Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Does Ceruloplasmin Defend Against Neurodegenerative Diseases?

Author(s): Bo Wang and Xiao-Ping Wang*

Volume 17, Issue 6, 2019

Page: [539 - 549] Pages: 11

DOI: 10.2174/1570159X16666180508113025

open access plus

Abstract

Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glycosylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the homeostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and oxidative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a consensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.

Keywords: Ceruloplasmin, iron, copper, oxidative stress, free radicals, neurodegeneration, neurodegenerative diseases.

Graphical Abstract

[1]
Holmberg, C.G.; Laurell, C.B. Investigations in serum copper. II. Isolation of the copper-containing protein and a description of some of its properties. Acta Chem. Scand., 1948, 2, 550-556.
[http://dx.doi.org/10.3891/acta.chem.scand.02-0550]
[2]
Healy, J.; Tipton, K. Ceruloplasmin and what it might do J. Neural Trans. (Vienna, Austria : 1996), 2007, 114(6), 777-781.
[3]
Linder, M.C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8(9), 887-905.
[4]
Patel, B.N.; David, S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem., 1997, 272(32), 20185-20190.
[http://dx.doi.org/10.1074/jbc.272.32.20185] [PMID: 9242695]
[5]
Hahn, P.; Qian, Y.; Dentchev, T.; Chen, L.; Beard, J.; Harris, Z.L.; Dunaief, J.L. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc. Natl. Acad. Sci. USA, 2004, 101(38), 13850-13855.
[http://dx.doi.org/10.1073/pnas.0405146101] [PMID: 15365174]
[6]
Fortna, R.R.; Watson, H.A.; Nyquist, S.E. Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions. Biol. Reprod., 1999, 61(4), 1042-1049.
[http://dx.doi.org/10.1095/biolreprod61.4.1042] [PMID: 10491642]
[7]
Texel, S.J.; Xu, X.; Harris, Z.L. Ceruloplasmin in neurodegenerative diseases. Biochem. Soc. Trans., 2008, 36(Pt 6), 1277-1281.
[http://dx.doi.org/10.1042/BST0361277] [PMID: 19021540]
[8]
Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 2002, 22, 439-458.
[http://dx.doi.org/10.1146/annurev.nutr.22.012502.114457] [PMID: 12055353]
[9]
Shukla, N.; Maher, J.; Masters, J.; Angelini, G.D.; Jeremy, J.Y. Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis, 2006, 187(2), 238-250.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.035] [PMID: 16412446]
[10]
Vasilyev, V.B. Interactions of caeruloplasmin with other proteins participating in inflammation. Biochem. Soc. Trans., 2010, 38(4), 947-951.
[http://dx.doi.org/10.1042/BST0380947] [PMID: 20658982]
[11]
Rupaimoole, R.; Lee, J.; Haemmerle, M.; Ling, H.; Previs, R.A.; Pradeep, S.; Wu, S.Y.; Ivan, C.; Ferracin, M.; Dennison, J.B.; Millward, N.M.Z.; Nagaraja, A.S.; Gharpure, K.M.; McGuire, M.; Sam, N.; Armaiz-Pena, G.N.; Sadaoui, N.C.; Rodriguez-Aguayo, C.; Calin, G.A.; Drapkin, R.I.; Kovacs, J.; Mills, G.B.; Zhang, W.; Lopez-Berestein, G.; Bhattacharya, P.K.; Sood, A.K. Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis. Cell Reports, 2015, 13(11), 2395-2402.
[http://dx.doi.org/10.1016/j.celrep.2015.11.047] [PMID: 26686630]
[12]
Jiang, R.; Hua, C.; Wan, Y.; Jiang, B.; Hu, H.; Zheng, J.; Fuqua, B.K.; Dunaief, J.L.; Anderson, G.J.; David, S.; Vulpe, C.D.; Chen, H. Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J. Nutr., 2015, 145(5), 1003-1009.
[http://dx.doi.org/10.3945/jn.114.207316] [PMID: 25788583]
[13]
De Domenico, I.; Ward, D.M.; di Patti, M.C.; Jeong, S.Y.; David, S.; Musci, G.; Kaplan, J. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J., 2007, 26(12), 2823-2831.
[http://dx.doi.org/10.1038/sj.emboj.7601735] [PMID: 17541408]
[14]
Olivieri, S.; Conti, A.; Iannaccone, S.; Cannistraci, C.V.; Campanella, A.; Barbariga, M.; Codazzi, F.; Pelizzoni, I.; Magnani, G.; Pesca, M.; Franciotta, D.; Cappa, S.F.; Alessio, M. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J. Neurosci., 2011, 31(50), 18568-18577.
[http://dx.doi.org/10.1523/JNEUROSCI.3768-11.2011] [PMID: 22171055]
[15]
Kono, S. Aceruloplasminemia: An update. Int. Rev. Neurobiol., 2013, 110, 125-151.
[http://dx.doi.org/10.1016/B978-0-12-410502-7.00007-7] [PMID: 24209437]
[16]
Siotto, M.; Simonelli, I.; Pasqualetti, P.; Mariani, S.; Caprara, D.; Bucossi, S.; Ventriglia, M.; Molinario, R.; Antenucci, M.; Rongioletti, M.; Rossini, P.M.; Squitti, R. Association between serum ceruloplasmin specific activity and risk of Alzheimer’s Disease. J. Alzheimers Dis., 2016, 50(4), 1181-1189.
[http://dx.doi.org/10.3233/JAD-150611] [PMID: 26836154]
[17]
Korzh, S.; Emelyanov, A.; Korzh, V. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish. Mech. Dev., 2001, 103(1-2), 137-139.
[http://dx.doi.org/10.1016/S0925-4773(01)00330-6] [PMID: 11335121]
[18]
Bielli, P.; Calabrese, L. Structure to function relationships in ceruloplasmin: a ‘moonlighting’ protein. Cell. Mol. Life Sci., 2002, 59(9), 1413-1427.
[http://dx.doi.org/10.1007/s00018-002-8519-2] [PMID: 12440766]
[19]
Daimon, M.; Yamatani, K.; Igarashi, M.; Fukase, N.; Kawanami, T.; Kato, T.; Tominaga, M.; Sasaki, H. Fine structure of the human ceruloplasmin gene. Biochem. Biophys. Res. Commun., 1995, 208(3), 1028-1035.
[http://dx.doi.org/10.1006/bbrc.1995.1437] [PMID: 7702601]
[20]
Yang, F.; Naylor, S.L.; Lum, J.B.; Cutshaw, S.; McCombs, J.L.; Naberhaus, K.H.; McGill, J.R.; Adrian, G.S.; Moore, C.M.; Barnett, D.R. Characterization, mapping, and expression of the human ceruloplasmin gene. Proc. Natl. Acad. Sci. USA, 1986, 83(10), 3257-3261.
[http://dx.doi.org/10.1073/pnas.83.10.3257] [PMID: 3486416]
[21]
Bento, I.; Peixoto, C.; Zaitsev, V.N.; Lindley, P.F. Ceruloplasmin revisited: Structural and functional roles of various metal cation-binding sites. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 2), 240-248.
[http://dx.doi.org/10.1107/S090744490604947X] [PMID: 17242517]
[22]
Fleming, R.E.; Gitlin, J.D. Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J. Biol. Chem., 1990, 265(13), 7701-7707.
[PMID: 2332446]
[23]
Klomp, L.W.; Farhangrazi, Z.S.; Dugan, L.L.; Gitlin, J.D. Ceruloplasmin gene expression in the murine central nervous system. J. Clin. Invest., 1996, 98(1), 207-215.
[http://dx.doi.org/10.1172/JCI118768] [PMID: 8690795]
[24]
Donley, S.A.; Ilagan, B.J.; Rim, H.; Linder, M.C. Copper transport to mammary gland and milk during lactation in rats. Am. J. Physiol. Endocrinol. Metab., 2002, 283(4), E667-E675.
[http://dx.doi.org/10.1152/ajpendo.00115.2002] [PMID: 12217883]
[25]
Linder, M.C.; Wooten, L.; Cerveza, P.; Cotton, S.; Shulze, R.; Lomeli, N. Copper transport. Am. J. Clin. Nutr., 1998, 67(5)(Suppl.), 965S-971S.
[http://dx.doi.org/10.1093/ajcn/67.5.965S] [PMID: 9587137]
[26]
Marques, L.; Auriac, A.; Willemetz, A.; Banha, J.; Silva, B.; Canonne-Hergaux, F.; Costa, L. Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol. Dis., 2012, 48(2), 110-120.
[http://dx.doi.org/10.1016/j.bcmd.2011.11.005] [PMID: 22178061]
[27]
Banha, J.; Marques, L.; Oliveira, R. Martins, Mde.F.; Paixão, E.; Pereira, D.; Malhó, R.; Penque, D.; Costa, L. Ceruloplasmin expression by human peripheral blood lymphocytes: A new link between immunity and iron metabolism. Free Radic. Biol. Med., 2008, 44(3), 483-492.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.032] [PMID: 17991445]
[28]
Patel, B.N.; Dunn, R.J.; David, S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J. Biol. Chem., 2000, 275(6), 4305-4310.
[http://dx.doi.org/10.1074/jbc.275.6.4305] [PMID: 10660599]
[29]
Salzer, J.L.; Lovejoy, L.; Linder, M.C.; Rosen, C. Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J. Neurosci. Res., 1998, 54(2), 147-157.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19981015)54:2<147:AID-JNR3>3.0.CO;2-E] [PMID: 9788274]
[30]
Mostad, E.J.; Prohaska, J.R. Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp. Biol. Med. (Maywood), 2011, 236(3), 298-308.
[http://dx.doi.org/10.1258/ebm.2010.010256] [PMID: 21355016]
[31]
Sedlák, E.; Zoldák, G.; Wittung-Stafshede, P. Role of copper in thermal stability of human ceruloplasmin. Biophys. J., 2008, 94(4), 1384-1391.
[http://dx.doi.org/10.1529/biophysj.107.113696] [PMID: 17965133]
[32]
Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr., 1996, 63(5), 791S-796S.
[http://dx.doi.org/10.1093/ajcn/63.5.791] [PMID: 8615366]
[33]
Mackiewicz, A.; Ganapathi, M.K.; Schultz, D.; Samols, D.; Reese, J.; Kushner, I. Regulation of rabbit acute phase protein biosynthesis by monokines. Biochem. J., 1988, 253(3), 851-857.
[http://dx.doi.org/10.1042/bj2530851] [PMID: 2460085]
[34]
Ahmad, S.; Sultan, S.; Naz, N.; Ahmad, G.; Alwahsh, S.M.; Cameron, S.; Moriconi, F.; Ramadori, G.; Malik, I.A. Regulation of iron uptake in primary culture rat hepatocytes: The role of acute-phase cytokines. Shock, 2014, 41(4), 337-345.
[http://dx.doi.org/10.1097/SHK.0000000000000107] [PMID: 24365882]
[35]
Ganaraja, B.; Pavithran, P.; Ghosh, S. Effect of estrogen on plasma ceruloplasmin level in rats exposed to acute stress. Indian J. Med. Sci., 2004, 58(4), 150-154.
[PMID: 15122050]
[36]
Guller, S.; Buhimschi, C.S.; Ma, Y.Y.; Huang, S.T.; Yang, L.; Kuczynski, E.; Zambrano, E.; Lockwood, C.J.; Buhimschi, I.A. Placental expression of ceruloplasmin in pregnancies complicated by severe preeclampsia. Lab. Invest., 2008, 88(10), 1057-1067.
[http://dx.doi.org/10.1038/labinvest.2008.74] [PMID: 18679377]
[37]
Vashchenko, G.; MacGillivray, R.T. Multi-copper oxidases and human iron metabolism. Nutrients, 2013, 5(7), 2289-2313.
[http://dx.doi.org/10.3390/nu5072289] [PMID: 23807651]
[38]
Haberska, K.; Vaz-Domínguez, C.; De Lacey, A.L.; Dagys, M.; Reimann, C.T.; Shleev, S. Direct electron transfer reactions between human ceruloplasmin and electrodes. Bioelectrochemistry, 2009, 76(1-2), 34-41.
[http://dx.doi.org/10.1016/j.bioelechem.2009.05.012] [PMID: 19535300]
[39]
Gitlin, J.D. Aceruloplasminemia. Pediatr. Res., 1998, 44(3), 271-276.
[http://dx.doi.org/10.1203/00006450-199809000-00001] [PMID: 9727700]
[40]
Stoj, C.; Kosman, D.J. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: Implication for function. FEBS Lett., 2003, 554(3), 422-426.
[http://dx.doi.org/10.1016/S0014-5793(03)01218-3] [PMID: 14623105]
[41]
Musci, G.; Bonaccorsi di Patti, M.C.; Calabrese, L. Modulation of the redox state of the copper sites of human ceruloplasmin by chloride. J. Protein Chem., 1995, 14(7), 611-619.
[http://dx.doi.org/10.1007/BF01886887] [PMID: 8561857]
[42]
Floris, G.; Medda, R.; Padiglia, A.; Musci, G. The physiopathological significance of ceruloplasmin. A possible therapeutic approach. Biochem. Pharmacol., 2000, 60(12), 1735-1741.
[http://dx.doi.org/10.1016/S0006-2952(00)00399-3] [PMID: 11108788]
[43]
Gulec, S.; Collins, J.F. Molecular mediators governing iron-copper interactions. Annu. Rev. Nutr., 2014, 34, 95-116.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161215] [PMID: 24995690]
[44]
Eid, C.; Hémadi, M.; Ha-Duong, N.T.; El Hage Chahine, J.M. Iron uptake and transfer from ceruloplasmin to transferrin. Biochim. Biophys. Acta, 2014, 1840(6), 1771-1781.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.011] [PMID: 24418516]
[45]
Steinbicker, A.U.; Muckenthaler, M.U. Out of balance--systemic iron homeostasis in iron-related disorders. Nutrients, 2013, 5(8), 3034-3061.
[http://dx.doi.org/10.3390/nu5083034] [PMID: 23917168]
[46]
Tennant, J.; Stansfield, M.; Yamaji, S.; Srai, S.K.; Sharp, P. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett., 2002, 527(1-3), 239-244.
[http://dx.doi.org/10.1016/S0014-5793(02)03253-2] [PMID: 12220667]
[47]
Arredondo, M.; Uauy, R.; González, M. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure. Biochim. Biophys. Acta, 2000, 1474(2), 169-176.
[http://dx.doi.org/10.1016/S0304-4165(00)00015-5] [PMID: 10742596]
[48]
Weiss, K.C.; Linder, M.C. Copper transport in rats involving a new plasma protein. Am. J. Physiol., 1985, 249(1 Pt 1), E77-E88.
[PMID: 3925789]
[49]
McArdle, H.J.; Gross, S.M.; Danks, D.M.; Wedd, A.G. Role of albumin’s copper binding site in copper uptake by mouse hepatocytes. Am. J. Physiol., 1990, 258(6 Pt 1), G988-G991.
[PMID: 2163205]
[50]
Liu, N.; Lo, L.S.; Askary, S.H.; Jones, L.; Kidane, T.Z.; Trang, T.; Nguyen, M.; Goforth, J.; Chu, Y.H.; Vivas, E.; Tsai, M.; Westbrook, T.; Linder, M.C. Transcuprein is a macroglobulin regulated by copper and iron availability. J. Nutr. Biochem., 2007, 18(9), 597-608.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.005] [PMID: 17363239]
[51]
Dijkstra, M.; Vonk, R.J.; Kuipers, F. How does copper get into bile? New insights into the mechanism(s) of hepatobiliary copper transport. J. Hepatol., 1996, 24(Suppl. 1), 109-120.
[PMID: 8926362]
[52]
de Romana, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol., 2011, 25(1), 3-13.
[53]
Ramos, D.; Mar, D.; Ishida, M.; Vargas, R.; Gaite, M.; Montgomery, A.; Linder, M.C. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One, 2016, 11(3), e0149516.
[http://dx.doi.org/10.1371/journal.pone.0149516] [PMID: 26934375]
[54]
Greenough, M.A.; Camakaris, J.; Bush, A.I. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem. Int., 2013, 62(5), 540-555.
[http://dx.doi.org/10.1016/j.neuint.2012.08.014] [PMID: 22982299]
[55]
Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The transition metals copper and iron in neurodegenerative diseases. Chem. Biol. Interact., 2010, 186(2), 184-199.
[http://dx.doi.org/10.1016/j.cbi.2010.04.010] [PMID: 20399203]
[56]
Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol., 2014, 116, 33-57.
[http://dx.doi.org/10.1016/j.pneurobio.2014.01.002] [PMID: 24440710]
[57]
Moriya, M.; Ho, Y.H.; Grana, A.; Nguyen, L.; Alvarez, A.; Jamil, R.; Ackland, M.L.; Michalczyk, A.; Hamer, P.; Ramos, D.; Kim, S.; Mercer, J.F.; Linder, M.C. Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am. J. Physiol. Cell Physiol., 2008, 295(3), C708-C721.
[http://dx.doi.org/10.1152/ajpcell.00029.2008] [PMID: 18579803]
[58]
Meyer, L.A.; Durley, A.P.; Prohaska, J.R.; Harris, Z.L. Copper transport and metabolism are normal in aceruloplasminemic mice. J. Biol. Chem., 2001, 276(39), 36857-36861.
[http://dx.doi.org/10.1074/jbc.M105361200] [PMID: 11461924]
[59]
Benarroch, E.E. Brain iron homeostasis and neurodegenerative disease. Neurology, 2009, 72(16), 1436-1440.
[http://dx.doi.org/10.1212/WNL.0b013e3181a26b30] [PMID: 19380704]
[60]
McKie, A.T.; Barrow, D.; Latunde-Dada, G.O.; Rolfs, A.; Sager, G.; Mudaly, E.; Mudaly, M.; Richardson, C.; Barlow, D.; Bomford, A.; Peters, T.J.; Raja, K.B.; Shirali, S.; Hediger, M.A.; Farzaneh, F.; Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 2001, 291(5509), 1755-1759.
[http://dx.doi.org/10.1126/science.1057206] [PMID: 11230685]
[61]
Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388(6641), 482-488.
[http://dx.doi.org/10.1038/41343] [PMID: 9242408]
[62]
Chloupková, M.; Zhang, A.S.; Enns, C.A. Stoichiometries of transferrin receptors 1 and 2 in human liver. Blood Cells Mol. Dis., 2010, 44(1), 28-33.
[http://dx.doi.org/10.1016/j.bcmd.2009.09.004] [PMID: 19819738]
[63]
Mills, E.; Dong, X.P.; Wang, F.; Xu, H. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med. Chem., 2010, 2(1), 51-64.
[http://dx.doi.org/10.4155/fmc.09.140] [PMID: 20161623]
[64]
Woimant, F.; Trocello, J.M. Disorders of heavy metals. Handb. Clin. Neurol., 2014, 120, 851-864.
[http://dx.doi.org/10.1016/B978-0-7020-4087-0.00057-7] [PMID: 24365357]
[65]
Osaki, S.; Johnson, D.A.; Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem., 1966, 241(12), 2746-2751.
[PMID: 5912351]
[66]
Musci, G.; Polticelli, F.; Bonaccorsi di Patti, M.C. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J. Biol. Chem., 2014, 5(2), 204-215.
[PMID: 24921009]
[67]
Sarkar, J.; Seshadri, V.; Tripoulas, N.A.; Ketterer, M.E.; Fox, P.L. Role of ceruloplasmin in macrophage iron efflux during hypoxia. J. Biol. Chem., 2003, 278(45), 44018-44024.
[http://dx.doi.org/10.1074/jbc.M304926200] [PMID: 12952974]
[68]
Harris, Z.L.; Durley, A.P.; Man, T.K.; Gitlin, J.D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10812-10817.
[http://dx.doi.org/10.1073/pnas.96.19.10812] [PMID: 10485908]
[69]
Patel, B.N.; Dunn, R.J.; Jeong, S.Y.; Zhu, Q.; Julien, J.P.; David, S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci., 2002, 22(15), 6578-6586.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06578.2002] [PMID: 12151537]
[70]
Jeong, S.Y.; David, S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem., 2003, 278(29), 27144-27148.
[http://dx.doi.org/10.1074/jbc.M301988200] [PMID: 12743117]
[71]
Ward, D.M.; Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim. Biophys. Acta, 2012, 1823(9), 1426-1433.
[http://dx.doi.org/10.1016/j.bbamcr.2012.03.004] [PMID: 22440327]
[72]
Kono, S.; Yoshida, K.; Tomosugi, N.; Terada, T.; Hamaya, Y.; Kanaoka, S.; Miyajima, H. Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin. Biochim. Biophys. Acta, 2010, 1802(11), 968-975.
[http://dx.doi.org/10.1016/j.bbadis.2010.07.011] [PMID: 20655381]
[73]
Goldstein, I.M.; Kaplan, H.B.; Edelson, H.S.; Weissmann, G. Ceruloplasmin. A scavenger of superoxide anion radicals. J. Biol. Chem., 1979, 254(10), 4040-4045.
[PMID: 220229]
[74]
Lazzaro, M.; Bettegazzi, B.; Barbariga, M.; Codazzi, F.; Zacchetti, D.; Alessio, M. Ceruloplasmin potentiates nitric oxide synthase activity and cytokine secretion in activated microglia. J. Neuroinflammation, 2014, 11, 164.
[http://dx.doi.org/10.1186/s12974-014-0164-9] [PMID: 25224679]
[75]
Ganini, D.; Canistro, D.; Jiang, J.; Stadler, K.; Mason, R.P.; Kadiiska, M.B. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection. Free Radic. Biol. Med., 2012, 53(7), 1514-1521.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.013] [PMID: 22824865]
[76]
Inoue, K.; Akaike, T.; Miyamoto, Y.; Okamoto, T.; Sawa, T.; Otagiri, M.; Suzuki, S.; Yoshimura, T.; Maeda, H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J. Biol. Chem., 1999, 274(38), 27069-27075.
[http://dx.doi.org/10.1074/jbc.274.38.27069] [PMID: 10480920]
[77]
Hineno, A.; Kaneko, K.; Yoshida, K.; Ikeda, S. Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity. Neurochem. Res., 2011, 36(11), 2127-2135.
[http://dx.doi.org/10.1007/s11064-011-0537-8] [PMID: 21706374]
[78]
Shin, E.J.; Jeong, J.H.; Chung, C.K.; Kim, D.J.; Wie, M.B.; Park, E.S.; Chung, Y.H.; Nam, Y.; Tran, T.V.; Lee, S.Y.; Kim, H.J.; Ong, W.Y.; Kim, H.C. Ceruloplasmin is an endogenous protectant against kainate neurotoxicity. Free Radic. Biol. Med., 2015, 84, 355-372.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.031] [PMID: 25843655]
[79]
Boero, L.; Cuniberti, L.; Magnani, N.; Manavela, M.; Yapur, V.; Bustos, M.; Gómez Rosso, L.; Meroño, T.; Marziali, L.; Viale, L.; Evelson, P.; Negri, G.; Brites, F. Increased oxidized low density lipoprotein associated with high ceruloplasmin activity in patients with active acromegaly. Clin. Endocrinol. (Oxf.), 2010, 72(5), 654-660.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03685.x] [PMID: 19681912]
[80]
Provotorov, V.M.; Budnevsky, A.V.; Filatova, Y.I. Clinical manifestations of asthma during combination therapy using ceruloplasmin. Ter. Arkh., 2016, 88(3), 36-39.
[http://dx.doi.org/10.17116/terarkh201688336-39] [PMID: 27030327]
[81]
Cerone, S.I.; Sansinanea, A.S.; Streitenberger, S.A.; Garcia, M.C.; Auza, N.J. Cytochrome c oxidase, Cu,Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biol. Trace Elem. Res., 2000, 73(3), 269-278.
[http://dx.doi.org/10.1385/BTER:73:3:269] [PMID: 11049217]
[82]
Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol., 2015, 14(1), 103-113.
[http://dx.doi.org/10.1016/S1474-4422(14)70190-5] [PMID: 25496901]
[83]
Cocoş, R.; Şendroiu, A.; Schipor, S.; Bohîlţea, L.C.; Şendroiu, I.; Raicu, F. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson’s disease: Genetic and clinical homogeneity. PLoS One, 2014, 9(6), e98520.
[http://dx.doi.org/10.1371/journal.pone.0098520] [PMID: 24897373]
[84]
Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s disease: A comprehensive review of the molecular mechanisms. Int. J. Mol. Sci., 2015, 16(3), 6419-6431.
[http://dx.doi.org/10.3390/ijms16036419] [PMID: 25803104]
[85]
Hahn, S.H.; Lee, S.Y.; Jang, Y.J.; Kim, S.N.; Shin, H.C.; Park, S.Y.; Han, H.S.; Yu, E.S.; Yoo, H.W.; Lee, J.S.; Chung, C.S.; Lee, S.Y.; Lee, D.H. Pilot study of mass screening for Wilson’s disease in Korea. Mol. Genet. Metab., 2002, 76(2), 133-136.
[http://dx.doi.org/10.1016/S1096-7192(02)00026-4] [PMID: 12083810]
[86]
Ohura, T.; Abukawa, D.; Shiraishi, H.; Yamaguchi, A.; Arashima, S.; Hiyamuta, S.; Tada, K.; Iinuma, K. Pilot study of screening for Wilson disease using dried blood spots obtained from children seen at outpatient clinics. J. Inherit. Metab. Dis., 1999, 22(1), 74-80.
[http://dx.doi.org/10.1023/A:1005455401076] [PMID: 10070620]
[87]
Zappu, A.; Magli, O.; Lepori, M.B.; Dessì, V.; Diana, S.; Incollu, S.; Kanavakis, E.; Nicolaidou, P.; Manolaki, N.; Fretzayas, A.; De Virgiliis, S.; Cao, A.; Loudianos, G. High incidence and allelic homogeneity of Wilson disease in 2 isolated populations: A prerequisite for efficient disease prevention programs. J. Pediatr. Gastroenterol. Nutr., 2008, 47(3), 334-338.
[http://dx.doi.org/10.1097/MPG.0b013e31817094f6] [PMID: 18728530]
[88]
Coffey, A.J.; Durkie, M.; Hague, S.; McLay, K.; Emmerson, J.; Lo, C.; Klaffke, S.; Joyce, C.J.; Dhawan, A.; Hadzic, N.; Mieli-Vergani, G.; Kirk, R.; Elizabeth Allen, K.; Nicholl, D.; Wong, S.; Griffiths, W.; Smithson, S.; Giffin, N.; Taha, A.; Connolly, S.; Gillett, G.T.; Tanner, S.; Bonham, J.; Sharrack, B.; Palotie, A.; Rattray, M.; Dalton, A.; Bandmann, O. A genetic study of Wilson’s disease in the United Kingdom. Brain, 2013, 136(Pt 5), 1476-1487.
[http://dx.doi.org/10.1093/brain/awt035] [PMID: 23518715]
[89]
Gouider-Khouja, N. Wilson’s disease. Parkinsonism Relat. Disord., 2009, 15(Suppl. 3), S126-S129.
[http://dx.doi.org/10.1016/S1353-8020(09)70798-9] [PMID: 20082972]
[90]
Davies, K.M.; Hare, D.J.; Cottam, V.; Chen, N.; Hilgers, L.; Halliday, G.; Mercer, J.F.; Double, K.L. Localization of copper and copper transporters in the human brain. Metallomics, 5(1), 43-51.
[91]
Roberts, E.A.; Robinson, B.H.; Yang, S. Mitochondrial structure and function in the untreated Jackson toxic milk (tx-j) mouse, a model for Wilson disease. Mol. Genet. Metab., 2008, 93(1), 54-65.
[http://dx.doi.org/10.1016/j.ymgme.2007.08.127] [PMID: 17981064]
[92]
Telianidis, J.; Hung, Y.H.; Materia, S.; Fontaine, S.L. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front. Aging Neurosci., 2013, 5, 44.
[http://dx.doi.org/10.3389/fnagi.2013.00044] [PMID: 23986700]
[93]
Barnes, N.; Tsivkovskii, R.; Tsivkovskaia, N.; Lutsenko, S. The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum. J. Biol. Chem., 2005, 280(10), 9640-9645.
[http://dx.doi.org/10.1074/jbc.M413840200] [PMID: 15634671]
[94]
Scheiber, I.F.; Brůha, R.; Dušek, P. Pathogenesis of Wilson disease. Handb. Clin. Neurol., 2017, 142, 43-55.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00005-7] [PMID: 28433109]
[95]
Hayashi, H.; Yano, M.; Fujita, Y.; Wakusawa, S. Compound overload of copper and iron in patients with Wilson’s disease. Med. Mol. Morphol., 2006, 39(3), 121-126.
[http://dx.doi.org/10.1007/s00795-006-0326-7] [PMID: 16998622]
[96]
Erikson, K.M.; Syversen, T.; Steinnes, E.; Aschner, M. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J. Nutr. Biochem., 2004, 15(6), 335-341.
[http://dx.doi.org/10.1016/j.jnutbio.2003.12.006] [PMID: 15157939]
[97]
Sinha, S.; Taly, A.B.; Ravishankar, S.; Prashanth, L.K.; Venugopal, K.S.; Arunodaya, G.R.; Vasudev, M.K.; Swamy, H.S. Wilson’s disease: cranial MRI observations and clinical correlation. Neuroradiology, 2006, 48(9), 613-621.
[http://dx.doi.org/10.1007/s00234-006-0101-4] [PMID: 16752136]
[98]
Bruehlmeier, M.; Leenders, K.L.; Vontobel, P.; Calonder, C.; Antonini, A.; Weindl, A. Increased cerebral iron uptake in Wilson’s disease: a 52Fe-citrate PET study. J. Nucl. Med., 2000, 41(5), 781-787.
[99]
Roeser, H.P.; Lee, G.R.; Nacht, S.; Cartwright, G.E. The role of ceruloplasmin in iron metabolism. J. Clin. Invest., 1970, 49(12), 2408-2417.
[http://dx.doi.org/10.1172/JCI106460] [PMID: 5480864]
[100]
Jursa, T.; Smith, D.R. Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol. Sci., 2009, 107(1), 182-193.
[101]
Peng, F.; Lutsenko, S.; Sun, X.; Muzik, O. Imaging copper metabolism imbalance in Atp7b (-/-) knock-out mouse model of Wilson’s disease with PET-CT and orally administered 64CuCl2. Mol. Imaging Biol., 2012, 14(5), 600-607.
[102]
Merle, U.; Tuma, S.; Herrmann, T.; Muntean, V.; Volkmann, M.; Gehrke, S.G.; Stremmel, W. Evidence for a critical role of ceruloplasmin oxidase activity in iron metabolism of Wilson disease gene knockout mice. J. Gastroenterol. Hepatol., 2010, 25(6), 1144-1150.
[http://dx.doi.org/10.1111/j.1440-1746.2009.06173.x] [PMID: 20594231]
[103]
Pal, A.; Vasishta, Rk.; Prasad, R. Hepatic and hippocampus iron status is not altered in response to increased serum ceruloplasmin and serum “free” copper in Wistar rat model for non-Wilsonian brain copper toxicosis. Biol. Trace Elem. Res., 2013, 154(3), 403-411.
[http://dx.doi.org/10.1007/s12011-013-9753-1] [PMID: 23872735]
[104]
Kruer, M.C.; Boddaert, N. Neurodegeneration with brain iron accumulation: a diagnostic algorithm. Semin. Pediatr. Neurol., 2012, 19(2), 67-74.
[http://dx.doi.org/10.1016/j.spen.2012.04.001] [PMID: 22704259]
[105]
Arber, C.E.; Li, A.; Houlden, H.; Wray, S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: Unifying theories. Neuropathol. Appl. Neurobiol., 2016, 42(3), 220-241.
[http://dx.doi.org/10.1111/nan.12242] [PMID: 25870938]
[106]
Dusek, P.; Schneider, S.A. Neurodegeneration with brain iron accumulation. Curr. Opin. Neurol., 2012, 25(4), 499-506.
[http://dx.doi.org/10.1097/WCO.0b013e3283550cac] [PMID: 22691760]
[107]
Miyajima, H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology, 2003, 23(4), 345-350.
[http://dx.doi.org/10.1046/j.1440-1789.2003.00521.x] [PMID: 14719552]
[108]
di Patti, M.C.; Maio, N.; Rizzo, G.; De Francesco, G.; Persichini, T.; Colasanti, M.; Polticelli, F.; Musci, G. Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia. J. Biol. Chem., 2009, 284(7), 4545-4554.
[http://dx.doi.org/10.1074/jbc.M805688200] [PMID: 19095659]
[109]
Schulz, K.; Vulpe, C.D.; Harris, L.Z.; David, S. Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J. Neurosci., 2011, 31(37), 13301-13311.
[http://dx.doi.org/10.1523/JNEUROSCI.2838-11.2011] [PMID: 21917813]
[110]
Levi, S.; Finazzi, D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front. Pharmacol., 2014, 5, 99.
[http://dx.doi.org/10.3389/fphar.2014.00099] [PMID: 24847269]
[111]
Vassiliev, V.; Harris, Z.L.; Zatta, P. Ceruloplasmin in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2005, 49(3), 633-640.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.003] [PMID: 16269323]
[112]
Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta, 2012, 1820(3), 403-410.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.014] [PMID: 21855608]
[113]
Kono, S.; Miyajima, H. Molecular and pathological basis of aceruloplasminemia. Biol. Res., 2006, 39(1), 15-23.
[http://dx.doi.org/10.4067/S0716-97602006000100003] [PMID: 16629161]
[114]
Stoj, C.S.; Augustine, A.J.; Solomon, E.I.; Kosman, D.J. Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. J. Biol. Chem., 2007, 282(11), 7862-7868.
[http://dx.doi.org/10.1074/jbc.M609766200] [PMID: 17220296]
[115]
Shiva, S.; Wang, X.; Ringwood, L.A.; Xu, X.; Yuditskaya, S.; Annavajjhala, V.; Miyajima, H.; Hogg, N.; Harris, Z.L.; Gladwin, M.T. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol., 2006, 2(9), 486-493.
[http://dx.doi.org/10.1038/nchembio813] [PMID: 16906150]
[116]
Ballatore, C.; Lee, V.M.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[117]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[118]
Nakamura, M.; Shishido, N.; Nunomura, A.; Smith, M.A.; Perry, G.; Hayashi, Y.; Nakayama, K.; Hayashi, T. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry, 2007, 46(44), 12737-12743.
[http://dx.doi.org/10.1021/bi701079z] [PMID: 17929832]
[119]
James, S.A.; Churches, Q.I.; de Jonge, M.D.; Birchall, I.E.; Streltsov, V.; McColl, G.; Adlard, P.A.; Hare, D.J. Iron, copper, and zinc concentration in abeta plaques in the APP/PS1 mouse model of alzheimer’s disease correlates with metal levels in the surrounding neuropil. ACS Chem. Neurosci., 2016.
[PMID: 27958708]
[120]
Wang, P.; Wang, Z.Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2016.
[PMID: 27829171]
[121]
Jellinger, K.A. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int. Rev. Neurobiol., 2013, 110, 1-47.
[http://dx.doi.org/10.1016/B978-0-12-410502-7.00002-8] [PMID: 24209432]
[122]
Brewer, G.J. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J. Am. Coll. Nutr., 2009, 28(3), 238-242.
[http://dx.doi.org/10.1080/07315724.2009.10719777] [PMID: 20150596]
[123]
Squitti, R.; Barbati, G.; Rossi, L.; Ventriglia, M.; Dal Forno, G.; Cesaretti, S.; Moffa, F.; Caridi, I.; Cassetta, E.; Pasqualetti, P.; Calabrese, L.; Lupoi, D.; Rossini, P.M. Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology, 2006, 67(1), 76-82.
[http://dx.doi.org/10.1212/01.wnl.0000223343.82809.cf] [PMID: 16832081]
[124]
Noda, Y.; Asada, M.; Kubota, M.; Maesako, M.; Watanabe, K.; Uemura, M.; Kihara, T.; Shimohama, S.; Takahashi, R.; Kinoshita, A.; Uemura, K. Copper enhances APP dimerization and promotes Aβ production. Neurosci. Lett., 2013, 547, 10-15.
[http://dx.doi.org/10.1016/j.neulet.2013.04.057] [PMID: 23669644]
[125]
Squitti, R.; Simonelli, I.; Ventriglia, M.; Siotto, M.; Pasqualetti, P.; Rembach, A.; Doecke, J.; Bush, A.I. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease. J. Alzheimers Dis., 2014, 38(4), 809-822.
[http://dx.doi.org/10.3233/JAD-131247] [PMID: 24072069]
[126]
Ventriglia, M.; Bucossi, S.; Panetta, V.; Squitti, R. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J. Alzheimers Dis., 2012, 30(4), 981-984.
[http://dx.doi.org/10.3233/JAD-2012-120244] [PMID: 22475798]
[127]
Smith, M.A.; Zhu, X.; Tabaton, M.; Liu, G.; McKeel, D.W., Jr; Cohen, M.L.; Wang, X.; Siedlak, S.L.; Dwyer, B.E.; Hayashi, T.; Nakamura, M.; Nunomura, A.; Perry, G. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J. Alzheimers Dis., 2010, 19(1), 363-372.
[http://dx.doi.org/10.3233/JAD-2010-1239] [PMID: 20061651]
[128]
Bousejra-ElGarah, F.; Bijani, C.; Coppel, Y.; Faller, P.; Hureau, C. Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorg. Chem., 2011, 50(18), 9024-9030.
[http://dx.doi.org/10.1021/ic201233b] [PMID: 21800824]
[129]
Becerril-Ortega, J.; Bordji, K.; Fréret, T.; Rush, T.; Buisson, A. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer’s disease. Neurobiol. Aging, 2014, 35(10), 2288-2301.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.04.019] [PMID: 24863668]
[130]
Avan, A.; Hoogenraad, T.U. Zinc and Copper in Alzheimer’s Disease. J. Alzheimers Dis., 2015, 46(1), 89-92.
[http://dx.doi.org/10.3233/JAD-150186] [PMID: 25835420]
[131]
Ashley, I. Bush., The Metal Theory of Alzheimer’s Disease. J. Alzheimers Dis., 2012, (30), 1-5.
[132]
Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Zinc, Carnosine, and neurodegenerative diseases. Nutrients, 2018, 10(2), 147.
[http://dx.doi.org/10.3390/nu10020147] [PMID: 29382141]
[133]
Atrián-Blasco, E.; Conte-Daban, A.; Hureau, C. Mutual interference of Cu and Zn ions in Alzheimer’s disease: Perspectives at the molecular level. Dalton Trans., 2017, 46(38), 12750-12759.
[http://dx.doi.org/10.1039/C7DT01344B] [PMID: 28937157]
[134]
Bucossi, S.; Mariani, S.; Ventriglia, M.; Polimanti, R.; Gennarelli, M.; Bonvicini, C.; Pasqualetti, P.; Scrascia, F.; Migliore, S.; Vernieri, F.; Rossini, P.M.; Squitti, R. Association between the c. 2495 A>G ATP7B Polymorphism and sporadic Alzheimer’s Disease. Int. J. Alzheimers Dis., 2011, 2011, 973692.
[http://dx.doi.org/10.4061/2011/973692] [PMID: 21760992]
[135]
Squitti, R.; Polimanti, R.; Bucossi, S.; Ventriglia, M.; Mariani, S.; Manfellotto, D.; Vernieri, F.; Cassetta, E.; Ursini, F.; Rossini, P.M. Linkage disequilibrium and haplotype analysis of the ATP7B gene in Alzheimer’s disease. Rejuvenation Res., 2013, 16(1), 3-10.
[http://dx.doi.org/10.1089/rej.2012.1357] [PMID: 22950421]
[136]
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[137]
Jenner, P. Oxidative stress in Parkinson's disease Ann. Neurol, 2003, (53 Suppl 3) S26-36; discussion S36-8.
[http://dx.doi.org/10.1002/ana.10483]
[138]
Wüllner, U.; Klockgether, T. Inflammation in Parkinson’s disease. J. Neurol., 2003, 250(Suppl. 1), I35-I38.
[http://dx.doi.org/10.1007/s00415-003-1107-x] [PMID: 12761634]
[139]
Schapira, A.H. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ., 2007, 14(7), 1261-1266.
[http://dx.doi.org/10.1038/sj.cdd.4402160] [PMID: 17464321]
[140]
Montes, S.; Rivera-Mancia, S.; Diaz-Ruiz, A.; Tristan-Lopez, L.; Rios, C. Copper and copper proteins in Parkinson’s disease. Oxid. Med. Cell. Longev., 2014, 2014, 147251.
[http://dx.doi.org/10.1155/2014/147251] [PMID: 24672633]
[141]
Wright, J.A.; Wang, X.; Brown, D.R. Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J., 2009, 23(8), 2384-2393.
[http://dx.doi.org/10.1096/fj.09-130039] [PMID: 19325037]
[142]
Gaier, E.D.; Eipper, B.A.; Mains, R.E. Copper signaling in the mammalian nervous system: Synaptic effects. J. Neurosci. Res., 2013, 91(1), 2-19.
[PMID: 23115049]
[143]
Grolez, G.; Moreau, C.; Sablonnière, B.; Garçon, G.; Devedjian, J.C.; Meguig, S.; Gelé, P.; Delmaire, C.; Bordet, R.; Defebvre, L.; Cabantchik, I.Z.; Devos, D. Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol., 2015, 15, 74.
[http://dx.doi.org/10.1186/s12883-015-0331-3] [PMID: 25943368]
[144]
Hochstrasser, H.; Tomiuk, J.; Walter, U.; Behnke, S.; Spiegel, J.; Krüger, R.; Becker, G.; Riess, O.; Berg, D. Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB J., 2005, 19(13), 1851-1853.
[http://dx.doi.org/10.1096/fj.04-3486fje] [PMID: 16150804]
[145]
McNeill, A.; Pandolfo, M.; Kuhn, J.; Shang, H.; Miyajima, H. The neurological presentation of ceruloplasmin gene mutations. Eur. Neurol., 2008, 60(4), 200-205.
[http://dx.doi.org/10.1159/000148691] [PMID: 18667828]
[146]
Dusek, P.; Roos, P.M.; Litwin, T.; Schneider, S.A.; Flaten, T.P.; Aaseth, J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J. Trace Elem. Med. Biol., 2015, 31, 193-203.
[147]
Olivieri, S.; Conti, A.; Iannaccone, S.; Cannistraci, C.V.; Campanella, A.; Barbariga, M.; Codazzi, F.; Pelizzoni, I.; Magnani, G.; Pesca, M.; Franciotta, D.; Cappa, S.F.; Alessio, M. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J. Neurosci., 2011, 31(50), 18568-18577.
[http://dx.doi.org/10.1523/JNEUROSCI.3768-11.2011] [PMID: 22171055]
[148]
Ayton, S.; Lei, P.; Duce, J.A.; Wong, B.X.; Sedjahtera, A.; Adlard, P.A.; Bush, A.I.; Finkelstein, D.I. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann. Neurol., 2013, 73(4), 554-559.
[http://dx.doi.org/10.1002/ana.23817] [PMID: 23424051]
[149]
Johannesson, T.; Kristinsson, J.; Torsdottir, G.; Snaedal, J. Ceruloplasmin (Cp) and iron in connection with Parkinson’s disease (PD) and Alzheimer’s disease (AD). Laeknabladid, 2012, 98(10), 531-537.
[PMID: 23043066]
[150]
Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garçon, G.; Rouaix, N.; Duhamel, A.; Jissendi, P.; Dujardin, K.; Auger, F.; Ravasi, L.; Hopes, L.; Grolez, G.; Firdaus, W.; Sablonnière, B.; Strubi-Vuillaume, I.; Zahr, N.; Destée, A.; Corvol, J.C.; Pöltl, D.; Leist, M.; Rose, C.; Defebvre, L.; Marchetti, P.; Cabantchik, Z.I.; Bordet, R. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal., 2014, 21(2), 195-210.
[http://dx.doi.org/10.1089/ars.2013.5593] [PMID: 24251381]
[151]
Barbariga, M.; Curnis, F.; Andolfo, A.; Zanardi, A.; Lazzaro, M.; Conti, A.; Magnani, G.; Volontè, M.A.; Ferrari, L.; Comi, G.; Corti, A.; Alessio, M. Ceruloplasmin functional changes in Parkinson’s disease-cerebrospinal fluid. Mol. Neurodegener., 2015, 10, 59.
[http://dx.doi.org/10.1186/s13024-015-0055-2] [PMID: 26537957]
[152]
Conti, A.; Iannaccone, S.; Sferrazza, B.; De Monte, L.; Cappa, S.; Franciotta, D.; Olivieri, S.; Alessio, M. Differential expression of ceruloplasmin isoforms in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Proteomics Clin. Appl., 2008, 2(12), 1628-1637.
[http://dx.doi.org/10.1002/prca.200780081] [PMID: 21136813]

© 2024 Bentham Science Publishers | Privacy Policy