Review Article

以内皮细胞Ca2+工具箱为靶点,拯救肥胖相关高血压患者的内皮功能障碍

卷 27, 期 2, 2020

页: [240 - 257] 页: 18

弟呕挨: 10.2174/0929867326666190905142135

价格: $65

摘要

背景:肥胖是心血管疾病的主要危险因素,严重影响内皮依赖性血管舒张,导致高血压和血管损伤。血管舒缩反应对细胞外内分泌物,如autacoid(如乙酰胆碱)的损害主要依赖于一氧化氮(NO)生物利用度的降低,而一氧化氮的降低阻碍了大导管的血管舒张。此外,肥胖还可能影响内皮依赖性超极化(EDH),从而导致小动脉和小动脉的血管舒张。值得注意的是,内皮细胞Ca2+信号驱动NO释放并触发EDH。 方法:对文献数据库进行结构化检索,检索最具影响力的最新文章,这些文章涉及肥胖动物模型(包括肥胖的Zucker大鼠)血管舒张功能受损,以及在模拟肥胖的条件下内皮Ca2+工具箱的重构。此外,我们还搜索了讨论如何利用饮食控制来挽救Ca2+依赖性血管舒张的文章。 结果:我们发现内皮细胞Ca2+可能受到肥胖血管的严重影响。这种重排可能导致内皮损伤,并可能参与血管舒张机制的破坏。然而,包括香草酸样瞬时受体电位(TRPV) 1、3、4在内的多个Ca2+可通过多种食物成分刺激肥胖个体以致血管舒张。 结论:内皮细胞Ca2+工具箱可以减少血管损伤,挽救肥胖血管内皮依赖性血管舒张。然而,这一假设仍有待于在真正肥胖者的内皮细胞上进行研究。

关键词: 血管舒张,内皮依赖性超极化,血管损伤,肥胖血管,肥胖,心血管疾病。

[1]
Aird, W.C. Endothelium in health and disease. Pharmacol. Rep., 2008, 60(1), 139-143.
[PMID: 18276995]
[2]
Goveia, J.; Stapor, P.; Carmeliet, P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol. Med., 2014, 6(9), 1105-1120.
[http://dx.doi.org/10.15252/emmm.201404156] [PMID: 25063693]
[3]
Moccia, F.; Guerra, G. Ca(2+) Signalling in endothelial progenitor cells: friend or foe? J. Cell. Physiol., 2016, 231(2), 314-327.
[http://dx.doi.org/10.1002/jcp.25126] [PMID: 26247172]
[4]
Khazaei, M.; Moien-Afshari, F.; Laher, I. Vascular endothelial function in health and diseases. Pathophysiology, 2008, 15(1), 49-67.
[http://dx.doi.org/10.1016/j.pathophys.2008.02.002] [PMID: 18434105]
[5]
Altaany, Z.; Moccia, F.; Munaron, L.; Mancardi, D.; Wang, R. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide. Curr. Med. Chem., 2014, 21(32), 3646-3661.
[http://dx.doi.org/10.2174/0929867321666140706142930] [PMID: 25005182]
[6]
Mancardi, D.; Pla, A.F.; Moccia, F.; Tanzi, F.; Munaron, L. Old and new gasotransmitters in the cardiovascular system: focus on the role of nitric oxide and hydrogen sulfide in endothelial cells and cardiomyocytes. Curr. Pharm. Biotechnol., 2011, 12(9), 1406-1415.
[http://dx.doi.org/10.2174/138920111798281090] [PMID: 21235456]
[7]
Khaddaj Mallat, R.; Mathew John, C.; Kendrick, D.J.; Braun, A.P. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit. Rev. Clin. Lab. Sci., 2017, 54(7-8), 458-470.
[http://dx.doi.org/10.1080/10408363.2017.1394267] [PMID: 29084470]
[8]
Behringer, E.J. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation, 2017, 24(3)
[http://dx.doi.org/10.1111/micc.12328] [PMID: 27801542]
[9]
Garland, C.J.; Dora, K.A. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol. (Oxf.), 2017, 219(1), 152-161.
[http://dx.doi.org/10.1111/apha.12649] [PMID: 26752699]
[10]
Moccia, F.; Berra-Romani, R.; Tanzi, F. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters. World J. Biol. Chem., 2012, 3(7), 127-158.
[http://dx.doi.org/10.4331/wjbc.v3.i7.127] [PMID: 22905291]
[11]
Adams, D.J.; Barakeh, J.; Laskey, R.; Van Breemen, C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J., 1989, 3(12), 2389-2400.
[http://dx.doi.org/10.1096/fasebj.3.12.2477294] [PMID: 2477294]
[12]
Vanhoutte, P.M.; Tang, E.H. Endothelium-dependent contractions: when a good guy turns bad! J. Physiol., 2008, 586(22), 5295-5304.
[http://dx.doi.org/10.1113/jphysiol.2008.161430] [PMID: 18818246]
[13]
Perrier, E.; Fournet-Bourguignon, M.P.; Royere, E.; Molez, S.; Reure, H.; Lesage, L.; Gosgnach, W.; Frapart, Y.; Boucher, J.L.; Villeneuve, N.; Vilaine, J.P. Effect of uncoupling endothelial nitric oxide synthase on calcium homeostasis in aged porcine endothelial cells. Cardiovasc. Res., 2009, 82(1), 133-142.
[http://dx.doi.org/10.1093/cvr/cvp034] [PMID: 19176602]
[14]
Prendergast, C.; Quayle, J.; Burdyga, T.; Wray, S. Atherosclerosis affects calcium signalling in endothelial cells from apolipoprotein E knockout mice before plaque formation. Cell Calcium, 2014, 55(3), 146-154.
[http://dx.doi.org/10.1016/j.ceca.2014.02.012] [PMID: 24630173]
[15]
Gandhirajan, R.K.; Meng, S.; Chandramoorthy, H.C.; Mallilankaraman, K.; Mancarella, S.; Gao, H.; Razmpour, R.; Yang, X.F.; Houser, S.R.; Chen, J.; Koch, W.J.; Wang, H.; Soboloff, J.; Gill, D.L.; Madesh, M. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J. Clin. Invest., 2013, 123(2), 887-902.
[http://dx.doi.org/10.1172/JCI65647] [PMID: 23348743]
[16]
Fasanaro, P.; Magenta, A.; Zaccagnini, G.; Cicchillitti, L.; Fucile, S.; Eusebi, F.; Biglioli, P.; Capogrossi, M.C.; Martelli, F. Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress. FASEB J., 2006, 20(8), 1242-1244.
[http://dx.doi.org/10.1096/fj.05-4695fje] [PMID: 16603604]
[17]
Bishara, N.B.; Ding, H. Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(1), H171-H178.
[http://dx.doi.org/10.1152/ajpheart.00699.2009] [PMID: 19855058]
[18]
Daskoulidou, N.; Zeng, B.; Berglund, L.M.; Jiang, H.; Chen, G.L.; Kotova, O.; Bhandari, S.; Ayoola, J.; Griffin, S.; Atkin, S.L.; Gomez, M.F.; Xu, S.Z. High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J. Mol. Med. (Berl.), 2015, 93(5), 511-521.
[http://dx.doi.org/10.1007/s00109-014-1234-2] [PMID: 25471481]
[19]
Arruda, A.P.; Hotamisligil, G.S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[20]
Carvajal, K.; Balderas-Villalobos, J.; Bello-Sanchez, M.D.; Phillips-Farfán, B.; Molina-Muñoz, T.; Aldana-Quintero, H.; Gómez-Viquez, N.L. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium, 2014, 56(5), 408-415.
[http://dx.doi.org/10.1016/j.ceca.2014.08.003] [PMID: 25168907]
[21]
Guerrero-Hernandez, A.; Verkhratsky, A. Calcium signalling in diabetes. Cell Calcium, 2014, 56(5), 297-301.
[http://dx.doi.org/10.1016/j.ceca.2014.08.009] [PMID: 25217232]
[22]
Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol., 2003, 4(7), 517-529.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[23]
Bootman, M.D.; Berridge, M.J.; Roderick, H.L. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol., 2002, 12(16), R563-R565.
[http://dx.doi.org/10.1016/S0960-9822(02)01055-2] [PMID: 12194839]
[24]
Clapham, D.E. Calcium signaling. Cell, 2007, 131(6), 1047-1058.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[25]
Moccia, F.; Tanzi, F.; Munaron, L. Endothelial remodelling and intracellular calcium machinery. Curr. Mol. Med., 2014, 14(4), 457-480.
[http://dx.doi.org/10.2174/1566524013666131118113410] [PMID: 24236452]
[26]
Zuccolo, E.; Lim, D.; Kheder, D.A.; Perna, A.; Catarsi, P.; Botta, L.; Rosti, V.; Riboni, L.; Sancini, G.; Tanzi, F.; D’Angelo, E.; Guerra, G.; Moccia, F. Acetylcholine induces intracellular Ca2+ oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium, 2017, 66, 33-47.
[http://dx.doi.org/10.1016/j.ceca.2017.06.003] [PMID: 28807148]
[27]
Radu, B.M.; Osculati, A.M.M.; Suku, E.; Banciu, A.; Tsenov, G.; Merigo, F.; Di Chio, M.; Banciu, D.D.; Tognoli, C.; Kacer, P.; Giorgetti, A.; Radu, M.; Bertini, G.; Fabene, P.F. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci. Rep., 2017, 7(1), 5083.
[http://dx.doi.org/10.1038/s41598-017-05384-z] [PMID: 28698560]
[28]
Burnstock, G. Purinergic signaling in the cardiovascular system. Circ. Res., 2017, 120(1), 207-228.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309726] [PMID: 28057794]
[29]
Moccia, F.; Lodola, F.; Dragoni, S.; Bonetti, E.; Bottino, C.; Guerra, G.; Laforenza, U.; Rosti, V.; Tanzi, F. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation. Curr. Vasc. Pharmacol., 2014, 12(1), 87-105.
[http://dx.doi.org/10.2174/157016111201140327162858] [PMID: 22724469]
[30]
Abdullaev, I.F.; Bisaillon, J.M.; Potier, M.; Gonzalez, J.C.; Motiani, R.K.; Trebak, M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ. Res., 2008, 103(11), 1289-1299.
[http://dx.doi.org/10.1161/01.RES.0000338496.95579.56] [PMID: 18845811]
[31]
Li, J.; Cubbon, R.M.; Wilson, L.A.; Amer, M.S.; McKeown, L.; Hou, B.; Majeed, Y.; Tumova, S.; Seymour, V.A.L.; Taylor, H.; Stacey, M.; O’Regan, D.; Foster, R.; Porter, K.E.; Kearney, M.T.; Beech, D.J. Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ. Res., 2011, 108(10), 1190-1198.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243352] [PMID: 21441136]
[32]
Sundivakkam, P.C.; Freichel, M.; Singh, V.; Yuan, J.P.; Vogel, S.M.; Flockerzi, V.; Malik, A.B.; Tiruppathi, C. The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol. Pharmacol., 2012, 81(4), 510-526.
[http://dx.doi.org/10.1124/mol.111.074658] [PMID: 22210847]
[33]
Freichel, M.; Suh, S.H.; Pfeifer, A.; Schweig, U.; Trost, C.; Weissgerber, P.; Biel, M.; Philipp, S.; Freise, D.; Droogmans, G.; Hofmann, F.; Flockerzi, V.; Nilius, B. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat. Cell Biol., 2001, 3(2), 121-127.
[http://dx.doi.org/10.1038/35055019] [PMID: 11175743]
[34]
Sundivakkam, P.C.; Kwiatek, A.M.; Sharma, T.T.; Minshall, R.D.; Malik, A.B.; Tiruppathi, C. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am. J. Physiol. Cell Physiol., 2009, 296(3), C403-C413.
[http://dx.doi.org/10.1152/ajpcell.00470.2008] [PMID: 19052258]
[35]
Moccia, F.; Dragoni, S.; Lodola, F.; Bonetti, E.; Bottino, C.; Guerra, G.; Laforenza, U.; Rosti, V.; Tanzi, F. Store-dependent Ca(2+) entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization. Curr. Med. Chem., 2012, 19(34), 5802-5818.
[http://dx.doi.org/10.2174/092986712804143240] [PMID: 22963562]
[36]
Dragoni, S.; Laforenza, U.; Bonetti, E.; Lodola, F.; Bottino, C.; Guerra, G.; Borghesi, A.; Stronati, M.; Rosti, V.; Tanzi, F.; Moccia, F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev., 2013, 22(19), 2561-2580.
[http://dx.doi.org/10.1089/scd.2013.0032] [PMID: 23682725]
[37]
Moccia, F.; Lucariello, A.; Guerra, G. TRPC3-mediated Ca(2+) signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J. Cell. Physiol., 2018, 233(5), 3901-3917.
[http://dx.doi.org/10.1002/jcp.26152] [PMID: 28816358]
[38]
Hamdollah Zadeh, M.A.; Glass, C.A.; Magnussen, A.; Hancox, J.C.; Bates, D.O. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation, 2008, 15(7), 605-614.
[http://dx.doi.org/10.1080/10739680802220323] [PMID: 18800249]
[39]
Gees, M.; Colsoul, B.; Nilius, B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol., 2010, 2(10), a003962
[http://dx.doi.org/10.1101/cshperspect.a003962] [PMID: 20861159]
[40]
Earley, S.; Brayden, J.E. Transient receptor potential channels in the vasculature. Physiol. Rev., 2015, 95(2), 645-690.
[http://dx.doi.org/10.1152/physrev.00026.2014] [PMID: 25834234]
[41]
Thakore, P.; Earley, S. Transient receptor potential channels and endothelial cell calcium signaling. Compr. Physiol., 2019, 9(3), 1249-1277.
[http://dx.doi.org/10.1002/cphy.c180034] [PMID: 31187891]
[42]
Ottolini, M.; Hong, K.; Sonkusare, S.K. Calcium signals that determine vascular resistance. Wiley Interdiscip. Rev. Syst. Biol. Med., 2019, 11(5), e1448
[http://dx.doi.org/10.1002/wsbm.1448] [PMID: 30884210]
[43]
Zuccolo, E.; Dragoni, S.; Poletto, V.; Catarsi, P.; Guido, D.; Rappa, A.; Reforgiato, M.; Lodola, F.; Lim, D.; Rosti, V.; Guerra, G.; Moccia, F. Arachidonic acid-evoked Ca2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul. Pharmacol., 2016, 87, 159-171.
[http://dx.doi.org/10.1016/j.vph.2016.09.005] [PMID: 27634591]
[44]
Zheng, X.; Zinkevich, N.S.; Gebremedhin, D.; Gauthier, K.M.; Nishijima, Y.; Fang, J.; Wilcox, D.A.; Campbell, W.B.; Gutterman, D.D.; Zhang, D.X. Arachidonic acid-induced dilation in human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4-mediated Ca2+ entry. J. Am. Heart Assoc., 2013, 2(3), e000080
[http://dx.doi.org/10.1161/JAHA.113.000080] [PMID: 23619744]
[45]
Thodeti, C.K.; Matthews, B.; Ravi, A.; Mammoto, A.; Ghosh, K.; Bracha, A.L.; Ingber, D.E. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ. Res., 2009, 104(9), 1123-1130.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192930] [PMID: 19359599]
[46]
Troidl, C.; Nef, H.; Voss, S.; Schilp, A.; Kostin, S.; Troidl, K.; Szardien, S.; Rolf, A.; Schmitz-Rixen, T.; Schaper, W.; Hamm, C.W.; Elsässer, A.; Möllmann, H. Calcium-dependent signalling is essential during collateral growth in the pig hind limb-ischemia model. J. Mol. Cell. Cardiol., 2010, 49(1), 142-151.
[http://dx.doi.org/10.1016/j.yjmcc.2010.03.021] [PMID: 20363225]
[47]
Watanabe, H.; Vriens, J.; Suh, S.H.; Benham, C.D.; Droogmans, G.; Nilius, B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem., 2002, 277(49), 47044-47051.
[http://dx.doi.org/10.1074/jbc.M208277200] [PMID: 12354759]
[48]
Earley, S. Endothelium-dependent cerebral artery dilation mediated by transient receptor potential and Ca2+-activated K+ channels. J. Cardiovasc. Pharmacol., 2011, 57(2), 148-153.
[http://dx.doi.org/10.1097/FJC.0b013e3181f580d9] [PMID: 20729757]
[49]
Berra-Romani, R.; Avelino-Cruz, J.E.; Raqeeb, A.; Della Corte, A.; Cinelli, M.; Montagnani, S.; Guerra, G.; Moccia, F.; Tanzi, F. Ca2+-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients. BMC Surg., 2013, 13(Suppl. 2), S40.
[http://dx.doi.org/10.1186/1471-2482-13-S2-S40] [PMID: 24266895]
[50]
Kimura, C.; Oike, M.; Ohnaka, K.; Nose, Y.; Ito, Y. Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. J. Physiol., 2004, 554(Pt 3), 721-730.
[http://dx.doi.org/10.1113/jphysiol.2003.057059] [PMID: 14617679]
[51]
Dedkova, E.N.; Blatter, L.A. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J. Physiol., 2002, 539(Pt 1), 77-91.
[http://dx.doi.org/10.1113/jphysiol.2001.013258] [PMID: 11850503]
[52]
Zuccolo, E.; Laforenza, U.; Negri, S.; Botta, L.; Berra-Romani, R.; Faris, P.; Scarpellino, G.; Forcaia, G.; Pellavio, G.; Sancini, G.; Moccia, F. Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. J. Cell. Physiol., 2019, 234(4), 4540-4562.
[http://dx.doi.org/10.1002/jcp.27234] [PMID: 30191989]
[53]
Lantoine, F.; Iouzalen, L.; Devynck, M.A.; Millanvoye-Van Brussel, E.; David-Dufilho, M. Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx. Biochem. J., 1998, 330(Pt 2), 695-699.
[http://dx.doi.org/10.1042/bj3300695] [PMID: 9480877]
[54]
Zuccolo, E.; Kheder, D.A.; Lim, D.; Perna, A.; Nezza, F.D.; Botta, L.; Scarpellino, G.; Negri, S.; Martinotti, S.; Soda, T.; Forcaia, G.; Riboni, L.; Ranzato, E.; Sancini, G.; Ambrosone, L.; D’Angelo, E.; Guerra, G.; Moccia, F. Glutamate triggers intracellular Ca2+ oscillations and nitric oxide release by inducing NAADP- and InsP3 -dependent Ca2+ release in mouse brain endothelial cells. J. Cell. Physiol., 2019, 234(4), 3538-3554.
[http://dx.doi.org/10.1002/jcp.26953] [PMID: 30451297]
[55]
Fernandez-Rodriguez, S.; Edwards, D.H.; Newton, B.; Griffith, T.M. Attenuated store-operated Ca2+ entry underpins the dual inhibition of nitric oxide and EDHF-type relaxations by iodinated contrast media. Cardiovasc. Res., 2009, 84(3), 470-478.
[http://dx.doi.org/10.1093/cvr/cvp239] [PMID: 19592569]
[56]
Yeon, S.I.; Kim, J.Y.; Yeon, D.S.; Abramowitz, J.; Birnbaumer, L.; Muallem, S.; Lee, Y.H. Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries. PLoS One, 2014, 9(10), e110413
[http://dx.doi.org/10.1371/journal.pone.0110413] [PMID: 25310225]
[57]
Zhang, D.X.; Mendoza, S.A.; Bubolz, A.H.; Mizuno, A.; Ge, Z.D.; Li, R.; Warltier, D.C.; Suzuki, M.; Gutterman, D.D. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension, 2009, 53(3), 532-538.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.127100] [PMID: 19188524]
[58]
Zhao, Y.; Vanhoutte, P.M.; Leung, S.W. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci., 2015, 129(2), 83-94.
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[59]
de Wit, C.; Wölfle, S.E. EDHF and gap junctions: important regulators of vascular tone within the microcirculation. Curr. Pharm. Biotechnol., 2007, 8(1), 11-25.
[http://dx.doi.org/10.2174/138920107779941462] [PMID: 17311549]
[60]
Shu, X.; Keller, T.C., IV; Begandt, D.; Butcher, J.T.; Biwer, L.; Keller, A.S.; Columbus, L.; Isakson, B.E. Endothelial nitric oxide synthase in the microcirculation. Cell. Mol. Life Sci., 2015, 72(23), 4561-4575.
[http://dx.doi.org/10.1007/s00018-015-2021-0] [PMID: 26390975]
[61]
Segal, S.S. Integration and modulation of intercellular signaling underlying blood flow control. J. Vasc. Res., 2015, 52(2), 136-157.
[http://dx.doi.org/10.1159/000439112] [PMID: 26368324]
[62]
Ledoux, J.; Taylor, M.S.; Bonev, A.D.; Hannah, R.M.; Solodushko, V.; Shui, B.; Tallini, Y.; Kotlikoff, M.I.; Nelson, M.T. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc. Natl. Acad. Sci. USA, 2008, 105(28), 9627-9632.
[http://dx.doi.org/10.1073/pnas.0801963105] [PMID: 18621682]
[63]
Dora, K.A.; Gallagher, N.T.; McNeish, A.; Garland, C.J. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ. Res., 2008, 102(10), 1247-1255.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.172379] [PMID: 18403729]
[64]
Sonkusare, S.K.; Bonev, A.D.; Ledoux, J.; Liedtke, W.; Kotlikoff, M.I.; Heppner, T.J.; Hill-Eubanks, D.C.; Nelson, M.T. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science, 2012, 336(6081), 597-601.
[http://dx.doi.org/10.1126/science.1216283] [PMID: 22556255]
[65]
Bagher, P.; Beleznai, T.; Kansui, Y.; Mitchell, R.; Garland, C.J.; Dora, K.A. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 18174-18179.
[http://dx.doi.org/10.1073/pnas.1211946109] [PMID: 23071308]
[66]
Earley, S.; Gonzales, A.L.; Crnich, R. Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ. Res., 2009, 104(8), 987-994.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.189530] [PMID: 19299646]
[67]
Sullivan, M.N.; Francis, M.; Pitts, N.L.; Taylor, M.S.; Earley, S. Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol. Pharmacol., 2012, 82(3), 464-472.
[http://dx.doi.org/10.1124/mol.112.078584] [PMID: 22689561]
[68]
Sullivan, M.N.; Gonzales, A.L.; Pires, P.W.; Bruhl, A.; Leo, M.D.; Li, W.; Oulidi, A.; Boop, F.A.; Feng, Y.; Jaggar, J.H.; Welsh, D.G.; Earley, S. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci. Signal., 2015, 8(358), ra2.
[http://dx.doi.org/10.1126/scisignal.2005659] [PMID: 25564678]
[69]
Stankevicius, E.; Dalsgaard, T.; Kroigaard, C.; Beck, L.; Boedtkjer, E.; Misfeldt, M.W.; Nielsen, G.; Schjorring, O.; Hughes, A.; Simonsen, U. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. J. Pharmacol. Exp. Ther., 2011, 339(3), 842-850.
[http://dx.doi.org/10.1124/jpet.111.179242] [PMID: 21880870]
[70]
Stankevicius, E.; Lopez-Valverde, V.; Rivera, L.; Hughes, A.D.; Mulvany, M.J.; Simonsen, U. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br. J. Pharmacol., 2006, 149(5), 560-572.
[http://dx.doi.org/10.1038/sj.bjp.0706886] [PMID: 16967048]
[71]
Sheng, J.Z.; Ella, S.; Davis, M.J.; Hill, M.A.; Braun, A.P. Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arteriolar vasodilation. FASEB J., 2009, 23(4), 1138-1145.
[http://dx.doi.org/10.1096/fj.08-120451] [PMID: 19074509]
[72]
Nilius, B.; Droogmans, G. Ion channels and their functional role in vascular endothelium. Physiol. Rev., 2001, 81(4), 1415-1459.
[http://dx.doi.org/10.1152/physrev.2001.81.4.1415] [PMID: 11581493]
[73]
Breier, G.; Chavakis, T.; Hirsch, E. Angiogenesis in metabolic-vascular disease. Thromb. Haemost., 2017, 117(7), 1289-1295.
[http://dx.doi.org/10.1160/TH17-05-0325] [PMID: 28594427]
[74]
Haslam, D.W.; James, W.P. Obesity. Lancet, 2005, 366(9492), 1197-1209.
[http://dx.doi.org/10.1016/S0140-6736(05)67483-1] [PMID: 16198769]
[75]
Prieto, D.; Contreras, C.; Sánchez, A. Endothelial dysfunction, obesity and insulin resistance. Curr. Vasc. Pharmacol., 2014, 12(3), 412-426.
[http://dx.doi.org/10.2174/1570161112666140423221008] [PMID: 24846231]
[76]
Feener, E.P.; King, G.L. Vascular dysfunction in diabetes mellitus. Lancet, 1997, 350(Suppl. 1), SI9-SI13.
[http://dx.doi.org/10.1016/S0140-6736(97)90022-2] [PMID: 9250277]
[77]
Engin, A. Endothelial dysfunction in obesity. Adv. Exp. Med. Biol., 2017, 960, 345-379.
[http://dx.doi.org/10.1007/978-3-319-48382-5_15] [PMID: 28585207]
[78]
Weil, B.R.; Westby, C.M.; Van Guilder, G.P.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Enhanced endothelin-1 system activity with overweight and obesity. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(3), H689-H695.
[http://dx.doi.org/10.1152/ajpheart.00206.2011] [PMID: 21666117]
[79]
Westby, C.M.; Weil, B.R.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men. Clin. Sci. (Lond.), 2011, 120(11), 485-491.
[http://dx.doi.org/10.1042/CS20100475] [PMID: 21143196]
[80]
Stapleton, P.A.; James, M.E.; Goodwill, A.G.; Frisbee, J.C. Obesity and vascular dysfunction. Pathophysiology, 2008, 15(2), 79-89.
[http://dx.doi.org/10.1016/j.pathophys.2008.04.007] [PMID: 18571908]
[81]
Steinberg, H.O.; Chaker, H.; Leaming, R.; Johnson, A.; Brechtel, G.; Baron, A.D. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest., 1996, 97(11), 2601-2610.
[http://dx.doi.org/10.1172/JCI118709] [PMID: 8647954]
[82]
Sciacqua, A.; Candigliota, M.; Ceravolo, R.; Scozzafava, A.; Sinopoli, F.; Corsonello, A.; Sesti, G.; Perticone, F. Weight loss in combination with physical activity improves endothelial dysfunction in human obesity. Diabetes Care, 2003, 26(6), 1673-1678.
[http://dx.doi.org/10.2337/diacare.26.6.1673] [PMID: 12766092]
[83]
Van Guilder, G.P.; Hoetzer, G.L.; Dengel, D.R.; Stauffer, B.L.; DeSouza, C.A. Impaired endothelium-dependent vasodilation in normotensive and normoglycemic obese adult humans. J. Cardiovasc. Pharmacol., 2006, 47(2), 310-313.
[http://dx.doi.org/10.1097/01.fjc.0000205097.29946.d3] [PMID: 16495771]
[84]
Van Guilder, G.P.; Stauffer, B.L.; Greiner, J.J.; Desouza, C.A. Impaired endothelium-dependent vasodilation in overweight and obese adult humans is not limited to muscarinic receptor agonists. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(4), H1685-H1692.
[http://dx.doi.org/10.1152/ajpheart.01281.2007] [PMID: 18281379]
[85]
De Filippis, E.; Cusi, K.; Ocampo, G.; Berria, R.; Buck, S.; Consoli, A.; Mandarino, L.J. Exercise-induced improvement in vasodilatory function accompanies increased insulin sensitivity in obesity and type 2 diabetes mellitus. J. Clin. Endocrinol. Metab., 2006, 91(12), 4903-4910.
[http://dx.doi.org/10.1210/jc.2006-1142] [PMID: 17018657]
[86]
Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.; Qiao, M.; Leung, S.S.; Lam, C.W.; Metreweli, C.; Celermajer, D.S. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation, 2004, 109(16), 1981-1986.
[http://dx.doi.org/10.1161/01.CIR.0000126599.47470.BE] [PMID: 15066949]
[87]
Kurtz, T.W.; Morris, R.C.; Pershadsingh, H.A. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension, 1989, 13(6 Pt 2), 896-901.
[http://dx.doi.org/10.1161/01.HYP.13.6.896] [PMID: 2786848]
[88]
Schach, C.; Resch, M.; Schmid, P.M.; Riegger, G.A.; Endemann, D.H. Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(8), H1093-H1102.
[http://dx.doi.org/10.1152/ajpheart.00240.2013] [PMID: 25128173]
[89]
Yin, D.D.; Wang, Q.C.; Zhou, X.; Li, Y. Endothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels. PLoS One, 2017, 12(8), e0183124
[http://dx.doi.org/10.1371/journal.pone.0183124] [PMID: 28817716]
[90]
Climent, B.; Moreno, L.; Martínez, P.; Contreras, C.; Sánchez, A.; Pérez-Vizcaíno, F.; García-Sacristán, A.; Rivera, L.; Prieto, D. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats. PLoS One, 2014, 9(10), e109432
[http://dx.doi.org/10.1371/journal.pone.0109432] [PMID: 25302606]
[91]
Santiago, E.; Climent, B.; Muñoz, M.; García-Sacristán, A.; Rivera, L.; Prieto, D. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries. Br. J. Pharmacol., 2015, 172(22), 5318-5332.
[http://dx.doi.org/10.1111/bph.13322] [PMID: 26478127]
[92]
Haddock, R.E.; Grayson, T.H.; Morris, M.J.; Howitt, L.; Chadha, P.S.; Sandow, S.L. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One, 2011, 6(1), e16423
[http://dx.doi.org/10.1371/journal.pone.0016423] [PMID: 21283658]
[93]
Katakam, P.V.; Wappler, E.A.; Katz, P.S.; Rutkai, I.; Institoris, A.; Domoki, F.; Gáspár, T.; Grovenburg, S.M.; Snipes, J.A.; Busija, D.W. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol., 2013, 33(4), 752-759.
[http://dx.doi.org/10.1161/ATVBAHA.112.300560] [PMID: 23329133]
[94]
Frisbee, J.C.; Maier, K.G.; Stepp, D.W. Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(6), H2160-H2168.
[http://dx.doi.org/10.1152/ajpheart.00379.2002] [PMID: 12388303]
[95]
Erdei, N.; Tóth, A.; Pásztor, E.T.; Papp, Z.; Edes, I.; Koller, A.; Bagi, Z. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(5), H2107-H2115.
[http://dx.doi.org/10.1152/ajpheart.00389.2006] [PMID: 16798827]
[96]
Ellis, A.; Cheng, Z.J.; Li, Y.; Jiang, Y.F.; Yang, J.; Pannirselvam, M.; Ding, H.; Hollenberg, M.D.; Triggle, C.R. Effects of a Western diet versus high glucose on endothelium-dependent relaxation in murine micro- and macro-vasculature. Eur. J. Pharmacol., 2008, 601(1-3), 111-117.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.042] [PMID: 18996368]
[97]
Chadha, P.S.; Haddock, R.E.; Howitt, L.; Morris, M.J.; Murphy, T.V.; Grayson, T.H.; Sandow, S.L. Obesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function. J. Pharmacol. Exp. Ther., 2010, 335(2), 284-293.
[http://dx.doi.org/10.1124/jpet.110.167593] [PMID: 20671071]
[98]
Howitt, L.; Morris, M.J.; Sandow, S.L.; Murphy, T.V. Effect of diet-induced obesity on BK(Ca) function in contraction and dilation of rat isolated middle cerebral artery. Vascul. Pharmacol., 2014, 61(1), 10-15.
[http://dx.doi.org/10.1016/j.vph.2014.02.002] [PMID: 24576493]
[99]
McSherry, I.N.; Sandow, S.L.; Campbell, W.B.; Falck, J.R.; Hill, M.A.; Dora, K.A. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation, 2006, 13(2), 119-130.
[http://dx.doi.org/10.1080/10739680500466400] [PMID: 16459325]
[100]
Earley, S.; Heppner, T.J.; Nelson, M.T.; Brayden, J.E. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ. Res., 2005, 97(12), 1270-1279.
[http://dx.doi.org/10.1161/01.RES.0000194321.60300.d6] [PMID: 16269659]
[101]
Jebelovszki, E.; Kiraly, C.; Erdei, N.; Feher, A.; Pasztor, E.T.; Rutkai, I.; Forster, T.; Edes, I.; Koller, A.; Bagi, Z. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(6), H2558-H2564.
[http://dx.doi.org/10.1152/ajpheart.01198.2007] [PMID: 18408126]
[102]
Feher, A.; Rutkai, I.; Beleznai, T.; Ungvari, Z.; Csiszar, A.; Edes, I.; Bagi, Z. Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity. Cardiovasc. Res., 2010, 87(4), 732-739.
[http://dx.doi.org/10.1093/cvr/cvq088] [PMID: 20299334]
[103]
Alioua, A.; Lu, R.; Kumar, Y.; Eghbali, M.; Kundu, P.; Toro, L.; Stefani, E. Slo1 caveolin-binding motif, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. J. Biol. Chem., 2008, 283(8), 4808-4817.
[http://dx.doi.org/10.1074/jbc.M709802200] [PMID: 18079116]
[104]
Wang, X.L.; Ye, D.; Peterson, T.E.; Cao, S.; Shah, V.H.; Katusic, Z.S.; Sieck, G.C.; Lee, H.C. Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. J. Biol. Chem., 2005, 280(12), 11656-11664.
[http://dx.doi.org/10.1074/jbc.M410987200] [PMID: 15665381]
[105]
Laakso, M.; Edelman, S.V.; Brechtel, G.; Baron, A.D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J. Clin. Invest., 1990, 85(6), 1844-1852.
[http://dx.doi.org/10.1172/JCI114644] [PMID: 2189893]
[106]
de Jongh, R.T.; Serné, E.H.; IJzerman, R.G.; de Vries, G.; Stehouwer, C.D. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation, 2004, 109(21), 2529-2535.
[http://dx.doi.org/10.1161/01.CIR.0000129772.26647.6F] [PMID: 15136505]
[107]
Estrada, I.A.; Donthamsetty, R.; Debski, P.; Zhou, M.H.; Zhang, S.L.; Yuan, J.X.; Han, W.; Makino, A. STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ. Res., 2012, 111(9), 1166-1175.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.275743] [PMID: 22896585]
[108]
Sheng, J.Z.; Wang, D.; Braun, A.P. DAF-FM (4-amino-5-methylamino-2′,7′-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. J. Pharmacol. Exp. Ther., 2005, 315(2), 931-940.
[http://dx.doi.org/10.1124/jpet.105.087932] [PMID: 16093274]
[109]
Grayson, T.H.; Chadha, P.S.; Bertrand, P.P.; Chen, H.; Morris, M.J.; Senadheera, S.; Murphy, T.V.; Sandow, S.L. Increased caveolae density and caveolin-1 expression accompany impaired NO-mediated vasorelaxation in diet-induced obesity. Histochem. Cell Biol., 2013, 139(2), 309-321.
[http://dx.doi.org/10.1007/s00418-012-1032-2] [PMID: 23007290]
[110]
Isshiki, M.; Anderson, R.G. Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic, 2003, 4(11), 717-723.
[http://dx.doi.org/10.1034/j.1600-0854.2003.00130.x] [PMID: 14617355]
[111]
Xu, Y.; Buikema, H.; van Gilst, W.H.; Henning, R.H. Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease. Eur. J. Pharmacol., 2008, 585(2-3), 256-260.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.086] [PMID: 18423600]
[112]
Isshiki, M.; Anderson, R.G. Calcium signal transduction from caveolae. Cell Calcium, 1999, 26(5), 201-208.
[http://dx.doi.org/10.1054/ceca.1999.0073] [PMID: 10643558]
[113]
Isshiki, M.; Ando, J.; Yamamoto, K.; Fujita, T.; Ying, Y.; Anderson, R.G. Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J. Cell Sci., 2002, 115(Pt 3), 475-484.
[PMID: 11861755]
[114]
Isshiki, M.; Ying, Y.S.; Fujita, T.; Anderson, R.G. A molecular sensor detects signal transduction from caveolae in living cells. J. Biol. Chem., 2002, 277(45), 43389-43398.
[http://dx.doi.org/10.1074/jbc.M205411200] [PMID: 12177060]
[115]
Brazer, S.C.; Singh, B.B.; Liu, X.; Swaim, W.; Ambudkar, I.S. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J. Biol. Chem., 2003, 278(29), 27208-27215.
[http://dx.doi.org/10.1074/jbc.M301118200] [PMID: 12732636]
[116]
Murata, T.; Lin, M.I.; Huang, Y.; Yu, J.; Bauer, P.M.; Giordano, F.J.; Sessa, W.C. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J. Exp. Med., 2007, 204(10), 2373-2382.
[http://dx.doi.org/10.1084/jem.20062340] [PMID: 17893196]
[117]
Murata, T.; Lin, M.I.; Stan, R.V.; Bauer, P.M.; Yu, J.; Sessa, W.C. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J. Biol. Chem., 2007, 282(22), 16631-16643.
[http://dx.doi.org/10.1074/jbc.M607948200] [PMID: 17416589]
[118]
Bohórquez-Hernández, A.; Gratton, E.; Pacheco, J.; Asanov, A.; Vaca, L. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(12), 1481-1490.
[http://dx.doi.org/10.1016/j.bbalip.2017.09.005] [PMID: 28919480]
[119]
Darblade, B.; Caillaud, D.; Poirot, M.; Fouque, M.; Thiers, J.C.; Rami, J.; Bayard, F.; Arnal, J.F. Alteration of plasmalemmal caveolae mimics endothelial dysfunction observed in atheromatous rabbit aorta. Cardiovasc. Res., 2001, 50(3), 566-576.
[http://dx.doi.org/10.1016/S0008-6363(01)00251-6] [PMID: 11376632]
[120]
Bréchard, S.; Tschirhart, E.J. Regulation of superoxide production in neutrophils: role of calcium influx. J. Leukoc. Biol., 2008, 84(5), 1223-1237.
[http://dx.doi.org/10.1189/jlb.0807553] [PMID: 18519744]
[121]
Wang, Y.W.; Zhang, J.H.; Yu, Y.; Yu, J.; Huang, L. Inhibition of store-operated calcium entry protects endothelial progenitor cells from H2O2-Induced apoptosis. Biomol. Ther. (Seoul), 2016, 24(4), 371-379.
[http://dx.doi.org/10.4062/biomolther.2015.130] [PMID: 27169819]
[122]
Berra Romani, R.; Mani-Zaca, B.; Vargaz-Guadarrama, V.A.; Moccia, F.; Tanzi, F.; Trujillo-Hernandez, A. Obesity impairs vascular reactivity and Ca2+ homeostasis in in situ endothelial cells from rat aorta. Acta Physiol. (Oxf.), 2017, 221, 128.
[123]
Biwer, L.A.; Taddeo, E.P.; Kenwood, B.M.; Hoehn, K.L.; Straub, A.C.; Isakson, B.E. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. Biochim. Biophys. Acta, 2016, 1861(7), 671-679.
[http://dx.doi.org/10.1016/j.bbalip.2016.04.014] [PMID: 27106139]
[124]
Janoschek, R.; Bae-Gartz, I.; Vohlen, C.; Alcázar, M.A.; Dinger, K.; Appel, S.; Dötsch, J.; Hucklenbruch-Rother, E. Dietary intervention in obese dams protects male offspring from WAT induction of TRPV4, adiposity, and hyperinsulinemia. Obesity (Silver Spring), 2016, 24(6), 1266-1273.
[http://dx.doi.org/10.1002/oby.21486] [PMID: 27106804]
[125]
Sun, W.; Li, C.; Zhang, Y.; Jiang, C.; Zhai, M.; Zhou, Q.; Xiao, L.; Deng, Q. Gene expression changes of thermo-sensitive transient receptor potential channels in obese mice. Cell Biol. Int., 2017, 41(8), 908-913.
[http://dx.doi.org/10.1002/cbin.10783] [PMID: 28464448]
[126]
Ma, X.; Du, J.; Zhang, P.; Deng, J.; Liu, J.; Lam, F.F.; Li, R.A.; Huang, Y.; Jin, J.; Yao, X. Functional role of TRPV4-KCa2.3 signaling in vascular endothelial cells in normal and streptozotocin-induced diabetic rats. Hypertension, 2013, 62(1), 134-139.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01500] [PMID: 23648706]
[127]
Monaghan, K.; McNaughten, J.; McGahon, M.K.; Kelly, C.; Kyle, D.; Yong, P.H.; McGeown, J.G.; Curtis, T.M. Hyperglycemia and diabetes downregulate the functional expression of TRPV4 channels in retinal microvascular endothelium. PLoS One, 2015, 10(6), e0128359
[http://dx.doi.org/10.1371/journal.pone.0128359] [PMID: 26047504]
[128]
Mathew John, C.; Khaddaj Mallat, R.; George, G.; Kim, T.; Mishra, R.C.; Braun, A.P. Pharmacologic targeting of endothelial Ca2+-activated K+ channels: A strategy to improve cardiovascular function. Channels (Austin), 2018, 12(1), 126-136.
[http://dx.doi.org/10.1080/19336950.2018.1454814] [PMID: 29577810]
[129]
Khaddaj-Mallat, R.; Mathew John, C.; Braun, A.P. SKA-31, an activator of endothelial Ca2+-activated K+ channels evokes robust vasodilation in rat mesenteric arteries. Eur. J. Pharmacol., 2018, 831, 60-67.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.006] [PMID: 29753043]
[130]
Goto, K.; Ohtsubo, T.; Kitazono, T. Endothelium-dependent hyperpolarization (EDH) in hypertension: the role of endothelial ion channels. Int. J. Mol. Sci., 2018, 19(1), E315
[http://dx.doi.org/10.3390/ijms19010315] [PMID: 29361737]
[131]
Albarwani, S.; Al-Siyabi, S.; Al-Husseini, I.; Al-Ismail, A.; Al-Lawati, I.; Al-Bahrani, I.; Tanira, M.O. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats. Physiol. Res., 2015, 64(1), 39-49.
[PMID: 25194131]
[132]
Moccia, F.; Ruffinatti, F.A.; Zuccolo, E. Intracellular Ca2+ signals to reconstruct a broken heart: still a theoretical approach? Curr. Drug Targets, 2015, 16(8), 793-815.
[http://dx.doi.org/10.2174/1389450116666141219121723] [PMID: 25523899]
[133]
Moccia, F.; Dragoni, S.; Cinelli, M.; Montagnani, S.; Amato, B.; Rosti, V.; Guerra, G.; Tanzi, F. How to utilize Ca2+ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg., 2013, 13(Suppl. 2), S46.
[http://dx.doi.org/10.1186/1471-2482-13-S2-S46] [PMID: 24267290]
[134]
Moccia, F.; Poletto, V. May the remodeling of the Ca2+ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim. Biophys. Acta, 2015, 1853(9), 1958-1973.
[http://dx.doi.org/10.1016/j.bbamcr.2014.10.024] [PMID: 25447551]
[135]
Moccia, F. Remodelling of the Ca2+ toolkit in tumor endothelium as a crucial responsible for the resistance to anticancer therapies. Curr. Signal Transd, 2017, 12(1), 3-18.
[http://dx.doi.org/10.2174/1574362412666170207113636]
[136]
Prakriya, M.; Lewis, R.S. Store-operated calcium channels. Physiol. Rev., 2015, 95(4), 1383-1436.
[http://dx.doi.org/10.1152/physrev.00020.2014] [PMID: 26400989]
[137]
Moccia, F.; Zuccolo, E.; Poletto, V.; Turin, I.; Guerra, G.; Pedrazzoli, P.; Rosti, V.; Porta, C.; Montagna, D. Targeting stim and orai proteins as an alternative approach in anticancer therapy. Curr. Med. Chem., 2016, 23(30), 3450-3480.
[http://dx.doi.org/10.2174/0929867323666160607111220] [PMID: 27281129]
[138]
Moccia, F.; Dragoni, S.; Poletto, V.; Rosti, V.; Tanzi, F.; Ganini, C.; Porta, C. Orai1 and transient receptor potential channels as novel molecular targets to impair tumor neovascularization in renal cell carcinoma and other malignancies. Anticancer. Agents Med. Chem., 2014, 14(2), 296-312.
[http://dx.doi.org/10.2174/18715206113139990315] [PMID: 23869775]
[139]
Dragoni, S.; Reforgiato, M.; Zuccolo, E.; Poletto, V.; Lodola, F.; Ruffinatti, F.A.; Bonetti, E.; Guerra, G.; Barosi, G.; Rosti, V.; Moccia, F. Dysregulation of VEGF-induced proangiogenic Ca2+ oscillations in primary myelofibrosis-derived endothelial colony-forming cells. Exp. Hematol., 2015, 43(12), 1019-1030.e3.
[http://dx.doi.org/10.1016/j.exphem.2015.09.002] [PMID: 26432919]
[140]
Beech, D.J.; Xu, S.Z.; McHugh, D.; Flemming, R. TRPC1 store-operated cationic channel subunit. Cell Calcium, 2003, 33(5-6), 433-440.
[http://dx.doi.org/10.1016/S0143-4160(03)00054-X] [PMID: 12765688]
[141]
Rubaiy, H.N.; Ludlow, M.J.; Bon, R.S.; Beech, D.J. Pico145 - powerful new tool for TRPC1/4/5 channels. Channels (Austin), 2017, 11(5), 362-364.
[http://dx.doi.org/10.1080/19336950.2017.1317485] [PMID: 28399685]
[142]
Moccia, F.; Zuccolo, E.; Soda, T.; Tanzi, F.; Guerra, G.; Mapelli, L.; Lodola, F.; D’Angelo, E. Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front. Cell. Neurosci., 2015, 9, 153.
[http://dx.doi.org/10.3389/fncel.2015.00153] [PMID: 25964739]
[143]
Rahman, S.; Rahman, T. Unveiling some FDA-approved drugs as inhibitors of the store-operated Ca2+ entry pathway. Sci. Rep., 2017, 7(1), 12881.
[http://dx.doi.org/10.1038/s41598-017-13343-x] [PMID: 29038464]
[144]
Ching, L.C.; Kou, Y.R.; Shyue, S.K.; Su, K.H.; Wei, J.; Cheng, L.C.; Yu, Y.B.; Pan, C.C.; Lee, T.S. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc. Res., 2011, 91(3), 492-501.
[http://dx.doi.org/10.1093/cvr/cvr104] [PMID: 21493704]
[145]
Bratz, I.N.; Dick, G.M.; Tune, J.D.; Edwards, J.M.; Neeb, Z.P.; Dincer, U.D.; Sturek, M. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(6), H2489-H2496.
[http://dx.doi.org/10.1152/ajpheart.01191.2007] [PMID: 18390821]
[146]
Guarini, G.; Ohanyan, V.A.; Kmetz, J.G.; DelloStritto, D.J.; Thoppil, R.J.; Thodeti, C.K.; Meszaros, J.G.; Damron, D.S.; Bratz, I.N. Disruption of TRPV1-mediated coupling of coronary blood flow to cardiac metabolism in diabetic mice: role of nitric oxide and BK channels. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(2), H216-H223.
[http://dx.doi.org/10.1152/ajpheart.00011.2012] [PMID: 22610171]
[147]
Sun, J.; Pu, Y.; Wang, P.; Chen, S.; Zhao, Y.; Liu, C.; Shang, Q.; Zhu, Z.; Liu, D. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc. Diabetol., 2013, 12, 69.
[http://dx.doi.org/10.1186/1475-2840-12-69] [PMID: 23607427]
[148]
Blanc, J.; Alves-Guerra, M.C.; Esposito, B.; Rousset, S.; Gourdy, P.; Ricquier, D.; Tedgui, A.; Miroux, B.; Mallat, Z. Protective role of uncoupling protein 2 in atherosclerosis. Circulation, 2003, 107(3), 388-390.
[http://dx.doi.org/10.1161/01.CIR.0000051722.66074.60] [PMID: 12551860]
[149]
McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart, 2015, 2(1), e000262
[http://dx.doi.org/10.1136/openhrt-2015-000262] [PMID: 26113985]
[150]
Xiong, S.; Wang, P.; Ma, L.; Gao, P.; Gong, L.; Li, L.; Li, Q.; Sun, F.; Zhou, X.; He, H.; Chen, J.; Yan, Z.; Liu, D.; Zhu, Z. Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1-mediated protein kinase a/uncoupling protein 2 pathway. Hypertension, 2016, 67(2), 451-460.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06223] [PMID: 26667415]
[151]
He, D.; Pan, Q.; Chen, Z.; Sun, C.; Zhang, P.; Mao, A.; Zhu, Y.; Li, H.; Lu, C.; Xie, M.; Zhou, Y.; Shen, D.; Tang, C.; Yang, Z.; Jin, J.; Yao, X.; Nilius, B.; Ma, X. Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol. Med., 2017, 9(11), 1491-1503.
[http://dx.doi.org/10.15252/emmm.201707725] [PMID: 28899928]
[152]
Mendoza, S.A.; Fang, J.; Gutterman, D.D.; Wilcox, D.A.; Bubolz, A.H.; Li, R.; Suzuki, M.; Zhang, D.X. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(2), H466-H476.
[http://dx.doi.org/10.1152/ajpheart.00854.2009] [PMID: 19966050]
[153]
Ma, X.; He, D.; Ru, X.; Chen, Y.; Cai, Y.; Bruce, I.C.; Xia, Q.; Yao, X.; Jin, J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br. J. Pharmacol., 2012, 166(1), 349-358.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01767.x] [PMID: 22049911]
[154]
Peixoto-Neves, D.; Wang, Q.; Leal-Cardoso, J.H.; Rossoni, L.V.; Jaggar, J.H. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels. Br. J. Pharmacol., 2015, 172(14), 3484-3494.
[http://dx.doi.org/10.1111/bph.13156] [PMID: 25832173]
[155]
White, J.P.; Cibelli, M.; Urban, L.; Nilius, B.; McGeown, J.G.; Nagy, I. TRPV4: molecular conductor of a diverse orchestra. Physiol. Rev., 2016, 96(3), 911-973.
[http://dx.doi.org/10.1152/physrev.00016.2015] [PMID: 27252279]
[156]
Pires, P.W.; Sullivan, M.N.; Pritchard, H.A.; Robinson, J.J.; Earley, S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(12), H2031-H2041.
[http://dx.doi.org/10.1152/ajpheart.00140.2015] [PMID: 26453324]
[157]
Senadheera, S.; Kim, Y.; Grayson, T.H.; Toemoe, S.; Kochukov, M.Y.; Abramowitz, J.; Housley, G.D.; Bertrand, R.L.; Chadha, P.S.; Bertrand, P.P.; Murphy, T.V.; Tare, M.; Birnbaumer, L.; Marrelli, S.P.; Sandow, S.L. Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc. Res., 2012, 95(4), 439-447.
[http://dx.doi.org/10.1093/cvr/cvs208] [PMID: 22721989]
[158]
Lillo, M.A.; Gaete, P.S.; Puebla, M.; Ardiles, N.M.; Poblete, I.; Becerra, A.; Simon, F.; Figueroa, X.F. Critical contribution of Na(+)-Ca(2+) exchanger to the Ca(2+)-mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J., 2018, 32(4), 2137-2147.
[http://dx.doi.org/10.1096/fj.201700365RR] [PMID: 29217667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy