[1]
Schroder, F.; Cole, J.; Waddell, P.; McKechnie, S. Transforming benzophenoxazine laser dyes into chromophores for dye-sensitized solar cells: A molecular engineering approach. Adv. Energy Mater., 2015, 5(9), 1401728.
[2]
Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S.; Harutyunyan, B.; Guo, P.; Butler, M.; Timalsina, A.; Bedzyk, M.; Ratner, M.; Vegiraju, S.; Yau, S.; Wu, C.; Chang, R.; Facchetti, A.; Chen, M.; Marks, T. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc., 2015, 137(13), 4414-4423.
[3]
Ashwell, G.; Tyrrell, W.; Whittam, A. Molecular rectification: Self-assembled monolayers in which donor-(pi-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J. Am. Chem. Soc., 2004, 126(22), 7102-7110.
[4]
Liu, Z.; Fang, Q.; Wang, D.; Xue, G.; Yu, W.; Shao, Z.; Jiang, M. Trivalent boron as acceptor in D-pi-A chromophores: Synthesis, structure and fluorescence following single- and two-photon excitation. Chem. Commun., 2002, 23, 2900-2901.
[5]
Patra, A.; Pan, M.; Friend, C.; Lin, T.; Cartwright, A.; Prasad, P. Electroluminescence properties of systematically derivatized organic chromophores containing electron donor and acceptor groups. Chem. Mater., 2002, 14(10), 4044-4048.
[6]
Broichhagen, J.; Frank, J.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res., 2015, 48(7), 1947-1960.
[7]
Khan, T.; Broring, M.; Mathur, S.; Ravikanth, M. Boron dipyrrin-porphyrin conjugates. Coord. Chem. Rev., 2013, 257(15-16), 2348-2387.
[8]
Zhou, L.; Zhang, X.; Wang, Q.; Lv, Y.; Mao, G.; Luo, A.; Wu, Y.; Wu, Y.; Zhang, J.; Tan, W. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J. Am. Chem. Soc., 2014, 136(28), 9838-9841.
[9]
Kivala, M.; Diederich, F. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc. Chem. Res., 2009, 42(2), 235-248.
[10]
Liu, J.; Gao, W.; Kityk, I.; Liu, X.; Zhen, Z. Optimization of polycyclic electron-donors based on julolidinyl structure in push-pull chromophores for second order NLO effects. Dyes Pigm., 2015, 122, 74-84.
[11]
Liu, J.; Yang, Y.; Liu, X.; Zhen, Z. Physical attachment of NLO chromophores to polymers for great improvement of long-term stability. Mater. Lett., 2015, 142, 87-89.
[12]
Kulhanek, J.; Bures, F.; Kuznik, W.; Kityk, I.; Mikysek, T.; Ruzicka, A. Ferrocene-donor and 4,5-dicyanoimidazole-acceptor moieties in charge-transfer chromophores with p linkers tailored for second-order nonlinear optics. Chem. Asian J., 2013, 8(2), 465-475.
[13]
Bures, F.; Cvejn, D.; Melanova, K.; Benes, L.; Svoboda, J.; Zima, V.; Pytela, O.; Mikysek, T.; Ruzickova, Z.; Kityk, I.; Wojciechowski, A.; AlZayed, N. Effect of intercalation and chromophore arrangement on the linear and nonlinear optical properties of model aminopyridine push-pull molecules. J. Mater. Chem. C, 2016, 4(3), 468-478.
[14]
Davies, J.; Elangovan, A.; Sullivan, P.; Olbricht, B.; Bale, D.; Ewy, T.; Isborn, C.; Eichinger, B.; Robinson, B.; Reid, P.; Li, X.; Dalton, L. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J. Am. Chem. Soc., 2008, 130(32), 10565-10575.
[15]
Cho, M.; Choi, D.; Sullivan, P.; Akelaitis, A.; Dalton, L. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci., 2008, 33(11), 1013-1058.
[16]
Tao, S.; Miyagoe, T.; Maeda, A.; Matsuzaki, H.; Ohtsu, H.; Hasegawa, M.; Takaishi, S.; Yamashita, M.; Okamoto, H. Ultrafast optical switching by using nanocrystals of a halogen-bridged nickel-chain compound dispersed in an optical polymer. Adv. Mater., 2007, 19(18), 2707.
[17]
Liu, J.; Xu, G.; Liu, F.; Kityk, I.; Liu, X.; Zhen, Z. Recent advances in polymer electro-optic modulators. RSC Advances, 2015, 5(21), 15784-15794.
[18]
Ashraf, M.; Teshome, A.; Kay, A.; Gainsford, G.; Bhuiyan, M.; Asselberghs, I.; Clays, K. Synthesis and optical properties of NLO chromophores containing an indoline donor and azo linker. Dyes Pigm., 2012, 95(3), 455-464.
[19]
Wang, L.; Wang, W.; Fang, X.; Zhu, C.; Qiu, Y. Intramolecular photo-induced electron transfer in nonlinear optical chromophores: Fullerene (C-60) derivatives. Org. Electron., 2016, 33, 290-299.
[20]
Rinderspacher, B. Electro-optic and spectroscopic properties of push-pull-chromophores with non-aromatic pi-bridges. Chem. Phys. Lett., 2013, 585, 21-26.
[21]
Liu, J.; Gao, W.; Liu, X.; Zhen, Z. Benefits of the use of auxiliary donors in the design and preparation of NLO chromophores. Mater. Lett., 2015, 143, 333-335.
[22]
Rodriguez-Cordoba, W.; Noria, R.; Guarin, C.; Peon, J. Ultrafast photosensitization of phthalocyanines through their axial ligands. J. Am. Chem. Soc., 2011, 133(13), 4698-4701.
[23]
Wu, Z.; Li, X.; Li, J.; Hua, J.; Agren, H.; Tian, H. Influence of the auxiliary acceptor on the absorption response and photovoltaic performance of dye-sensitized solar cells. Chem. Asian J., 2014, 9(12), 3549-3557.
[24]
Albert, I.; Marks, T.; Ratner, M. Large molecular hyperpolarizabilities. Quantitative analysis of aromaticity and auxiliary donor-acceptor effects. J. Am. Chem. Soc., 1997, 119(28), 6575-6582.
[25]
Benoit, C.; Sofiane, N.L. Second-order nonlinear optical responses of heptahelicene and heptathiahelicene derivatives. Chem. Phys. Lett., 2016, 644, 195-200.
[26]
Baroja, N.; Franco, S.; Garin, J.; Orduna, J.; Villacampa, B.; Borja, P.; Alicante, R. Synthesis, characterization, and optical properties of novel 1,3-dithiole donor-based chromophores. RSC Advances, 2013, 3, 2953-2962.
[27]
Michinobu, T. Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. J. Am. Chem. Soc., 2008, 130(43), 14074-14075.
[28]
Michinobu, T.; Seo, C.; Noguchi, K.; Mori, T. Effects of click post functionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polym. Chem., 2012, 3(6), 1427-1435.
[29]
Albert, I.; Marks, T.; Ratner, M. Large molecular hyperpolarizabilities in “push-pull” porphyrins. Molecular planarity and auxiliary donor-acceptor effects. Chem. Mater., 1998, 10, 753-762.
[30]
Raposo, M.; Fonseca, A.; Castro, M.; Belsley, M.; Cardoso, M.; Carvalho, L.; Coelho, P. Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes Pigm., 2011, 91, 62-73.
[31]
Castro, M.; Schellenberg, P.; Belsley, M.; Fonseca, A.; Fernandes, S.; Raposo, M. Design, synthesis and evaluation of redox, second order nonlinear optical properties and theoretical DFT studies of novel bithiophene azo dyes functionalized with thiadiazole acceptor groups. Dyes Pigm., 2012, 95, 392-399.
[32]
Batista, R.; Costa, S.; Belsley, M.; Raposo, M. Synthesis and second-order nonlinear optical properties of new chromophores containing benzimidazole, thiophene, and pyrrole heterocycles. Tetrahedron, 2007, 63, 9842-9849.
[33]
Castro, M.; Belsley, M.; Raposo, M. Pushepull second harmonic generation chromophores bearing pyrrole and thiazole heterocycles functionalized with several acceptor moieties: Syntheses and characterization. Dyes Pigm., 2016, 128, 89-95.
[34]
Batista, R.; Costa, S.; Belsley, M.; Raposo, M. Synthesis and optical properties of novel, thermally stable phenanthrolines bearing an arylthienyl-imidazo conjugation pathway. Dyes Pigm., 2009, 80, 329-336.
[35]
Mahmood, A.; Abdullah, M.; Khan, S. Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 139, 425-430.
[36]
Abbotto, A.; Beverina, L.; Manfredi, N.; Pagani, G.; Archetti, G.; Kuball, H.; Wittenburg, C.; Heck, J.; Holtmann, J. Second-order nonlinear optical activity of dipolar chromophores based on pyrrole-hydrazono donor moieties. Chem. Eur. J., 2009, 15, 6175-6185.
[37]
Ma, X.; Liang, R.; Yang, F.; Zhao, Z.; Zhang, A.; Song, N.; Zhou, Q.; Zhang, J. Synthesis and properties of novel second-order NLO chromophores containing pyrrole as an auxiliary electron donor. J. Mater. Chem., 2008, 18, 1756-1764.
[38]
Ma, X.; Ma, F.; Zhao, Z.; Song, N.; Zhang, J. Toward highly efficient NLO chromophores: Synthesis and properties of heterocycle-based electronically gradient dipolar NLO chromophores. J. Mater. Chem., 2010, 20, 2369-2380.
[39]
Memon, M.; Bai, W.; Sun, J.; Imran, M.; Phulpoto, S.; Yan, S.; Huang, Y.; Geng, J. Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(18), 11711-11719.
[40]
Baik, C.; Hudson, Z.; Amarne, H.; Wang, S. Enhancing the photochemical stability of N,C-chelate boryl compounds: C-C bond formation versus C = C bond cis,trans-isomerization. J. Am. Chem. Soc., 2009, 131(40), 14549-14559.
[41]
Barroso, R.; Cabal, M.; Badia-Laino, R.; Valdes, C. Structurally diverse pi-extended conjugated polycarbo- and heterocycles through Pd-catalyzed autotandem cascades. Chem.-Eur. J., 2015, 21(46), 16463-16473.
[42]
Wu, J.; Wang, W.; Wang, L.; Liu, J.; Chen, K.; Bo, S. Introduction of fluorine to change the dielectric environment of nonlinear optical chromophores for improved electro-optic activities. Mater. Lett., 2016, 164, 636-639.
[43]
Wu, J.Y.; Bo, S.H.; Wang, W.; Deng, G.W.; Zhen, Z.; Liu, X.H.; Chiang, K.S. Facile bromine-termination of nonlinear optical chromophore: Remarkable optimization in photophysical properties, surface morphology and electro-optic activity. RSC Advances, 2015, 5(123), 102108-102114.
[44]
Wu, J.Y.; Xiao, H.Y.; Qiu, L.; Zhen, Z.; Liu, X.H.; Bo, S.H. Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: The relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4(91), 49737-49744.
[45]
Wu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials. Dyes Pigm., 2014, 104, 15-23.
[46]
Wu, J.; Bo, S.; Liu, J.; Zhou, T.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem. Commun., 2012, 48(77), 9637.
[47]
Rybtchinski, B.; Sinks, L.; Wasielewski, M. Photoinduced electron transfer in self-assembled dimers of 3-fold symmetric donor - Acceptor molecules based on perylene-3,4: 9,10-bis(dicarboximide). J. Phys. Chem. A, 2004, 108(37), 7497-7505.
[48]
Su, M.; Huang, J.; Zhang, L.; Zhang, Q.; Zhan, C.; Zhou, X.; Yang, L.; Song, Y.; Jiang, K. Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5(94), 76666-76669.
[49]
Yang, Y.; Bo, S.; Wang, H.; Liu, F.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes Pigm., 2015, 122, 139-146.
[50]
Yang, Y.; Xiao, H.; Wang, H.; Liu, F.; Bo, S.; Liu, J.; Qiu, L.; Zhena, Z.; Liu, X. Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. J. Mater. Chem. C, 2015, 3(43), 11423-11431.
[51]
Yang, Y.; Liu, J.; Zhang, M.; Liu, F.; Wang, H.; Bo, S.; Zhen, Z.; Qiu, L.; Liu, X. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J. Mater. Chem. C, 2015, 3(16), 3913-3921.
[52]
Yang, Y.; Xu, H.; Liu, F.; Wang, H.; Deng, G.; Si, P.; Huang, H.; Bo, S.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J. Mater. Chem. C, 2014, 2(26), 5124-5132.
[53]
Dokladalova, L.; Bures, F.; Kuznik, W.; Kityk, I.; Wojciechowski, A.; Mikysek, T.; Almonasy, N.; Ramaiyan, M.; Padelkova, Z.; Kulhanek, J.; Ludwig, M. Dicyanobenzene and dicyanopyrazine derived X-shaped charge-transfer chromophores: Comparative and structure-property relationship study. Org. Biomol. Chem., 2014, 12(29), 5517-5527.
[54]
Janjua, M. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: First theoretical framework of POM-based heterocyclic aromatic rings. Inorg. Chem., 2012, 51(21), 11306-11314.