[1]
Okarvi, S.M. Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med. Res. Rev., 2004, 24(5), 685-686.
[2]
Reubi, J.C.; Maecke, H.R. Peptide-based probes for cancer imaging. J. Nucl. Med., 2008, 49(11), 1735-1738.
[3]
Chen, K.; Conti, P.S. Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev., 2010, 62(11), 1005-1022.
[4]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[5]
Rybalov, M.; Ananias, H.J.K.; Hoving, H.D.; Van-Der-Poel, H.G.; Rosati, S.; De-Jong, I.J. PSMA, EpCAM, VEGF and GRPR as imaging targets in locally recurrent prostate cancer after radiotherapy. Int. J. Mol. Sci., 2014, 15(4), 6046-6061.
[6]
Yao, V.; Berkman, C.E.; Choi, J.K.; O’Keefe, D.S.; Bacich, D.J. Expression of Prostate-Specific Membrane Antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate, 2010, 70(3), 305-316.
[7]
Wang, X.; Ma, D.; Olson, W.C.; Heston, W.D.W. In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol. Cancer Ther., 2011, 10(9), 1728-1739.
[8]
Mannweiler, S.; Amersdorfer, P.; Trajanoski, S.; Terrett, J.; King, D.; Mehes, G. Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res., 2009, 15(2), 167-172.
[9]
Lagerstrom, M.C.; Schioth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov., 2008, 7(4), 339-357.
[10]
Klabunde, T.; Hessler, G. Drug design strategies for targeting G-protein-coupled receptors. ChemBioChem, 2002, 3(10), 928-944.
[11]
Selvaraju, R.K.; Velikyan, I.; Asplund, V.; Johansson, L.; Wu, Z.; Todorov, I.; Shively, J.; Kandeel, F.; Eriksson, B.; Korsgren, O.; Eriksson, O. Pre-clinical evaluation of [68 Ga] Ga-DO3A-VS-Cys 40-Exendin-4 for imaging of insulinoma. Nucl. Med. Biol., 2014, 41(6), 471-476.
[12]
Gao, H.; Kiesewetter, D.O.; Zhang, X. PET of glucagonlike peptide receptor upregulation after myocardial ischemia or reperfusion injury. J. Nucl. Med., 2012, 53(12), 1960-1968.
[13]
Wang, P.; Yoo, B.; Yang, J. GLP-1R–targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes, 2014, 63(5), 1465-1474.
[14]
Brand, C.; Abdel-Atti, D.; Zhang, Y.; Carlin, S.; Clardy, S.M.; Keliher, E.J.; Weber, W.A.; Lewis, J.S.; Reiner, T. In vivo imaging of GLP-1R with a targeted bimodal PET/fluorescence imaging agent. Bioconjug. Chem., 2014, 25(7), 1323-1330.
[15]
Tornehave, D.; Kristensen, P.; Rømer, J.; Knudsen, L.B.; Heller, R.S. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J. Histochem. Cytochem., 2008, 56(9), 841-851.
[16]
Ahrén, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov., 2009, 8(5), 369-385.
[17]
Körner, M.; Stöckli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med., 2007, 48(5), 736-743.
[18]
Christ, E.; Wild, D.; Forrer, F.; Brandle, M.; Sahli, R.; Clerici, T.; Gloor, B.; Martius, F.; Maecke, H.; Reubi, J.C. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J. Clin. Endocrinol. Metab., 2009, 94(11), 4398-4405.
[19]
Pattou, F.; Kerr-Conte, J.; Wild, D. 18F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(3), 463-473.
[20]
Brom, M.; Joosten, L.; Oyen, W.J.; Gotthardt, M.; Boerman, O.C. Radiolabelled GLP‐1 analogues for in vivo targeting of insulinomas. Contr. Med. Mol. Imag., 2012, 7(2), 160-166.
[21]
Yue, X.; Yan, X.; Wu, C.; Niu, G.; Ma, Y.; Jacobson, O.; Shen, B.; Kiesewetter, D.O.; Chen, X. One-pot two-step radiosynthesis of a new F-18-labeled thiol reactive prosthetic group and its conjugate for insulinoma imaging. Mol. Pharm., 2014, 11(11), 3875-3884.
[22]
Wu, Z.; Liu, S.; Nair, I.; Omori, K.; Scott, S.; Todorov, I.; Shively, J.E.; Conti, P.S.; Li, Z.; Kandeel, F. 64Cu Labeled sarcophagine exendin-4 for microPET imaging of glucagon like peptide-1 receptor expression. J. Nucl. Med., 2014, 4(8), 770-777.
[23]
Nomiyama, T.; Kawanami, T.; Irie, S.; Hamaguchi, Y.; Terawaki, Y.; Murase, K.; Tsutsumi, Y.; Nagaishi, R.; Tanabe, M.; Morinaga, H.; Tanaka, T. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes, 2014, 3(11), 3891-3905.
[24]
Gao, H.; Niu, G.; Yang, M.; Quan, Q.; Ma, Y.; Murage, E.N.; Ahn, J.M.; Kiesewetter, D.O.; Chen, X. PET of insulinoma using F-18-FBEM-EM3106B, a new GLP-1 analogue. Mol. Pharm., 2011, 8(5), 1775-1782.
[25]
Xu, Y.; Pan, D.; Xu, Q.; Zhu, C.; Wang, L.; Chen, F.; Yang, R.; Luo, S.; Yang, M. Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe F-18-FBEM–Cys39-exendin-4. J. Cancer Res. Clin. Oncol., 2014, 140(9), 1479-1488.
[26]
Jiang, Z.; Woda, B.A.; Rock, K.L.; Xu, Y.; Savas, L.; Khan, A.; Pihan, G.; Cai, F.; Babcook, J.S.; Rathanaswami, P.; Reed, S.G. P504S: A new molecular marker for the detection of prostate carcinoma. Am. J. Surg. Pathol., 2001, 25, 1397-1404.
[27]
Pan, D.; Yan, Y.; Yang, R.; Xu, Y.P.; Chen, F.; Wang, L.; Luo, S.; Yang, M. PET imaging of prostate tumors with 18F‐Al‐NOTA‐ MATBBN. Contr. Med. Mol. Imag., 2014, 9(5), 342-348.
[28]
Xu, Y.; Pan, D.; Zhu, C.; Xu, Q.; Wang, L.; Chen, F.; Yang, R.; Luo, S.; Yang, M.; Yan, Y. Pilot study of a novel 18F-labeled FSHR probe for tumor imaging. Mol. Imaging Biol., 2014, 16(4), 578-585.
[29]
Wan, W.; Guo, N.; Pan, D.; Yu, C.; Weng, Y.; Luo, S.; Ding, H.; Xu, Y.; Wang, L.; Lang, L.; Xie, Q. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J. Nucl. Med., 2013, 54(5), 691-698.
[30]
Goldenberg, D.M.; Sharkey, R.M.; McBride, W.J.; Boerman-Otto, C. (AlF)-F-18: A new standard for radiofluorination. J. Nucl. Med., 2013, 54(7), 1170-1170.
[31]
McBride, W.J.; Sharkey, R.M.; Goldenberg, D.M. Radiofluorination using aluminum-fluoride (Al (18) F). EJNMMI Res., 2013, 3(1), 36.
[32]
Xu, Q.; Zhu, C.; Xu, Y.; Pan, D.; Liu, P.; Yang, R.; Wang, L.; Chen, F.; Sun, X.; Luo, S.; Yang, M. Preliminary evaluation of [18F] AlF-NOTA-MAL-Cys39-exendin-4 in insulinoma with PET. J. Drug Target., 2015, 23(9), 813-820.
[33]
Bauman, A.; Valverde, I.E.; Fischer, C.A.; Vomstein, S.; Mindt, T.L. Development of Ga-68-and Zr-89-labeled exendin-4 as potential radiotracers for the imaging of insulinomas by PET. J. Nucl. Med., 2015, 56(10), 1569-1574.
[34]
Cardinale, J.; Schäfer, M.; Benešová, M.; Bauder-Wüst, U.; Leotta, K.; Eder, M.; Neels, O.C.; Haberkorn, U.; Giesel, F.L.; Kopka, K. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J. Nucl. Med., 2017, 58, 425-431.
[35]
Kiesewetter, D.O.; Guo, N.; Guo, J.; Gao, H.; Zhu, L.; Ma, Y.; Niu, G.; Chen, X. Evaluation of an [F-18] AlF-NOTA analog of exendin-4 for imaging of GLP-1 receptor in insulinoma. Theranostics, 2012, 2(10), 999-1009.