[1]
Jung, M.; Seo, D.; Kwak, K.; Kim, A.; Cha, W.; Kim, H.; Yoon, Y.; Ko, M.J.; Lee, D.; Kim, J.Y.; Son, H.J.; Kim, B. Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes Pigm, 2015, 115, 23-34.
[2]
Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater., 2006, 18, 789-794.
[3]
Zhang, X.; Lu, Z.H.; Ye, L.; Zhan, C.L.; Hou, J.H.; Zhang, S.Q.; Jiang, B.; Zhao, Y.; Huang, J.H.; Zhang, S.L.; Liu, Y.; Shi, Q.; Liu, Y.Q.; Yao, J.N. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater., 2013, 25, 5791-5797.
[4]
Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett., 1991, 58(10), 1062-1064.
[5]
Wu, J.B.; Becerril, H.A.; Bao, Z.N.; Liu, Z.F.; Chen, Y.S.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008, 92, 263302.
[6]
Fan, Q.; Li, M.; Yang, P.; Liu, Y.; Xiao, M.; Wang, X.; Tan, H.; Wang, Y.; Yang, R.; Zhu, W. Acceptor-donor-acceptor small molecules containing benzo[1,2-b:4,5-b′]dithiophene and rhodanine units for solution processed organic solar cells. Dyes Pigm., 2015, 116, 13-19.
[7]
Fan, L.; Cui, R.; Jiang, L.; Zou, Y.; Li, Y.; Qian, D. A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes Pigm., 2015, 113, 458-464.
[8]
Do, K.; Cho, N.; Siddiqui, S.A.; Singh, S.P.; Sharma, G.D.; Ko, J. New D-A-D-A-D push-pull organic semiconductors with different benzo[1,2-b:4, 5-b′]dithiophene cores for solution processed bulk heterojunction solar cells. Dyes Pigm., 2015, 120, 126-4135.
[9]
Chen, Y.; Du, Z.; Chen, W.; Liu, Q.; Sun, L.; Sun, M.; Yang, R. Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Org. Electron., 2014, 15(2), 405-413.
[10]
Ni, W.; Li, M.; Wan, X.; Zuo, Y.; Kan, B.; Feng, H.; Zhang, Q.; Chen, Y. A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Sci. China Chem., 2014, 58(2), 339-346.
[11]
Kumar, C.V.; Cabau, L.; Viterisi, A.; Biswas, S.; Sharma, G.D.; Palomares, E. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units. J. Phys. Chem. C, 2015, 119, 20871-20879.
[12]
Kumar, C.V.; Cabau, L.; Koukaras, E.N.; Viterisi, A.; Sharma, G.D.; Palomares, E. Solution processed organic solar cells based on A-D-D’-D-A small molecule with benzo[1,2-b:4,5-b′]dithiophene donor (D’) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. J. Mater. Chem. A, 2015, 3(9), 4892-4902.
[13]
Kim, Y.J.; Baek, J.Y.; Ha, J.; Chung, D.S.; Kwon, S.; Park, C.E.; Kim, Y. A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. J. Mater. Chem. C, 2014, 2(25), 4937-4946.
[14]
Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc., 2014, 136(44), 15529-15532.
[15]
Fan, H.; Zhu, X. Development of small-molecule materials for high-performance organic solar cells. Sci. China Chem., 2015, 58(6), 922-936.
[16]
Kozma, E.; Catellani, M. Perylene diimides based materials for organic solar cells. Dyes Pigm, 2013, 98(1), 160-179.
[17]
Li, M.; Ni, W.; Wan, X.; Zhang, Q.; Kan, B.; Chen, Y. Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. J. Mater. Chem. A, 2015, 3(9), 4765-4776.
[18]
Gautam, P.; Misra, R.; Biswas, S.; Sharma, G.D. AD-π-A1-π-A2 push-pull small molecule donor for solution processed bulk heterojunction organic solar cells. Phys. Chem. Chem. Phys., 2016, 18(20), 13918-13926.
[19]
Chen, Y.F.; Liu, J.M.; Huang, J.F.; Tan, L.L.; Shen, Y.; Xiao, L.M.; Kuang, D.B.; Su, C.Y. Stable organic dyes based on the benzo[1,2-b:4,5-b′]dithiophene donor for efficient dye-sensitized solar cells. J. Mater. Chem. A, 2015, 3(15), 8083-8090.
[20]
Liao, X.; Wu, F.; Zhang, L.; Chen, L.; Chen, Y. Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polym. Chem., 2015, 6(44), 7726-7736.
[21]
Bagde, S.S.; Park, H.; Lee, S.M.; Lee, S.H. Influence of the terminal donor on the performance of 4,8-dialkoxybenzo[1,2-b:4,5′]dithiophene based small molecules for efficient solution-processed organic solar cells. New J. Chem., 2016, 40(3), 2063-2070.
[22]
Du, Z.; Chen, W.; Qiu, M.; Chen, Y.; Wang, N.; Wang, T.; Sun, M.; Yu, D.; Yang, R. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys., 2015, 17(26), 17391-17398.
[23]
Tang, A.; Zhan, C.; Yao, J. Series of quinoidal methyl-dioxocyano-pyridine based π-extended narrow-bandgap oligomers for solution-processed small-molecule organic solar cells. Chem. Mater., 2015, 27, 4719-4730.
[24]
Liao, J.; Zhao, H.; Xu, Y.; Cai, Z.; Peng, Z.; Zhang, W.; Zhou, W.; Li, B.; Zong, Q.; Yang, X. Novel D-A-D type dyes based on BODIPY platform for solution processed organic solar cells. Dyes Pigm., 2016, 128, 131-140.
[25]
Jadhav, T.; Misra, R.; Biswas, S.; Sharma, G.D. Bulk heterojunction organic solar cells based on carbazole-BODIPY conjugate small molecules as donors with high open circuit voltage. Phys. Chem. Chem. Phys., 2015, 17(40), 26580-26588.
[26]
Lu, H.I.; Lu, C.W.; Lee, Y.C.; Lin, H.W.; Lin, L.Y.; Lin, F.; Chang, J.H.; Wu, C.I.; Wong, K.T. New molecular donors with dithienopyrrole as the electron-donating group for efficient small-molecule organic solar cells. Chem. Mater., 2014, 26(15), 4361-4367.
[27]
Mercier, L.G.; Mishra, A.; Ishigaki, Y.; Henne, F.; Schulz, G.; Bauerle, P. Acceptor-donor-acceptor oligomers containing dithieno[3,2-b:2′,3′-d]pyrrole and thieno[2,3-c]pyrrole-4,6-dione units for solution-processed organic solar cells. Org. Lett., 2014, 16, 2642-2645.
[28]
Chung, C.L.; Chen, C.Y.; Kang, H.W.; Lin, H.W.; Tsai, W.l.; Hsu, C.C.; Wong, K.T. A-D-A type organic donors employing coplanar heterocyclic cores for efficient small molecule organic solar cells. Org. Electron., 2016, 28, 229-238.
[29]
Luponosov, Y.N.; Min, J.; Bakirov, A.V.; Dmitryakov, P.V.; Chvalun, S.N.; Peregudova, S.M.; Ameri, T.; Brabec, C.J.; Ponomarenko, S.A. Effects of bridging atom and π-bridge length on physical and photovoltaic properties of A-π-D-π-A oligomers for solution-processed organic solar cells. Dyes Pigm, 2015, 122, 212-223.
[30]
Ni, W.; Li, M.; Liu, F.; Wan, X.; Feng, H.; Kan, B.; Zhang, Q.; Zhang, H.; Chen, Y. Dithienosilole-based small-molecule organic solar cells with an efficiency over 8%: Investigation of the relationship between the molecular structure and photovoltaic performance. Chem. Mater., 2015, 27(17), 6077-6084.
[31]
Bai, H.; Wang, Y.; Cheng, P.; Li, Y.; Zhu, D.; Zhan, X. Acceptor-donor-acceptor small molecules based on indacenodithiophene for efficient organic solar cells. ACS Appl. Mater. Interfaces, 2014, 6, 8426-8433.
[32]
Bai, H.; Cheng, P.; Wang, Y.; Ma, L.; Li, Y.; Zhu, D.; Zhan, X. A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. J. Mater. Chem. A, 2014, 2(3), 778-784.
[33]
Sharma, G.D.; Zervaki, G.E.; Angaridis, P.A.; Kitsopoulos, T.N.; Goutsolelos, A.G. Triazine-bridged porphyrin triad as electron donor for solution-processed bulk hetero-junction organic solar cells. J. Phys. Chem. C, 2014, 118(11), 5968-5977.
[34]
Liang, T.; Xiao, L.; Liu, C.; Gao, K.; Qin, H.; Cao, Y.; Peng, X. Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Org. Electron., 2016, 29, 127-134.
[35]
Arrechea, S.; Molina-Ontoria, A.; Aljarilla, A.; Cruz, P.; Langa, F.; Echegoyen, L. New acceptor-π-porphyrin-π-acceptor systems for solution-processed small molecule organic solar cells. Dyes Pigm., 2015, 121, 109-117.
[36]
Gautam, P.; Misra, R.; Siddiqui, S.A.; Sharma, G.D. Unsymmetrical Donor-acceptor-acceptor-π-donor type benzothiadiazole-based small molecule for a solution processed bulk heterojunction organic solar cell. ACS Appl. Mater. Interfaces, 2015, 7(19), 10283-10292.
[37]
Chen, Y.; Du, Z.; Chen, W.; Wen, S.; Sun, L. liu, Q.; Sun M.; Yang, R. New small molecules with thiazolothiazole and benzothiadiazole acceptors for solution-processed organic solar cells. New J. Chem., 2014, 38(4), 1559-1564.
[38]
Gautam, P.; Misra, R.; Siddiqui, S.A.; Sharma, G.D. Donor-acceptor-π-acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Org. Electron., 2015, 19, 76-82.
[39]
Jeon, Y.; Kim, T.; Kim, J.J.; Hong, J.I. Vacuum-depositable thiophene- and benzothiadiazole-based donor materials for organic solar cells. New J. Chem., 2015, 39(12), 9591-9595.
[40]
Huang, X.; Zhang, G.; Zhou, C.; Liu, S.; Zhang, J.; Ying, L.; Huang, F.; Cao, Y. Tailoring π-conjugated dithienosilole-benzothiadiazole oligomers for organic solar cells. New J. Chem., 2015, 39(5), 3658-3664.
[41]
Zhou, R.; Li, Q.D.; Li, X.C.; Lu, S.M.; Wang, L.P.; Zhang, C.H.; Huang, J.; Chen, P.; Li, F.; Zhu, X.H.; Choy, W.C.H.; Peng, J.; Cao, Y.; Gong, X. A solution-processable diketopyrrolopyrrole dye molecule with (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes Pigm., 2014, 101(101), 51-57.
[42]
Bagde, S.S.; Park, H.; Yang, S.; Jin, S.H.; Lee, S.H. Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells. Chem. Phys. Lett., 2015, 630, 37-43.
[43]
Narayanaswamy, K.; Venkateswararao, A.; Gupta, V.; Chand, S.; Singh, S.P. NIR absorbing D-π-A-π-D structured diketopyrrolopyrrole-dithiafulvalene based small molecule for solution processed organic solar cells. Chem. Commun., 2016, 52, 210-213.
[44]
Reddy, M.A.; Kumar, C.P.; Ashok, A.; Sharma, A.; Sharma, G.D.; Chandrasekharam, M. Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6(11), 9023-9036.
[45]
Zhang, H.; Qiu, N.; Ni, W.; Kan, B.; Li, M.; Zhang, Q.; Wan, X.; Chen, Y. Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes Pigm., 2015, 126, 173-178.
[46]
Lee, J.W.; Choi, Y.S.; Ahn, H.; Jo, W.H. Ternary blend composed of two organic donors and one acceptor for active layer of high-performance organic solar cells. ACS Appl. Mater. Interfaces, 2016, 8, 10961-10967.
[47]
Qian, D.; Liu, B.; Wang, S.; Himmelberger, S.; Linares, M.; Vagin, M.; Muller, C.; Ma, Z.; Fabiano, S.; Berggren, M.; Salleo, A.; Inganas, O.; Zou, Y.; Zhang, F. Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. J. Mater. Chem. A, 2015, 3(48), 24349-24357.
[48]
Xia, Y.; Tan, W.Y.; Wang, L.P.; Zhang, C.H.; Peng, L.; Zhu, X.H.; Peng, J.; Cao, Y. Soluble acetylenic molecular glasses based on dithienyldiketopyrrolopyrrole for organic solar cells. Dyes Pigm., 2015, 126, 96-103.
[49]
Feng, G.; Xu, Y.; Zhang, J.; Wang, Z.; Zhou, Y.; Li, Y.; Wei, Z.; Li, C.; Li, W. All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. J. Mater. Chem. A, 2016, 4(16), 6056-6063.
[50]
Bulut, I.; Chavez, P.; Fall, S.; Mery, S.; Heinrich, B.; Rault-Berthelot, J.; Poriel, C.; Leveque, P.; Leclerc, N. Incorporation of spirobifluorene regioisomers in electron-donating molecular systems for organic solar cells. RSC Advances, 2016, 6(31), 25952-25959.
[51]
Zhang, Y.; Tan, H.; Xiao, M.; Bao, X.; Tao, Q.; Wang, Y.; Liu, Y.; Yang, R.; Zhu, W. D-A-Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron., 2014, 15(6), 1173-1183.
[52]
Lim, F.J.; Krishnamoorthy, A.; Ho, G.W. All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2016, 150, 19-31.
[53]
Zhang, C.H.; Wang, L.P.; Tan, W.Y.; Wu, S.P.; Liu, X.P.; Yu, P.P.; Huang, J.; Zhu, X.H.; Wu, H.B.; Zhao, C.Y.; Peng, J.; Cao, Y. Effective modulation of an aryl acetylenic molecular system based on dithienyldiketopyrrolopyrrole for organic solar cells. J. Mater. Chem. C, 2016, 4(17), 3757-3764.
[54]
Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Chen, Y.; Zhu, Y.; Huang, Y.; Lu, Z.; Zhao, S. A low bandgap asymmetrical squaraine for high-performance solution-processed small molecule organic solar cells. Chem. Commun., 2014, 50(66), 9346-9348.
[55]
Yang, D.; Jiao, Y.; Huang, Ya.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Org. Electron., 2016, 32, 179-186.
[56]
Yang, D.; Yang, L.; Huang, Y.; Jiao, Y.; Igarashi, T.; Chen, Y.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Asymmetrical squaraines bearing fluorine-substituted indoline moieties for high-performance solution-processed small-molecule organic solar cells. ACS Appl. Mater. Interfaces, 2015, 7(24), 13675-13684.
[57]
Yang, D.; Jiao, Y. Yang, Lin.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole-dipole interactions as a high performance small molecular organic solar cells material. J. Mater. Chem. A, 2015, 3(34), 17704-17712.
[58]
Cui, C.; Zhang, Y.; Choy, W.C.H.; Li, H.; Wong, W.Y. Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Sci. China Chem., 2015, 58(2), 347-356.
[59]
Wu, J.; Ma, Y.; Wu, N.; Lin, Y.; Lin, J.; Wang, L.; Ma, C.Q. 2,2-Dicyanovinyl-end-capped oligothiophenes as electron acceptor in solution processed bulk-heterojunction organic solar cells. Org. Electron., 2015, 23, 28-38.
[60]
Kim, Y.J.; Cheon, Y.R.; Jang, J.W.; Kim, Y.H.; Park, C.E. A potential naphtho[2,1-b:3,4-b′]dithiophene-based polymer with large open circuit voltage for efficient use in organic solar cells. J. Mater. Chem. C, 2015, 3(9), 1904-1912.
[61]
Zhu, X.; Xia, B.; Lu, K.; Li, H.; Zhou, R.; Zhang, J.; Zhang, Y.; Shuai, Z.; Wei, Z. Naphtho[1,2-b:5,6-b′]dithiophene-based small molecules for thick-film organic solar cells with high fill factors. Chem. Mater., 2016, 28(3), 943-950.
[62]
Lee, J.; Ko, H.; Song, E.; Kim, H.G.; Cho, K. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells. ACS Appl. Mater. Interfaces, 2015, 7(38), 21159-21169.
[63]
Zhen, H.; Peng, Z.; Hou, L.; Jia, Y.; Li, Q.; Hou, Q. Comparative study on triphenylamine-based bi-armed and four-armed small molecule donors for solution processed organic solar cells. Dyes Pigm., 2015, 113, 451-457.
[64]
Zhang, J.; Li, G.; Kang, C.; Lu, H.; Zhao, X.; Li, C.; Li, W.; Bo, Z. Synthesis of star-shaped small molecules carrying peripheral 1,8-naphthalimide functional groups and their applications in organic solar cells. Dyes Pigm., 2015, 115(1), 181-189.
[65]
Karamshuk, S.; Caramori, S.; Manfredi, N.; Salamone, M.; Ruffo, R.; Carli, S.; Bignozzi, C.A.; Abbotto, A. Molecular level factors affecting the efficiency of organic chromophores for p-type dye sensitized solar cells. Energies, 2016, 9(1), 1-17.
[66]
Jiang, Y.; Cabanetos, C.; Allain, M.; Liu, P.; Roncali, J. Manipulation of the band gap and efficiency of a minimalist push-pull molecular donor for organic solar cells. J. Mater. Chem., 2015, 3(20), 5145-5151.
[67]
Wang, S.; Yang, J.; Zhang, Z.; Hu, Y.; Cao, X.; Li, H.; Tao, Y.; Li, Y.; Huang, W. A new V-shaped triphenylamine/diketo-pyrrolopyrrole containing donor material for small molecule organic solar cells. RSC Advances, 2015, 5(83), 68192-68199.
[68]
Meira, R.; Costa, P.M.M.; Paolo, R.E.D.; Morgado, J.; Alcacer, L.; Bastos, J.P.; Cheyns, D.; Charas, A. Synthesis and optical properties of a new triphenylamine-p-phenylenevinylene-small molecule with applications in high open-circuit voltage organic solar cells. New J. Chem., 2015, 39(9), 7389-7396.
[69]
Lim, K.; Lee, S.Y.; Song, K.; Sharma, G.D.; Ko, J. Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. J. Mater. Chem. C, 2014, 2(39), 8412-8422.
[70]
Min, J.; Luponosov, Y.N.; Solodukhin, A.N.; Kausch-Busies, N.; Ponomarenko, S.A.; Ameri, T.; Brabec, C.J. A star-shaped D-π-A small molecule based on a tris(2-methoxyphenyl) amine core for highly efficient solution-processed organic solar cells. J. Mater. Chem. C, 2014, 2(39), 7614-7620.
[71]
Jia, T.; Peng, Z.; Li, Qi.; Zhu, T.; Hou, Q.; Hou, L. Synthesis of four-armed triphenylamine-based molecules and their applications in organic solar cells. New J. Chem., 2015, 39(2), 994-1000.
[72]
Zhou, Y.; Chen, W.; Du, Z.; Zhu, D.; Ouyang, D.; Han, L.; Yang, R. High open-circuit voltage solution-processed organic solar cells based on a star-shaped small molecule end-capped with a new rhodanine derivative. Sci. China Chem., 2015, 58(2), 357-363.
[73]
Jia, T.; Peng, Z.; Li, Qi.; Xie, Y.; Hou, Q.; Hou, L. Synthesis of triphenylamine-based molecules with cyan terminals and their application for organic solar cells. Synth. Met., 2015, 199, 14-20.
[74]
Somasundaram, S.; Jeon, S.; Park, S. Triphenylamine and benzothiadiazole-based D-A-A’ and A′-A-D-D-A-A’ type small molecules for solution-processed organic solar cells. Macromol. Res., 2016, 24(3), 226-234.
[75]
Ouhib, F.; Tomassetti, M.; Dierckx, W.; Verstappen, P.; Wislez, A.; Duwez, A.S.; Lemaur, V.; Lazzaroni, R.; Manca, J.; Maes, W.; Jerome, C.; Detrembleur, C. Linear and propeller-like fluoro-isoindigo based donor-acceptor small molecules for organic solar cells. Org. Electron., 2015, 20, 76-88.
[76]
Ren, Y.; Hiszpanski, A.M.; Whittaker-Brooks, L.; Loo, Y.L. Structure-property relationship study of substitution effects on Isoindigo-based model compounds as electron donors in organic solar cells. ACS Appl. Mater. Interfaces, 2014, 6(16), 14533-14542.
[77]
Areephong, J.; Juan, R.R.S.; Payne, A.J.; Welch, G.C. A narrow band gap isoindigo based molecular donor for solution processed organic solar cells. New J. Chem., 2015, 39(7), 5075-5079.
[78]
Tomassetti, M.; Ouhib, F.; Cardinaletti, I.; Verstappen, P.; Salleo, A.; Jerome, C.; Manca, J.; Maes, W.; Detrembleur, C. Branched and linear A2-D-A1-D-A2 Isoindigo-based solution-processable small molecules for organic field-effect transistors and solar cells. RSC Advances, 2015, 5(104), 85460-85469.
[79]
Vybornyi, O.; Jiang, Y.; Baert, F.; Demeter, D.; Roncali, J.; Blanchard, P.; Cabanetos, C. Solution-processable thienoisoindigo-based molecular donors for organic solar cells with high open-circuit voltage. Dyes Pigm., 2015, 115, 17-22.
[80]
Randell, N.M.; Douglas, A.F.; Kelly, T.L. 7-Azaisoindigo as a new electron deficient component of small molecule chromophores for organic solar cells. J. Mater. Chem. A, 2014, 2, 1085-1092.