[1]
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One‐dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003, 15(5), 353-389.
[2]
Takazawa, K.; Inoue, J-I.; Mitsuishi, K. Optical waveguiding along a sub-100-nm-width organic nanofiber: Significant effect of cooling on waveguiding properties. J. Phys. Chem. C, 2016, 120(2), 1186-1192.
[3]
Lu, T-W.; Tsai, W-C.; Wu, T-Y.; Lee, P-T. Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide. Appl. Phys. Lett., 2013, 102(5), 051103.
[4]
Ma, Y.; Xue, M.; Shi, J.; Tan, Y. Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties. Nanoscale, 2014, 6(12), 6828-6836.
[5]
Sun, H.; Deng, J.; Qiu, L.; Fang, X.; Peng, H. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci., 2015, 8(4), 1139-1159.
[6]
aYan, Y.; Zhang, C.; Yao, J.; Zhao, Y.S. Recent advances in organic one‐dimensional composite materials: Design, construction, and photonic elements for information processing. Adv. Mater., 2013, 25(27), 3627-3638.
bWu, J.; Luo, J.; Cernetic, N.; Chen, K.; Chiang, K-S.; Jen, A.K-Y. PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling. J. Mater. Chem. C, 2016, 4(43), 10286-10292.
[7]
Zhang, C.; Yan, Y.; Zhao, Y.S.; Yao, J. From molecular design and materials construction to organic nanophotonic devices. Acc. Chem. Res., 2014, 47(12), 3448-3458.
[8]
Kim, F.S.; Ren, G.; Jenekhe, S.A. One-dimensional nanostructures of π-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater., 2010, 23(3), 682-732.
[9]
O’Carroll, D.; Lieberwirth, I.; Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol., 2007, 2(3), 180-184.
[10]
Zhao, Y.S.; Xu, J.; Peng, A.; Fu, H.; Ma, Y.; Jiang, L.; Yao, J. Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem., 2008, 120(38), 7411-7415.
[11]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[12]
aPagliara, S.; Camposeo, A.; Di Benedetto, F.; Polini, A.; Mele, E.; Persano, L.; Cingolani, R.; Pisignano, D. Study of optical properties of electrospun light-emitting polymer fibers. Superlattices Microstruct., 2010, 47(1), 145-149.
bDi Camillo, D.; Fasano, V.; Ruggieri, F.; Santucci, S.; Lozzi, L.; Camposeo, A.; Pisignano, D. Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale, 2013, 5(23), 11637-11642.
cYu, H.; Li, B. Wavelength-converted wave-guiding in dye-doped polymer nanofibers. Sci. Rep., 2013, 3, 1674.
dWang, P.; Wang, Y.; Tong, L. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light Sci. Appl., 2013, 2(10), e102.
[13]
Fasano, V.; Moffa, M.; Camposeo, A.; Persano, L.; Pisignano, D. Controlled atmosphere electrospinning of organic nanofibers with improved light emission and waveguiding properties. Macromolecules, 2015, 48(21), 7803-7809.
[14]
Dhakal, K.P.; Lee, H.; Lee, J.W.; Joo, J.; Guthold, M.; Kim, J. Electrospinning and optical characterization of organic rubrene nanofibers. J. Appl. Phys., 2012, 111(12), 123504.
[15]
Ishii, Y.; Kaminose, R.; Fukuda, M. Polymer-clad electrospun polymer nanofiber waveguides. Mater. Lett., 2013, 108, 270-272.
[16]
aZhao, Y.S.; Fu, H.; Hu, F.; Peng, A.; Yang, W.; Yao, J. Tunable emission from binary organic one‐dimensional nanomaterials: An alternative approach to white‐light emission. Adv. Mater., 2008, 20(1), 79-83.
bZhao, Y.S.; Fu, H.; Peng, A.; Ma, Y.; Liao, Q.; Yao, J. Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res., 2009, 43(3), 409-418.
[17]
Yanagi, H.; Morikawa, T. Self-wave guided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition. Appl. Phys. Lett., 1999, 75(2), 187.
[18]
Yanagi, H.; Ohara, T.; Morikawa, T. Self‐Waveguided gain‐narrowing of blue light emission from epitaxially oriented p‐sexiphenyl crystals. Adv. Mater., 2001, 13(19), 1452-1455.
[19]
Balzer, F.; Bordo, V.G.; Simonsen, A.; Rubahn, H.G. Isolated hexaphenyl nanofibers as optical waveguides. Appl. Phys. Lett., 2003, 82(1), 10.
[20]
aBalzer, F.; Bordo, V.G.; Simonsen, A.C.; Rubahn, H.G. Optical waveguiding in individual nanometer-scale organic fibers. Phys. Rev. B, 2003, 67(11), 115408.
bVolkov, V.; Bozhevolnyi, S.; Bordo, V.; Rubahn, H.G. Near‐field imaging of organic nanofibres. J. Microsc., 2004, 215(3), 241-244.
cQuochi, F.; Cordella, F.; Mura, A.; Bongiovanni, G.; Balzer, F.; Rubahn, H-G. One-dimensional random lasing in a single organic nanofiber. J. Phys. Chem. B, 2005, 109(46), 21690-21693.
[21]
Leissner, T.; Lemke, C.; Jauernik, S.; Muller, M.; Fiutowski, J.; Tavares, L.; Thilsing-Hansen, K.; Kjelstrup-Hansen, J.; Magnussen, O.; Rubahn, H.G.; Bauer, M. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Opt. Express, 2013, 21(7), 8251-8260.
[22]
Zhao, Y.S.; Peng, A.; Fu, H.; Ma, Y.; Yao, J. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater., 2008, 20(9), 1661-1665.
[23]
Liao, Q.; Fu, H.; Yao, J. Waveguide modulator by energy remote relay from binary organic crystalline microtubes. Adv. Mater., 2009, 21(41), 4153-4157.
[24]
Zhao, Y.S.; Zhan, P.; Kim, J.; Sun, C.; Huang, J. Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano, 2010, 4(3), 1630-1636.
[25]
Bordo, K.; Schiek, M.; Ghazal, A.; Wallmann, I.; Lützen, A.; Balzer, F.; Rubahn, H-G.N. Parallelly and normally surface-aligned organic nanofiber arrays. J. Phys. Chem. C, 2011, 115(43), 20882-20887.
[26]
Yoon, S.M.; Lee, J.; Je, J.H.; Choi, H.C.; Yoon, M. Optical waveguiding and lasing action in porphyrin rectangular microtube with subwavelength wall thicknesses. ACS Nano, 2011, 5(4), 2923-2929.
[27]
Lee, J.W.; Kim, K.; Jung, J.S.; Jo, S.G.; Kim, H-M.; Lee, H.S.; Kim, J. Joo, J. Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods. Org. Electron., 2012, 13(10), 2047-2055.
[28]
Bando, K.; Takano, T.; Fujii, H.; Nakano, T.; Makino, D.; Kumeta, S.; Sasaki, F.; Hotta, S. Fabry-Pérot modes and optical waveguide effects in individual thiophene/phenylene co-oligomer nanoneedle crystals. Appl. Phys. Lett., 2013, 103(2), 023304.
[29]
Wu, Y.; Feng, J.; Jiang, X.; Zhang, Z.; Wang, X.; Su, B.; Jiang, L. Positioning and joining of organic single-crystalline wires. Nat. Commun., 2015, 6, 6737.
[30]
O’Carroll, D.; Lieberwirth, I.; Redmond, G. Melt-processed polyfluorene nanowires as active waveguides. Small, 2007, 3(7), 1178-1183.
[31]
Iacopino, D.; Lovera, P.; O’Riordan, A.; Redmond, G. Highly polarized luminescence from β-phase-rich poly (9, 9-dioctylfluorene) nanofibers. J. Phys. Chem. A, 2014, 118(29), 5437-5442.
[32]
Bao, Q.; Goh, B.M.; Yan, B.; Yu, T.; Shen, Z.; Loh, K.P. Polarized emission and optical waveguide in crystalline perylene diimide microwires. Adv. Mater., 2010, 22(33), 3661-3666.
[33]
Zheng, J.Y.; Xu, H.; Wang, J.J.; Winters, S.; Motta, C.; Karademir, E.; Zhu, W.; Varrla, E.; Duesberg, G.S.; Sanvito, S.; Hu, W.; Donegan, J.F. Vertical single-crystalline organic nanowires on graphene: Solution-phase epitaxy and optical microcavities. Nano Lett., 2016, 16(8), 4754-4762.
[34]
Zhang, C.; Zheng, J.Y.; Zhao, Y.S.; Yao, J. Self‐modulated white light outcoupling in doped organic nanowire waveguides via the fluctuations of singlet and triplet excitons during propagation. Adv. Mater., 2011, 23(11), 1380-1384.
[35]
Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett., 2005, 5(7), 1293-1296.
[36]
Takazawa, K. Waveguiding properties of fiber-shaped aggregates self-assembled from thiacyanine dye molecules. J. Phys. Chem. C, 2007, 111(24), 8671-8676.
[37]
Takazawa, K.; Inoue, J.I.; Mitsuishi, K.; Takamasu, T. Micrometer‐scale photonic circuit components based on propagation of exciton polaritons in organic dye nanofibers. Adv. Mater., 2011, 23(32), 3659-3663.
[38]
Takazawa, K.; Inoue, J-I.; Mitsuishi, K.; Kuroda, T. Ultracompact asymmetric mach-zehnder interferometers with high visibility constructed from exciton polariton waveguides of organic dye nanofibers. Adv. Funct. Mater., 2013, 23(7), 839-845.
[39]
Caceres, D.; Cebrian, C.; Rodriguez, A.M.; Carrillo, J.R.; Diaz-Ortiz, A.; Prieto, P.; Aparicio, F.; Garcia, F.; Sanchez, L. Optical waveguides from 4-aryl-4H-1,2,4-triazole-based supramolecular structures. Chem. Commun., 2013, 49(6), 621-623.
[40]
Pastor, M.J.; Torres, I.; Cebrian, C.; Carrillo, J.R.; Diaz-Ortiz, A.; Matesanz, E.; Buendia, J.; Garcia, F.; Barbera, J.; Prieto, P.; Sanchez, L. 4-Aryl-3,5-bis(arylethynyl)aryl-4H-1,2,4-triazoles: Multitasking skeleton as a self-assembling unit. Chemistry, 2015, 21(4), 1795-1802.
[41]
Torres, I.; Carrillo, J.R.; Díaz-Ortiz, A.; Martín, R.; Gómez, M.V.; Stegemann, L.; Strassert, C.A.; Orduna, J.; Buendía, J.; Greciano, E.E.; Valera, J.S.; Matesanz, E.; Sánchez, L.; Prieto, P. Self-assembly of T-shape 2H-benzo[d][1,2,3]-triazoles. Optical waveguide and photophysical properties. RSC Advances, 2016, 6(43), 36544-36553.
[42]
Datar, A.; Balakrishnan, K.; Zang, L. One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation. Chem. Commun., 2013, 49(61), 6894-6896.
[43]
Hu, W.; Chen, Y.; Jiang, H.; Li, J.; Zou, G.; Zhang, Q.; Zhang, D.; Wang, P.; Ming, H. Optical waveguide based on a polarized polydiacetylene microtube. Adv. Mater., 2014, 26(19), 3136-3141.
[44]
Xia, H.; Chen, Y.; Yang, G.; Zou, G.; Zhang, Q.; Zhang, D.; Wang, P.; Ming, H. Optical modulation of waveguiding in spiropyran-functionalized polydiacetylene microtube. ACS Appl. Mater. Interfaces, 2014, 6(17), 15466-15471.
[45]
Wang, X.; Zhou, Y.; Lei, T.; Hu, N.; Chen, E-Q.; Pei, J. Structural− property relationship in pyrazino [2, 3-g] quinoxaline derivatives: Morphology, photophysical, and waveguide properties. Chem. Mater., 2010, 22(12), 3735-3745.
[46]
Lebedenko, A.N.; Guralchuk, G.Y.; Sorokin, A.V.; Yefimova, S.L.; Malyukin, Y.V. Pseudoisocyanine J-aggregate to optical waveguiding crystallite transition: Microscopic and microspectroscopic exploration. J. Phys. Chem. B, 2006, 110(36), 17772-17775.
[47]
aLiu, Y.; Ye, X.; Liu, G.; Lv, Y.; Zhang, X.; Chen, S.; Lam, J.W.Y.; Kwok, H.S.; Tao, X.; Tang, B.Z. Structural features and optical properties of a carbazole-containing ethene as a highly emissive organic solid. J. Mater. Chem. C, 2014, 2(6), 1004-1009.
bJia, W.; Yang, P.; Li, J.; Yin, Z.; Kong, L.; Lu, H.; Ge, Z.; Wu, Y.; Hao, X.; Yang, J. Synthesis and characterization of a novel cyanostilbene derivative and its initiated polymers: Aggregation-induced emission enhancement behaviors and light-emitting diode applications. Polym. Chem., 2014, 5(7), 2282.
cLiao, Q.; Xu, Z.; Zhong, X.; Dang, W.; Shi, Q.; Zhang, C.; Weng, Y.; Li, Z.; Fu, H. An organic nanowire waveguide exciton-polariton sub-microlaser and its photonic application. J. Mater. Chem. C, 2014, 2(15), 2773-2778.
dLiu, H.; Cao, X.; Wu, Y.; Liao, Q.; Jimenez, A.J.; Wurthner, F.; Fu, H. Self-assembly of octachloroperylene diimide into 1D rods and 2D plates by manipulating the growth kinetics for waveguide applications. Chem. Commun., 2014, 50(35), 4620-4623.
[48]
aTakazawa, K.; Inoue, J-I.; Mitsuishi, K. Self-assembled coronene nanofibers: Optical waveguide effect and magnetic alignment. Nanoscale, 2014, 6(8), 4174-4181.
bWang, X.; Liao, Q.; Lu, X.; Li, H.; Xu, Z.; Fu, H. Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications. Sci. Rep., 2014, 4, 7011.
cLiu, T.; Li, Y.; Yan, Y.; Li, Y.; Yu, Y.; Chen, N.; Chen, S.; Liu, C.; Zhao, Y.; Liu, H. Tuning growth of low-dimensional organic nanostructures for efficient optical waveguide applications. J. Phys. Chem. C, 2012, 116(26), 14134-14138.
dHan, Y.D.; Kim, J.H.; Lee, J.W.; Lee, H.; Kim, J.H.; Kim, J.; Park, S.Y.; Joo, J. Nanoscale luminescence and optical waveguiding characteristics of organic CN-TFMBE nanowires and hybrid coaxial nanowires. Synth. Met., 2012, 162(13-14), 1299-1302.
eWang, J.; Zhang, G.; Liu, Z.; Gu, X.; Yan, Y.; Zhang, C.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. New emissive organic molecule based on pyrido[3,4-g]isoquinoline framework: Synthesis and fluorescence tuning as well as optical waveguide behavior. Tetrahedron, 2013, 69(13), 2687-2692.
fLi, X-J.; Li, M.; Yao, W.; Lu, H-Y.; Zhao, Y.; Chen, C-F. Dialkoxybenzo[j]fluoranthenes: Synthesis, structures, photophy-sical properties, and optical waveguide application. RSC Advances, 2015, 5(24), 18609-18614.
[49]
Wu, J.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X.; Bo, S. Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: The relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4(91), 49737-49744.
[50]
aYao, W.; Yan, Y.; Xue, L.; Zhang, C.; Li, G.; Zheng, Q.; Zhao, Y.S.; Jiang, H.; Yao, J. Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew. Chem., 2013, 125(33), 8875-8879.
bWu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials. Dye Pigm., 2014, 104, 15-23.
[51]
Chandrasekhar, N.; Basak, S.; Mohiddon, M.A.; Chandrasekar, R. Planar active organic waveguide and wavelength filter: Self-assembled meso-tetratolylporphyrin hexagonal nanosheet. ACS Appl. Mater. Interfaces, 2014, 6(3), 1488-1494.
[52]
Guo, Z-H.; Lei, T.; Jin, Z-X.; Wang, J-Y.; Pei, J. T-shaped donor-acceptor molecules for low-loss red-emission optical waveguide. Org. Lett., 2013, 15(14), 3530-3533.
[53]
Chen, S.; Slattum, P.; Wang, C.; Zang, L. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem. Rev., 2015, 115(21), 11967-11998.
[54]
Yu, Y.; Li, Y.; Qin, Z.; Jiang, R.; Liu, H.; Li, Y. Designed synthesis and supramolecular architectures of furan-substituted perylene diimide. J. Colloid Interface Sci., 2013, 399, 13-18.
[55]
Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.Z.; Tang, B.Z. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem., 2012, 22(15), 7387-7394.
[56]
Takazawa, K.; Inoue, J.I.; Mitsuishi, K.; Kuroda, T. Ultracompact asymmetric Mach–Zehnder interferometers with high visibility constructed from exciton polariton waveguides of organic dye nanofibers. Adv. Funct. Mater., 2013, 23(7), 839-845.
[57]
Acikgoz, S.; Demir, M.M.; Yapasan, E.; Kiraz, A.; Unal, A.A.; Inci, M.N. Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method. Appl. Phys., A, 2014, 116(4), 1867-1875.
[58]
Camposeo, A.; Persano, L.; Pisignano, D. Light‐emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol. Mater. Eng., 2013, 298(5), 487-503.
[59]
Morello, G.; Camposeo, A.; Moffa, M.; Pisignano, D. Electrospun amplified fiber optics. ACS Appl. Mater. Interfaces, 2015, 7(9), 5213-5218.
[60]
Gu, F.; Zhang, L.; Zeng, H. Polymer micro/nanofibre waveguides for optical sensing applications; IntechOpen, 2015. DOI: 10.5772/60626.
[61]
Wang, Y.; Wang, N.; Yu, Z.; Li, G.; Zhang, X. Novel dye-containing copolyimides: synthesis, characterization and effect of chain entanglements on developed electrospun nanofiber morphologies. J. Polym. Res., 2015, 22(4), 1-8.
[62]
O’Carroll, D.M.; Petoukhoff, C.E.; Kohl, J.; Yu, B.; Carter, C.M.; Goodman, S. Conjugated polymer-based photonic nanostructures. Polym. Chem., 2013, 4(20), 5181-5196.
[63]
Ariu, M.; Lidzey, D.; Sims, M.; Cadby, A.; Lane, P.; Bradley, D. The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly (9, 9-dioctylfluorene). J. Phys. Condens. Matter, 2002, 14(42), 9975.
[64]
Hsu, B.B.; Seifter, J.; Takacs, C.J.; Zhong, C.; Tseng, H-R.; Samuel, I.D.; Namdas, E.B.; Bazan, G.C.; Huang, F.; Cao, Y. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors. ACS Nano, 2013, 7(3), 2344-2351.
[65]
Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube optoelectronic memory devices. Nano Lett., 2004, 4(9), 1587-1591.
[66]
Lee, L-C.; Han, H.; Tsai, Y-T.; Fan, G-L.; Liu, H-F.; Wu, C-C.; Shyue, J-J.; Sun, S-S.; Liu, C-L.; Chou, P-T. Template-assisted in situ polymerization for forming blue organic light-emitting nanotubes. Chem. Commun., 2014, 50(60), 8208-8210.
[67]
Yang, G.; Zhang, Y.; Xia, H.; Zou, G.; Zhang, Q. Multiconfigurable logic gate operation in 1D polydiacetylene microtube waveguide. RSC Advances, 2016, 6(59), 53794-53799.
[68]
Camposeo, A.; Moffa, M.; Persano, L. Electrospun fluorescent nanofibers and their application in optical sensing. In:Electrospinning for High Performance Sensors; Springer: Basel, 2015, pp. 129-155.
[69]
Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens. Actuators A Phys., 2011, 165(2), 194-199.
[70]
Pyo, J.; Kim, J.T.; Yoo, J.; Je, J.H. Light propagation in conjugated polymer nanowires decoupled from a substrate. Nanoscale, 2014, 6(11), 5620-5623.
[71]
He, W.; Li, B.; Pun, E.Y-B. Wavelength, cross-angle, and core-diameter dependence of coupling efficiency in nanowire evanescent wave coupling. Opt. Lett., 2009, 34(10), 1597-1599.
[72]
Ye, J.; Zhang, C.; Zou, C.L.; Yan, Y.; Gu, J.; Zhao, Y.S.; Yao, J. Optical wavelength filters based on photonic confinement in semiconductor nanowire homojunctions. Adv. Mater., 2014, 26(4), 620-624.
[73]
Yu, H.; Liao, D.; Johnston, M.B.; Li, B. All-optical full-color displays using polymer nanofibers. ACS Nano, 2011, 5(3), 2020-2025.
[74]
Yoon, I.; Kim, K.; Baker, S.E.; Heineck, D.; Esener, S.C.; Sirbuly, D.J. Stimulus-responsive light coupling and modulation with nanofiber waveguide junctions. Nano Lett., 2012, 12(4), 1905-1911.
[75]
Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: Optical waveguide/amplified spontaneous emission behaviors. Adv. Funct. Mater., 2012, 22(23), 4862-4872.
[76]
Yu, H.; Xiong, L.; Zeng, Q.; Wen, S.; Wang, F.; Zheng, G.; Ding, Y. Light modulation and coupling and rugby‐shaped resonators based on polymer fiber waveguide junctions. J. Polym. Sci., Part B, Polym. Phys., 2015, 53(12), 833-840.