M.; Breed, J.; Colls, J.G.; Ernill, R.J.; Luke, R.W.; Minshull, C.A.; McAlister, M.S.; McCall, E.J.; McMiken, H.H.; Peterson, D.S.; Timms, D.; Tucker, J.A.; Pauptit, R.A. Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor. Structure, 2004, 12, 75-84.
[144]
Sharma, V.K. Tuberculostatic activity of henna (Lawsonia inermis Linn.). Tubercle, 1990, 71, 293-295.

© 2024 Bentham Science Publishers | Privacy Policy