Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

miR-27b-3p is Highly Expressed in Serum of Patients with Preeclampsia and has Clinical Significance

Author(s): Yang Yang, Fang Tang and Xuezhi Zhao*

Volume 22, Issue 6, 2022

Published on: 15 February, 2022

Page: [612 - 619] Pages: 8

DOI: 10.2174/1871530321666211208152709

Price: $65

Abstract

Background: Preeclampsia (PE) is defined as a salient complication of late pregnancy. microRNAs (miRNAs) have emerged as critical biological regulators in PE. This study determined miR-27b-3p expression in serum of PE patients and investigated its clinical significance in PE.

Methods: This study enrolled a total of 130 pregnant women, including 90 PE patients (51 mild PE and 39 severe PE) and 40 healthy controls. miR-27b-3p expression in the serum of PE patients and healthy controls was detected using RT-qPCR. The correlation among miR-27b-3p expression and 24-h urine protein, systolic blood pressure (SBP), diastolic blood pressure (DBP), serum creatinine, and fetal birth weight was analyzed using Pearson's correlation coefficient. The targeting relationship between miR-27b-3p and PPARG was verified. PPARG protein level in PE patients was detected using ELISA kits. The predictive efficiency of miR-27b-3p and PPARG in PE was analyzed using the receiver operating characteristic (ROC) curve.

Results: Compared to normal pregnant women, PE pregnant women, especially severe PE patients, had higher miR-27b-3p expression. miR-27b-3p was positively correlated with 24-h urine protein, SBP, DBP, and serum creatinine but negatively correlated with fetal birth weight. PPARG was poorly expressed in PE patients and negatively correlated with miR-27b-3p. ROC curve showed that both miR-27b-3p and PPARG had good predictive efficacy on PE.

Conclusion: miR-27b-3p expression in serum of pregnant women with PE was positively correlated with the severity of PE symptoms, suggesting the involvement of miR-27b-3p in PE occurrence.

Keywords: Preeclampsia, miR-27b-3p, PPARG, receiver operating characteristic curve, pearson's analysis, mild preeclampsia, severe preeclampsia, serum.

[1]
Filipek, A.; Jurewicz, E. Preeclampsia - a disease of pregnant women. Postepy Biochem., 2018, 64(4), 232-229.
[http://dx.doi.org/10.18388/pb.2018_146] [PMID: 30656917]
[2]
Jena, M.K.; Sharma, N.R.; Petitt, M.; Maulik, D.; Nayak, N.R. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 2020, 10(6), E953.
[http://dx.doi.org/10.3390/biom10060953] [PMID: 32599856]
[3]
Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet, 2010, 376(9741), 631-644.
[http://dx.doi.org/10.1016/S0140-6736(10)60279-6] [PMID: 20598363]
[4]
Liu, S.; Jiang, S.; Huang, L.; Yu, Y. Expression of SASH1 in preeclampsia and its effects on human trophoblast. BioMed Res. Int., 2020, 2020, 5058260.
[PMID: 33134379]
[5]
Jido, T.A.; Yakasai, I.A. Preeclampsia: a review of the evidence. Ann. Afr. Med., 2013, 12(2), 75-85.
[http://dx.doi.org/10.4103/1596-3519.112395] [PMID: 23713013]
[6]
Bartel, D.P. Metazoan MicroRNAs. Cell, 2018, 173(1), 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[7]
Backes, C.; Meese, E.; Keller, A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol. Diagn. Ther., 2016, 20(6), 509-518.
[http://dx.doi.org/10.1007/s40291-016-0221-4] [PMID: 27378479]
[8]
Skalis, G.; Katsi, V.; Miliou, A.; Georgiopoulos, G.; Papazachou, O.; Vamvakou, G.; Nihoyannopoulos, P.; Tousoulis, D.; Makris, T. MicroRNAs in preeclampsia. MicroRNA, 2019, 8(1), 28-35.
[http://dx.doi.org/10.2174/2211536607666180813123303] [PMID: 30101723]
[9]
Zhu, L.; Liu, Z. Serum from patients with hypertension promotes endothelial dysfunction to induce trophoblast invasion through the miR-27b-3p/ATPase plasma membrane Ca2+ transporting 1 axis. Mol. Med. Rep., 2021, 23(5), 319.
[http://dx.doi.org/10.3892/mmr.2021.11958] [PMID: 33760199]
[10]
Gusar, V.; Timofeeva, A.; Chagovets, V.; Kan, N.; Vasilchenko, O.; Prozorovskaya, K.; Ivanets, T.; Sukhikh, G. Preeclampsia: The interplay between oxygen-sensitive mirnas and erythropoietin. J. Clin. Med., 2020, 9(2), E574.
[http://dx.doi.org/10.3390/jcm9020574] [PMID: 32093169]
[11]
Adu-Gyamfi, E.A.; Fondjo, L.A.; Owiredu, W.K.B.A.; Czika, A.; Nelson, W.; Lamptey, J.; Wang, Y.X.; Ding, Y.B. The role of adiponectin in placentation and preeclampsia. Cell Biochem. Funct., 2020, 38(1), 106-117.
[http://dx.doi.org/10.1002/cbf.3458] [PMID: 31746004]
[12]
ACOG Committee on Practice Bulletins--Obstetrics. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet. Gynecol., 2002, 99(1), 159-167.
[PMID: 16175681]
[13]
Braunthal, S.; Brateanu, A. Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Med., 2019, 7, 2050312119843700.
[http://dx.doi.org/10.1177/2050312119843700] [PMID: 31007914]
[14]
Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res., 2019, 124(7), 1094-1112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[15]
Dmitriev, P.; Kiseleva, E.; Kharchenko, O.; Ivashkin, E.; Pichugin, A.; Dessen, P.; Robert, T.; Coppée, F.; Belayew, A.; Carnac, G.; Laoudj-Chenivesse, D.; Lipinski, M.; Vasiliev, A.; Vassetzky, Y.S. Dux4 controls migration of mesenchymal stem cells through the Cxcr4-Sdf1 axis. Oncotarget, 2016, 7(40), 65090-65108.
[http://dx.doi.org/10.18632/oncotarget.11368] [PMID: 27556182]
[16]
Cotoia, A.; Mirabella, L.; Altamura, S.; Villani, R.; Marchese, F.; Ferrara, G.; Mariano, K.; Livio, T.; Cinnella, G. Circulating stem cells, HIF-1, and SDF-1 in septic abdominal surgical patients: randomized controlled study protocol. Trials, 2018, 19(1), 179.
[http://dx.doi.org/10.1186/s13063-018-2556-0] [PMID: 29530072]
[17]
Meng, D.; Meng, M.; Luo, A.; Jing, X.; Wang, G.; Huang, S.; Luo, M.; Shao, S.; Zhao, X.; Liu, R. Effects of VEGFR1+ hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J. Cancer Res. Clin. Oncol., 2019, 145(2), 411-427.
[http://dx.doi.org/10.1007/s00432-018-2802-6] [PMID: 30483898]
[18]
Workalemahu, T; Enquobahrie, DA; Gelaye, B; Thornton, TA; Tekola-Ayele, F; Sanchez, SE Abruptio placentae risk and genetic variations in mitochondrial biogenesis and oxidative phosphorylation: replication of a candidate gene association study. Am. J. Obstet. Gynecol., 2018, 219(6), 617.
[http://dx.doi.org/10.1016/j.ajog.2018.08.042]
[19]
Shoaito, H.; Chauveau, S.; Gosseaume, C.; Bourguet, W.; Vigouroux, C.; Vatier, C.; Pienkowski, C.; Fournier, T.; Degrelle, S.A. Peroxisome proliferator-activated receptor gamma-ligand-binding domain mutations associated with familial partial lipodystrophy type 3 disrupt human trophoblast fusion and fibroblast migration. J. Cell. Mol. Med., 2020, 24(13), 7660-7669.
[http://dx.doi.org/10.1111/jcmm.15401] [PMID: 32519441]
[20]
Lv, Y.; Lu, C.; Ji, X.; Miao, Z.; Long, W.; Ding, H.; Lv, M. Roles of microRNAs in preeclampsia. J. Cell. Physiol., 2019, 234(2), 1052-1061.
[http://dx.doi.org/10.1002/jcp.27291] [PMID: 30256424]
[21]
Ryu, A.; Cho, N.J.; Kim, Y.S.; Lee, E.Y. Predictive value of serum uric acid levels for adverse perinatal outcomes in preeclampsia. Medicine (Baltimore), 2019, 98(18), e15462.
[http://dx.doi.org/10.1097/MD.0000000000015462] [PMID: 31045822]
[22]
Prabu, P.; Rome, S.; Sathishkumar, C.; Gastebois, C.; Meugnier, E.; Mohan, V.; Balasubramanyam, M. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the ‘Asian Indian phenotype’. Diabetes Metab., 2019, 45(3), 276-285.
[http://dx.doi.org/10.1016/j.diabet.2018.08.004] [PMID: 30165157]
[23]
Fournier, T; Handschuh, K; Tsatsaris, V; Evain-Brion, D. Involvement of PPARgamma in human trophoblast invasion. Placenta., 2007, 28(Suppl A), S76-81.
[24]
Fournier, T.; Guibourdenche, J.; Handschuh, K.; Tsatsaris, V.; Rauwel, B.; Davrinche, C.; Evain-Brion, D. PPARγ and human trophoblast differentiation. J. Reprod. Immunol., 2011, 90(1), 41-49.
[http://dx.doi.org/10.1016/j.jri.2011.05.003] [PMID: 21704384]
[25]
Holdsworth-Carson, S.J.; Lim, R.; Mitton, A.; Whitehead, C.; Rice, G.E.; Permezel, M.; Lappas, M. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta, 2010, 31(3), 222-229.
[http://dx.doi.org/10.1016/j.placenta.2009.12.009] [PMID: 20045185]
[26]
McCarthy, F.P.; Drewlo, S.; English, F.A.; Kingdom, J.; Johns, E.J.; Kenny, L.C.; Walsh, S.K. Evidence implicating peroxisome proliferator-activated receptor-γ in the pathogenesis of preeclampsia. Hypertension, 2011, 58(5), 882-887.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.179440] [PMID: 21931072]
[27]
Lane, S.L.; Dodson, R.B.; Doyle, A.S.; Park, H.; Rathi, H.; Matarrazo, C.J.; Moore, L.G.; Lorca, R.A.; Wolfson, G.H.; Julian, C.G. Pharmacological activation of peroxisome proliferator-activated receptor γ (PPAR-γ) protects against hypoxia-associated fetal growth restriction. FASEB J., 2019, 33(8), 8999-9007.
[http://dx.doi.org/10.1096/fj.201900214R] [PMID: 31039323]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy