Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advance in 1-D Organic Semiconductors for Waveguide Applications

Author(s): Rong Zhang*, Xiaobei Jin, Xuwen Wen and Qi Chen

Volume 16, Issue 3, 2019

Page: [244 - 252] Pages: 9

DOI: 10.2174/1570193X15666180406143727

Price: $65

Abstract

One dimensional (1-D) micro-/nanostructures provide a good system to investigate the dependence of various properties on dimensionality and size reduction, especially in optoelectronic field. Organic conjugates including small molecules and polymers exhibit good optoelectronic properties and are apt to assemble into ordered nanostructures with well-defined shapes, tunable sizes and defect-free structures. In this review, we focus on recent progress of 1-D organic semiconductors for waveguide applications. Fabrication methods and materials of 1-D organic semiconductors are introduced. The morphology influence on the properties is also summarized.

Keywords: Organic semiconductors, conjugated polymers, one-dimensional, waveguide, fabrication method, electrospinning.

Graphical Abstract

[1]
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One‐dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003, 15(5), 353-389.
[2]
Takazawa, K.; Inoue, J-I.; Mitsuishi, K. Optical waveguiding along a sub-100-nm-width organic nanofiber: Significant effect of cooling on waveguiding properties. J. Phys. Chem. C, 2016, 120(2), 1186-1192.
[3]
Lu, T-W.; Tsai, W-C.; Wu, T-Y.; Lee, P-T. Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide. Appl. Phys. Lett., 2013, 102(5), 051103.
[4]
Ma, Y.; Xue, M.; Shi, J.; Tan, Y. Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties. Nanoscale, 2014, 6(12), 6828-6836.
[5]
Sun, H.; Deng, J.; Qiu, L.; Fang, X.; Peng, H. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci., 2015, 8(4), 1139-1159.
[6]
aYan, Y.; Zhang, C.; Yao, J.; Zhao, Y.S. Recent advances in organic one‐dimensional composite materials: Design, construction, and photonic elements for information processing. Adv. Mater., 2013, 25(27), 3627-3638.
bWu, J.; Luo, J.; Cernetic, N.; Chen, K.; Chiang, K-S.; Jen, A.K-Y. PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling. J. Mater. Chem. C, 2016, 4(43), 10286-10292.
[7]
Zhang, C.; Yan, Y.; Zhao, Y.S.; Yao, J. From molecular design and materials construction to organic nanophotonic devices. Acc. Chem. Res., 2014, 47(12), 3448-3458.
[8]
Kim, F.S.; Ren, G.; Jenekhe, S.A. One-dimensional nanostructures of π-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater., 2010, 23(3), 682-732.
[9]
O’Carroll, D.; Lieberwirth, I.; Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol., 2007, 2(3), 180-184.
[10]
Zhao, Y.S.; Xu, J.; Peng, A.; Fu, H.; Ma, Y.; Jiang, L.; Yao, J. Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem., 2008, 120(38), 7411-7415.
[11]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[12]
aPagliara, S.; Camposeo, A.; Di Benedetto, F.; Polini, A.; Mele, E.; Persano, L.; Cingolani, R.; Pisignano, D. Study of optical properties of electrospun light-emitting polymer fibers. Superlattices Microstruct., 2010, 47(1), 145-149.
bDi Camillo, D.; Fasano, V.; Ruggieri, F.; Santucci, S.; Lozzi, L.; Camposeo, A.; Pisignano, D. Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale, 2013, 5(23), 11637-11642.
cYu, H.; Li, B. Wavelength-converted wave-guiding in dye-doped polymer nanofibers. Sci. Rep., 2013, 3, 1674.
dWang, P.; Wang, Y.; Tong, L. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light Sci. Appl., 2013, 2(10), e102.
[13]
Fasano, V.; Moffa, M.; Camposeo, A.; Persano, L.; Pisignano, D. Controlled atmosphere electrospinning of organic nanofibers with improved light emission and waveguiding properties. Macromolecules, 2015, 48(21), 7803-7809.
[14]
Dhakal, K.P.; Lee, H.; Lee, J.W.; Joo, J.; Guthold, M.; Kim, J. Electrospinning and optical characterization of organic rubrene nanofibers. J. Appl. Phys., 2012, 111(12), 123504.
[15]
Ishii, Y.; Kaminose, R.; Fukuda, M. Polymer-clad electrospun polymer nanofiber waveguides. Mater. Lett., 2013, 108, 270-272.
[16]
aZhao, Y.S.; Fu, H.; Hu, F.; Peng, A.; Yang, W.; Yao, J. Tunable emission from binary organic one‐dimensional nanomaterials: An alternative approach to white‐light emission. Adv. Mater., 2008, 20(1), 79-83.
bZhao, Y.S.; Fu, H.; Peng, A.; Ma, Y.; Liao, Q.; Yao, J. Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res., 2009, 43(3), 409-418.
[17]
Yanagi, H.; Morikawa, T. Self-wave guided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition. Appl. Phys. Lett., 1999, 75(2), 187.
[18]
Yanagi, H.; Ohara, T.; Morikawa, T. Self‐Waveguided gain‐narrowing of blue light emission from epitaxially oriented p‐sexiphenyl crystals. Adv. Mater., 2001, 13(19), 1452-1455.
[19]
Balzer, F.; Bordo, V.G.; Simonsen, A.; Rubahn, H.G. Isolated hexaphenyl nanofibers as optical waveguides. Appl. Phys. Lett., 2003, 82(1), 10.
[20]
aBalzer, F.; Bordo, V.G.; Simonsen, A.C.; Rubahn, H.G. Optical waveguiding in individual nanometer-scale organic fibers. Phys. Rev. B, 2003, 67(11), 115408.
bVolkov, V.; Bozhevolnyi, S.; Bordo, V.; Rubahn, H.G. Near‐field imaging of organic nanofibres. J. Microsc., 2004, 215(3), 241-244.
cQuochi, F.; Cordella, F.; Mura, A.; Bongiovanni, G.; Balzer, F.; Rubahn, H-G. One-dimensional random lasing in a single organic nanofiber. J. Phys. Chem. B, 2005, 109(46), 21690-21693.
[21]
Leissner, T.; Lemke, C.; Jauernik, S.; Muller, M.; Fiutowski, J.; Tavares, L.; Thilsing-Hansen, K.; Kjelstrup-Hansen, J.; Magnussen, O.; Rubahn, H.G.; Bauer, M. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Opt. Express, 2013, 21(7), 8251-8260.
[22]
Zhao, Y.S.; Peng, A.; Fu, H.; Ma, Y.; Yao, J. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater., 2008, 20(9), 1661-1665.
[23]
Liao, Q.; Fu, H.; Yao, J. Waveguide modulator by energy remote relay from binary organic crystalline microtubes. Adv. Mater., 2009, 21(41), 4153-4157.
[24]
Zhao, Y.S.; Zhan, P.; Kim, J.; Sun, C.; Huang, J. Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano, 2010, 4(3), 1630-1636.
[25]
Bordo, K.; Schiek, M.; Ghazal, A.; Wallmann, I.; Lützen, A.; Balzer, F.; Rubahn, H-G.N. Parallelly and normally surface-aligned organic nanofiber arrays. J. Phys. Chem. C, 2011, 115(43), 20882-20887.
[26]
Yoon, S.M.; Lee, J.; Je, J.H.; Choi, H.C.; Yoon, M. Optical waveguiding and lasing action in porphyrin rectangular microtube with subwavelength wall thicknesses. ACS Nano, 2011, 5(4), 2923-2929.
[27]
Lee, J.W.; Kim, K.; Jung, J.S.; Jo, S.G.; Kim, H-M.; Lee, H.S.; Kim, J. Joo, J. Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods. Org. Electron., 2012, 13(10), 2047-2055.
[28]
Bando, K.; Takano, T.; Fujii, H.; Nakano, T.; Makino, D.; Kumeta, S.; Sasaki, F.; Hotta, S. Fabry-Pérot modes and optical waveguide effects in individual thiophene/phenylene co-oligomer nanoneedle crystals. Appl. Phys. Lett., 2013, 103(2), 023304.
[29]
Wu, Y.; Feng, J.; Jiang, X.; Zhang, Z.; Wang, X.; Su, B.; Jiang, L. Positioning and joining of organic single-crystalline wires. Nat. Commun., 2015, 6, 6737.
[30]
O’Carroll, D.; Lieberwirth, I.; Redmond, G. Melt-processed polyfluorene nanowires as active waveguides. Small, 2007, 3(7), 1178-1183.
[31]
Iacopino, D.; Lovera, P.; O’Riordan, A.; Redmond, G. Highly polarized luminescence from β-phase-rich poly (9, 9-dioctylfluorene) nanofibers. J. Phys. Chem. A, 2014, 118(29), 5437-5442.
[32]
Bao, Q.; Goh, B.M.; Yan, B.; Yu, T.; Shen, Z.; Loh, K.P. Polarized emission and optical waveguide in crystalline perylene diimide microwires. Adv. Mater., 2010, 22(33), 3661-3666.
[33]
Zheng, J.Y.; Xu, H.; Wang, J.J.; Winters, S.; Motta, C.; Karademir, E.; Zhu, W.; Varrla, E.; Duesberg, G.S.; Sanvito, S.; Hu, W.; Donegan, J.F. Vertical single-crystalline organic nanowires on graphene: Solution-phase epitaxy and optical microcavities. Nano Lett., 2016, 16(8), 4754-4762.
[34]
Zhang, C.; Zheng, J.Y.; Zhao, Y.S.; Yao, J. Self‐modulated white light outcoupling in doped organic nanowire waveguides via the fluctuations of singlet and triplet excitons during propagation. Adv. Mater., 2011, 23(11), 1380-1384.
[35]
Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett., 2005, 5(7), 1293-1296.
[36]
Takazawa, K. Waveguiding properties of fiber-shaped aggregates self-assembled from thiacyanine dye molecules. J. Phys. Chem. C, 2007, 111(24), 8671-8676.
[37]
Takazawa, K.; Inoue, J.I.; Mitsuishi, K.; Takamasu, T. Micrometer‐scale photonic circuit components based on propagation of exciton polaritons in organic dye nanofibers. Adv. Mater., 2011, 23(32), 3659-3663.
[38]
Takazawa, K.; Inoue, J-I.; Mitsuishi, K.; Kuroda, T. Ultracompact asymmetric mach-zehnder interferometers with high visibility constructed from exciton polariton waveguides of organic dye nanofibers. Adv. Funct. Mater., 2013, 23(7), 839-845.
[39]
Caceres, D.; Cebrian, C.; Rodriguez, A.M.; Carrillo, J.R.; Diaz-Ortiz, A.; Prieto, P.; Aparicio, F.; Garcia, F.; Sanchez, L. Optical waveguides from 4-aryl-4H-1,2,4-triazole-based supramolecular structures. Chem. Commun., 2013, 49(6), 621-623.
[40]
Pastor, M.J.; Torres, I.; Cebrian, C.; Carrillo, J.R.; Diaz-Ortiz, A.; Matesanz, E.; Buendia, J.; Garcia, F.; Barbera, J.; Prieto, P.; Sanchez, L. 4-Aryl-3,5-bis(arylethynyl)aryl-4H-1,2,4-triazoles: Multitasking skeleton as a self-assembling unit. Chemistry, 2015, 21(4), 1795-1802.
[41]
Torres, I.; Carrillo, J.R.; Díaz-Ortiz, A.; Martín, R.; Gómez, M.V.; Stegemann, L.; Strassert, C.A.; Orduna, J.; Buendía, J.; Greciano, E.E.; Valera, J.S.; Matesanz, E.; Sánchez, L.; Prieto, P. Self-assembly of T-shape 2H-benzo[d][1,2,3]-triazoles. Optical waveguide and photophysical properties. RSC Advances, 2016, 6(43), 36544-36553.
[42]
Datar, A.; Balakrishnan, K.; Zang, L. One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation. Chem. Commun., 2013, 49(61), 6894-6896.
[43]
Hu, W.; Chen, Y.; Jiang, H.; Li, J.; Zou, G.; Zhang, Q.; Zhang, D.; Wang, P.; Ming, H. Optical waveguide based on a polarized polydiacetylene microtube. Adv. Mater., 2014, 26(19), 3136-3141.
[44]
Xia, H.; Chen, Y.; Yang, G.; Zou, G.; Zhang, Q.; Zhang, D.; Wang, P.; Ming, H. Optical modulation of waveguiding in spiropyran-functionalized polydiacetylene microtube. ACS Appl. Mater. Interfaces, 2014, 6(17), 15466-15471.
[45]
Wang, X.; Zhou, Y.; Lei, T.; Hu, N.; Chen, E-Q.; Pei, J. Structural− property relationship in pyrazino [2, 3-g] quinoxaline derivatives: Morphology, photophysical, and waveguide properties. Chem. Mater., 2010, 22(12), 3735-3745.
[46]
Lebedenko, A.N.; Guralchuk, G.Y.; Sorokin, A.V.; Yefimova, S.L.; Malyukin, Y.V. Pseudoisocyanine J-aggregate to optical waveguiding crystallite transition: Microscopic and microspectroscopic exploration. J. Phys. Chem. B, 2006, 110(36), 17772-17775.
[47]
aLiu, Y.; Ye, X.; Liu, G.; Lv, Y.; Zhang, X.; Chen, S.; Lam, J.W.Y.; Kwok, H.S.; Tao, X.; Tang, B.Z. Structural features and optical properties of a carbazole-containing ethene as a highly emissive organic solid. J. Mater. Chem. C, 2014, 2(6), 1004-1009.
bJia, W.; Yang, P.; Li, J.; Yin, Z.; Kong, L.; Lu, H.; Ge, Z.; Wu, Y.; Hao, X.; Yang, J. Synthesis and characterization of a novel cyanostilbene derivative and its initiated polymers: Aggregation-induced emission enhancement behaviors and light-emitting diode applications. Polym. Chem., 2014, 5(7), 2282.
cLiao, Q.; Xu, Z.; Zhong, X.; Dang, W.; Shi, Q.; Zhang, C.; Weng, Y.; Li, Z.; Fu, H. An organic nanowire waveguide exciton-polariton sub-microlaser and its photonic application. J. Mater. Chem. C, 2014, 2(15), 2773-2778.
dLiu, H.; Cao, X.; Wu, Y.; Liao, Q.; Jimenez, A.J.; Wurthner, F.; Fu, H. Self-assembly of octachloroperylene diimide into 1D rods and 2D plates by manipulating the growth kinetics for waveguide applications. Chem. Commun., 2014, 50(35), 4620-4623.
[48]
aTakazawa, K.; Inoue, J-I.; Mitsuishi, K. Self-assembled coronene nanofibers: Optical waveguide effect and magnetic alignment. Nanoscale, 2014, 6(8), 4174-4181.
bWang, X.; Liao, Q.; Lu, X.; Li, H.; Xu, Z.; Fu, H. Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications. Sci. Rep., 2014, 4, 7011.
cLiu, T.; Li, Y.; Yan, Y.; Li, Y.; Yu, Y.; Chen, N.; Chen, S.; Liu, C.; Zhao, Y.; Liu, H. Tuning growth of low-dimensional organic nanostructures for efficient optical waveguide applications. J. Phys. Chem. C, 2012, 116(26), 14134-14138.
dHan, Y.D.; Kim, J.H.; Lee, J.W.; Lee, H.; Kim, J.H.; Kim, J.; Park, S.Y.; Joo, J. Nanoscale luminescence and optical waveguiding characteristics of organic CN-TFMBE nanowires and hybrid coaxial nanowires. Synth. Met., 2012, 162(13-14), 1299-1302.
eWang, J.; Zhang, G.; Liu, Z.; Gu, X.; Yan, Y.; Zhang, C.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. New emissive organic molecule based on pyrido[3,4-g]isoquinoline framework: Synthesis and fluorescence tuning as well as optical waveguide behavior. Tetrahedron, 2013, 69(13), 2687-2692.
fLi, X-J.; Li, M.; Yao, W.; Lu, H-Y.; Zhao, Y.; Chen, C-F. Dialkoxybenzo[j]fluoranthenes: Synthesis, structures, photophy-sical properties, and optical waveguide application. RSC Advances, 2015, 5(24), 18609-18614.
[49]
Wu, J.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X.; Bo, S. Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: The relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4(91), 49737-49744.
[50]
aYao, W.; Yan, Y.; Xue, L.; Zhang, C.; Li, G.; Zheng, Q.; Zhao, Y.S.; Jiang, H.; Yao, J. Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew. Chem., 2013, 125(33), 8875-8879.
bWu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials. Dye Pigm., 2014, 104, 15-23.
[51]
Chandrasekhar, N.; Basak, S.; Mohiddon, M.A.; Chandrasekar, R. Planar active organic waveguide and wavelength filter: Self-assembled meso-tetratolylporphyrin hexagonal nanosheet. ACS Appl. Mater. Interfaces, 2014, 6(3), 1488-1494.
[52]
Guo, Z-H.; Lei, T.; Jin, Z-X.; Wang, J-Y.; Pei, J. T-shaped donor-acceptor molecules for low-loss red-emission optical waveguide. Org. Lett., 2013, 15(14), 3530-3533.
[53]
Chen, S.; Slattum, P.; Wang, C.; Zang, L. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem. Rev., 2015, 115(21), 11967-11998.
[54]
Yu, Y.; Li, Y.; Qin, Z.; Jiang, R.; Liu, H.; Li, Y. Designed synthesis and supramolecular architectures of furan-substituted perylene diimide. J. Colloid Interface Sci., 2013, 399, 13-18.
[55]
Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.Z.; Tang, B.Z. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem., 2012, 22(15), 7387-7394.
[56]
Takazawa, K.; Inoue, J.I.; Mitsuishi, K.; Kuroda, T. Ultracompact asymmetric Mach–Zehnder interferometers with high visibility constructed from exciton polariton waveguides of organic dye nanofibers. Adv. Funct. Mater., 2013, 23(7), 839-845.
[57]
Acikgoz, S.; Demir, M.M.; Yapasan, E.; Kiraz, A.; Unal, A.A.; Inci, M.N. Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method. Appl. Phys., A, 2014, 116(4), 1867-1875.
[58]
Camposeo, A.; Persano, L.; Pisignano, D. Light‐emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol. Mater. Eng., 2013, 298(5), 487-503.
[59]
Morello, G.; Camposeo, A.; Moffa, M.; Pisignano, D. Electrospun amplified fiber optics. ACS Appl. Mater. Interfaces, 2015, 7(9), 5213-5218.
[60]
Gu, F.; Zhang, L.; Zeng, H. Polymer micro/nanofibre waveguides for optical sensing applications; IntechOpen, 2015. DOI: 10.5772/60626.
[61]
Wang, Y.; Wang, N.; Yu, Z.; Li, G.; Zhang, X. Novel dye-containing copolyimides: synthesis, characterization and effect of chain entanglements on developed electrospun nanofiber morphologies. J. Polym. Res., 2015, 22(4), 1-8.
[62]
O’Carroll, D.M.; Petoukhoff, C.E.; Kohl, J.; Yu, B.; Carter, C.M.; Goodman, S. Conjugated polymer-based photonic nanostructures. Polym. Chem., 2013, 4(20), 5181-5196.
[63]
Ariu, M.; Lidzey, D.; Sims, M.; Cadby, A.; Lane, P.; Bradley, D. The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly (9, 9-dioctylfluorene). J. Phys. Condens. Matter, 2002, 14(42), 9975.
[64]
Hsu, B.B.; Seifter, J.; Takacs, C.J.; Zhong, C.; Tseng, H-R.; Samuel, I.D.; Namdas, E.B.; Bazan, G.C.; Huang, F.; Cao, Y. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors. ACS Nano, 2013, 7(3), 2344-2351.
[65]
Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube optoelectronic memory devices. Nano Lett., 2004, 4(9), 1587-1591.
[66]
Lee, L-C.; Han, H.; Tsai, Y-T.; Fan, G-L.; Liu, H-F.; Wu, C-C.; Shyue, J-J.; Sun, S-S.; Liu, C-L.; Chou, P-T. Template-assisted in situ polymerization for forming blue organic light-emitting nanotubes. Chem. Commun., 2014, 50(60), 8208-8210.
[67]
Yang, G.; Zhang, Y.; Xia, H.; Zou, G.; Zhang, Q. Multiconfigurable logic gate operation in 1D polydiacetylene microtube waveguide. RSC Advances, 2016, 6(59), 53794-53799.
[68]
Camposeo, A.; Moffa, M.; Persano, L. Electrospun fluorescent nanofibers and their application in optical sensing. In:Electrospinning for High Performance Sensors; Springer: Basel, 2015, pp. 129-155.
[69]
Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens. Actuators A Phys., 2011, 165(2), 194-199.
[70]
Pyo, J.; Kim, J.T.; Yoo, J.; Je, J.H. Light propagation in conjugated polymer nanowires decoupled from a substrate. Nanoscale, 2014, 6(11), 5620-5623.
[71]
He, W.; Li, B.; Pun, E.Y-B. Wavelength, cross-angle, and core-diameter dependence of coupling efficiency in nanowire evanescent wave coupling. Opt. Lett., 2009, 34(10), 1597-1599.
[72]
Ye, J.; Zhang, C.; Zou, C.L.; Yan, Y.; Gu, J.; Zhao, Y.S.; Yao, J. Optical wavelength filters based on photonic confinement in semiconductor nanowire homojunctions. Adv. Mater., 2014, 26(4), 620-624.
[73]
Yu, H.; Liao, D.; Johnston, M.B.; Li, B. All-optical full-color displays using polymer nanofibers. ACS Nano, 2011, 5(3), 2020-2025.
[74]
Yoon, I.; Kim, K.; Baker, S.E.; Heineck, D.; Esener, S.C.; Sirbuly, D.J. Stimulus-responsive light coupling and modulation with nanofiber waveguide junctions. Nano Lett., 2012, 12(4), 1905-1911.
[75]
Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: Optical waveguide/amplified spontaneous emission behaviors. Adv. Funct. Mater., 2012, 22(23), 4862-4872.
[76]
Yu, H.; Xiong, L.; Zeng, Q.; Wen, S.; Wang, F.; Zheng, G.; Ding, Y. Light modulation and coupling and rugby‐shaped resonators based on polymer fiber waveguide junctions. J. Polym. Sci., Part B, Polym. Phys., 2015, 53(12), 833-840.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy