Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Obesity and Cardioprotection

Author(s): Saveria Femminò, Pasquale Pagliaro and Claudia Penna*

Volume 27, Issue 2, 2020

Page: [230 - 239] Pages: 10

DOI: 10.2174/0929867326666190325094453

Price: $65

Abstract

The incidence of obesity and diabetes is increasing rapidly worldwide. Obesity and metabolic syndrome are strictly linked and represent the basis of different cardiovascular risk factors, including hypertension and inflammatory processes predisposing to ischemic heart disease, which represent the most common causes of heart failure. Recent advances in the understanding of ischemia/reperfusion mechanisms of injury and mechanisms of cardioprotection are briefly considered. Resistance to cardioprotection may be correlated with the severity of obesity. The observation that heart failure obese patients have a better clinical condition than lean heart failure patients is known as “obesity paradox”. It seems that obese patients with heart failure are younger, making age the most important confounder in some studies. Critical issues are represented by the "obesity paradox” and heart failure exacerbation by inflammation. For heart failure exacerbation by inflammation, an important role is played by NLRP3 inflammasome, which is emerging as a possible target for heart failure condition. These critical issues in the field of obesity and cardiovascular diseases need more studies to ascertain which metabolic alterations are crucial for alleged beneficial and deleterious effects of obesity.

Keywords: Heart failure, inflammation, ischemia/reperfusion, metabolic syndrome, NLRP3 inflammasome, obesity paradox.

[1]
Drewnowski, A.; Darmon, N. The economics of obesity: dietary energy density and energy cost. Am. J. Clin. Nutr., 2005, 82(Suppl. 1), 265S-273S.
[http://dx.doi.org/10.1093/ajcn/82.1.265S] [PMID: 16002835]
[2]
Martínez, J.A. Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J. Physiol. Biochem., 2006, 62(4), 303-306.
[http://dx.doi.org/10.1007/BF03165759] [PMID: 17615956]
[3]
Yudkin, J.S. Adipose tissue, insulin action and vascular disease: inflammatory signals. Int. J. Obes. Relat. Metab. Disord., 2003, 27(Suppl. 3), S25-S28.
[http://dx.doi.org/10.1038/sj.ijo.0802496] [PMID: 14704740]
[4]
Sack, M.N.; Murphy, E. The role of comorbidities in cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2011, 16(3-4), 267-272.
[http://dx.doi.org/10.1177/1074248411408313] [PMID: 21821527]
[5]
Oosterlinck, W.; Herijgers, P. Cardiomyocyte changes in the metabolic syndrome and implications for endogeneous protective strategies. Expert Rev. Cardiovasc. Ther., 2014, 12(3), 331-343.
[http://dx.doi.org/10.1586/14779072.2014.893825] [PMID: 24575775]
[6]
Engeli, S.; Sharma, A.M. Role of adipose tissue for cardiovascular-renal regulation in health and disease. Horm. Metab. Res., 2000, 32(11-12), 485-499.
[http://dx.doi.org/10.1055/s-2007-978675] [PMID: 11246814]
[7]
Engeli, S.; Feldpausch, M.; Gorzelniak, K.; Hartwig, F.; Heintze, U.; Janke, J.; Möhlig, M.; Pfeiffer, A.F.; Luft, F.C.; Sharma, A.M. Association between adiponectin and mediators of inflammation in obese women. Diabetes, 2003, 52(4), 942-947.
[http://dx.doi.org/10.2337/diabetes.52.4.942] [PMID: 12663465]
[8]
Lamounier-Zepter, V.; Look, C.; Alvarez, J.; Christ, T.; Ravens, U.; Schunck, W.H.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Morano, I. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res., 2009, 105(4), 326-334.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.200501] [PMID: 19608978]
[9]
Ishimura, S.; Furuhashi, M.; Watanabe, Y.; Hoshina, K.; Fuseya, T.; Mita, T.; Okazaki, Y.; Koyama, M.; Tanaka, M.; Akasaka, H.; Ohnishi, H.; Yoshida, H.; Saitoh, S.; Miura, T. Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS One, 2013, 8(11)e81318
[http://dx.doi.org/10.1371/journal.pone.0081318] [PMID: 24278421]
[10]
Berg, A.H.; Lin, Y.; Lisanti, M.P.; Scherer, P.E. Adipocyte differentiation induces dynamic changes in NF-kappaB expression and activity. Am. J. Physiol. Endocrinol. Metab., 2004, 287(6), E1178-E1188.
[http://dx.doi.org/10.1152/ajpendo.00002.2004] [PMID: 15251865]
[11]
Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol., 2010, 316(2), 129-139.
[http://dx.doi.org/10.1016/j.mce.2009.08.018] [PMID: 19723556]
[12]
Benetti, E.; Chiazza, F.; Patel, N.S.; Collino, M. The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm., 2013, 2013678627
[http://dx.doi.org/10.1155/2013/678627] [PMID: 23843683]
[13]
Mastrocola, R.; Collino, M.; Penna, C.; Nigro, D.; Chiazza, F.; Fracasso, V.; Tullio, F.; Alloatti, G.; Pagliaro, P.; Aragno, M. maladaptive modulations of NLRP3 inflammasome and cardioprotective pathways are involved in diet-induced exacerbation of myocardial ischemia/reperfusion injury in mice. Oxid. Med. Cell. Longev., 2016, 20163480637
[http://dx.doi.org/10.1155/2016/3480637] [PMID: 26788246]
[14]
Pavillard, L.E.; Cañadas-Lozano, D.; Alcocer-Gómez, E.; Marín-Aguilar, F.; Pereira, S.; Robertson, A.A.B.; Muntané, J.; Ryffel, B.; Cooper, M.A.; Quiles, J.L.; Bullón, P.; Ruiz-Cabello, J.; Cordero, M.D. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget, 2017, 8(59), 99740-99756.
[http://dx.doi.org/10.18632/oncotarget.20763] [PMID: 29245937]
[15]
Toldo, S.; Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol., 2018, 15(4), 203-214.
[http://dx.doi.org/10.1038/nrcardio.2017.161] [PMID: 29143812]
[16]
Mastrocola, R.; Aragno, M.; Alloatti, G.; Collino, M.; Penna, C.; Pagliaro, P. Metaflammation: tissue-specific alterations of the NLRP3 inflammasome platform. Curr. Med. Chem., 2018, 25(11), 1294-1310.
[http://dx.doi.org/10.2174/0929867324666170407123522] [PMID: 28403789]
[17]
Stienstra, R.; Joosten, L.A.; Koenen, T.; van Tits, B.; van Diepen, J.A.; van den Berg, S.A.; Rensen, P.C.; Voshol, P.J.; Fantuzzi, G.; Hijmans, A.; Kersten, S.; Müller, M.; van den Berg, W.B.; van Rooijen, N.; Wabitsch, M.; Kullberg, B.J.; van der Meer, J.W.; Kanneganti, T.; Tack, C.J.; Netea, M.G. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab., 2010, 12(6), 593-605.
[http://dx.doi.org/10.1016/j.cmet.2010.11.011] [PMID: 21109192]
[18]
Mastrocola, R.; Penna, C.; Tullio, F.; Femminò, S.; Nigro, D.; Chiazza, F.; Serpe, L.; Collotta, D.; Alloatti, G.; Cocco, M.; Bertinaria, M.; Pagliaro, P.; Aragno, M.; Collino, M. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev., 2016, 20165271251
[http://dx.doi.org/10.1155/2016/5271251] [PMID: 28053692]
[19]
Valle Raleigh, J.; Mauro, A.G.; Devarakonda, T.; Marchetti, C.; He, J.; Kim, E.; Filippone, S.; Das, A.; Toldo, S.; Abbate, A.; Salloum, F.N. Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res., 2017, 113(6), 609-619.
[http://dx.doi.org/10.1093/cvr/cvw246] [PMID: 28073832]
[20]
Wang, Q.; Lin, P.; Li, P.; Feng, L.; Ren, Q.; Xie, X.; Xu, J. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci., 2017, 186, 50-58.
[http://dx.doi.org/10.1016/j.lfs.2017.08.004] [PMID: 28782532]
[21]
Luo, B.; Li, B.; Wang, W.; Liu, X.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, Y.; Zhang, M.; An, F. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc. Drugs Ther., 2014, 28(1), 33-43.
[http://dx.doi.org/10.1007/s10557-013-6498-1] [PMID: 24254031]
[22]
Wang, S.; Xie, X.; Lei, T.; Zhang, K.; Lai, B.; Zhang, Z.; Guan, Y.; Mao, G.; Xiao, L.; Wang, N. Statins attenuate activation of the nlrp3 inflammasome by oxidized LDL or TNFα in vascular endothelial cells through a PXR-dependent mechanism. Mol. Pharmacol., 2017, 92(3), 256-264.
[http://dx.doi.org/10.1124/mol.116.108100] [PMID: 28546421]
[23]
Kirwan, A.M.; Lenighan, Y.M.; O’Reilly, M.E.; McGillicuddy, F.C.; Roche, H.M. Nutritional modulation of metabolic inflammation. Biochem. Soc. Trans., 2017, 45(4), 979-985.
[http://dx.doi.org/10.1042/BST20160465] [PMID: 28710289]
[24]
Kim, Y.; Wang, W.; Okla, M.; Kang, I.; Moreau, R.; Chung, S. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. J. Lipid Res., 2016, 57(1), 66-76.
[http://dx.doi.org/10.1194/jlr.M062828] [PMID: 26628639]
[25]
Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res., 2017, 63(1)
[http://dx.doi.org/10.1111/jpi.12414] [PMID: 28398673]
[26]
Wada, T.; Ishikawa, A.; Watanabe, E.; Nakamura, Y.; Aruga, Y.; Hasegawa, H.; Onogi, Y.; Honda, H.; Nagai, Y.; Takatsu, K.; Ishii, Y.; Sasahara, M.; Koya, D.; Tsuneki, H.; Sasaoka, T. Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. J. Endocrinol., 2017, 235(3), 179-191.
[http://dx.doi.org/10.1530/JOE-17-0351] [PMID: 28855315]
[27]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 2015, 6, 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[28]
Penna, C.; Mancardi, D.; Raimondo, S.; Geuna, S.; Pagliaro, P. The paradigm of postconditioning to protect the heart. J. Cell. Mol. Med., 2008, 12(2), 435-458.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00210.x] [PMID: 18182064]
[29]
Penna, C.; Mancardi, D.; Rastaldo, R.; Pagliaro, P. Cardioprotection: a radical view free radicals in pre and postconditioning. Biochim. Biophys. Acta, 2009, 1787(7), 781-793.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.008] [PMID: 19248760]
[30]
Pagliaro, P.; Moro, F.; Tullio, F.; Perrelli, M.G.; Penna, C. Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid. Redox Signal., 2011, 14(5), 833-850.
[http://dx.doi.org/10.1089/ars.2010.3245] [PMID: 20649460]
[31]
Penna, C.; Granata, R.; Tocchetti, C.G.; Gallo, M.P.; Alloatti, G.; Pagliaro, P. Endogenous cardioprotective agents: role in pre and postconditioning. Curr. Drug Targets, 2015, 16(8), 843-867.
[http://dx.doi.org/10.2174/1389450116666150309115536] [PMID: 25751010]
[32]
Lopaschuk, G.D.; Folmes, C.D.; Stanley, W.C. Cardiac energy metabolism in obesity. Circ. Res., 2007, 101(4), 335-347.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.150417] [PMID: 17702980]
[33]
Liu, B.; Clanachan, A.S.; Schulz, R.; Lopaschuk, G.D. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ. Res., 1996, 79(5), 940-948.
[http://dx.doi.org/10.1161/01.RES.79.5.940] [PMID: 8888686]
[34]
Liu, B.; el Alaoui-Talibi, Z.; Clanachan, A.S.; Schulz, R.; Lopaschuk, G.D. Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am. J. Physiol., 1996, 270(1 Pt 2), H72-H80.
[http://dx.doi.org/10.1152/ajpheart.1996.270.1.H72] [PMID: 8769736]
[35]
Kantor, P.F.; Lucien, A.; Kozak, R.; Lopaschuk, G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res., 2000, 86(5), 580-588.
[http://dx.doi.org/10.1161/01.RES.86.5.580] [PMID: 10720420]
[36]
Pons, S.; Martin, V.; Portal, L.; Zini, R.; Morin, D.; Berdeaux, A.; Ghaleh, B. Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. J. Mol. Cell. Cardiol., 2013, 54, 82-89.
[http://dx.doi.org/10.1016/j.yjmcc.2012.11.010] [PMID: 23201226]
[37]
Apaijai, N.; Chattipakorn, S.C.; Chattipakorn, N. Roles of obese-insulin resistance and anti-diabetic drugs on the heart with ischemia-reperfusion injury. Cardiovasc. Drugs Ther., 2014, 28(6), 549-562.
[http://dx.doi.org/10.1007/s10557-014-6553-6] [PMID: 25283086]
[38]
Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. The influence of obese insulin-resistance on the outcome of the ischemia/reperfusion insult to the heart. Curr. Med. Chem., 2018, 25(13), 1501-1509.
[http://dx.doi.org/10.2174/0929867324666170616105639] [PMID: 28618996]
[39]
Hamzeh, N.; Ghadimi, F.; Farzaneh, R.; Hosseini, S.K. Obesity, heart failure, and obesity paradox. J Tehran Heart Cent, 2017, 12(1), 1-5.
[PMID: 28469684]
[40]
Oreopoulos, A.; Padwal, R.; Kalantar-Zadeh, K.; Fonarow, G.C.; Norris, C.M.; McAlister, F.A. Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J., 2008, 156(1), 13-22.
[http://dx.doi.org/10.1016/j.ahj.2008.02.014] [PMID: 18585492]
[41]
Badheka, A.O.; Rathod, A.; Kizilbash, M.A.; Garg, N.; Mohamad, T.; Afonso, L.; Jacob, S. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. Am. J. Med., 2010, 123(7), 646-651.
[http://dx.doi.org/10.1016/j.amjmed.2009.11.026] [PMID: 20609687]
[42]
Choy, B.; Hansen, E.; Moss, A.J.; McNitt, S.; Zareba, W.; Goldenberg, I. Relation of body mass index to sudden cardiac death and the benefit of implantable cardioverter-defibrillator in patients with left ventricular dysfunction after healing of myocardial infarction. Am. J. Cardiol., 2010, 105(5), 581-586.
[http://dx.doi.org/10.1016/j.amjcard.2009.10.041] [PMID: 20185000]
[43]
Horwich, T.B.; Fonarow, G.C.; Hamilton, M.A.; MacLellan, W.R.; Woo, M.A.; Tillisch, J.H. The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol., 2001, 38(3), 789-795.
[http://dx.doi.org/10.1016/S0735-1097(01)01448-6] [PMID: 11527635]
[44]
Pasini, E.; Aquilani, R.; Gheorghiade, M.; Dioguardi, F.S. Malnutrition, muscle wasting and cachexia in chronic heart failure: the nutritional approach. Ital. Heart J., 2003, 4(4), 232-235.
[PMID: 12784775]
[45]
Kalantar-Zadeh, K.; Block, G.; Horwich, T.; Fonarow, G.C. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J. Am. Coll. Cardiol., 2004, 43(8), 1439-1444.
[http://dx.doi.org/10.1016/j.jacc.2003.11.039] [PMID: 15093881]
[46]
Sugerman, H.J.; Sugerman, E.L.; Wolfe, L.; Kellum, J.M. Jr.; Schweitzer, M.A.; DeMaria, E.J. Risks and benefits of gastric bypass in morbidly obese patients with severe venous stasis disease. Ann. Surg., 2001, 234(1), 41-46.
[http://dx.doi.org/10.1097/00000658-200107000-00007] [PMID: 11460821]
[47]
Clerico, A.; Giannoni, A.; Vittorini, S.; Emdin, M. The paradox of low BNP levels in obesity. Heart Fail. Rev., 2012, 17(1), 81-96.
[http://dx.doi.org/10.1007/s10741-011-9249-z] [PMID: 21523383]
[48]
Lavie, C.J.; Sharma, A.; Alpert, M.A.; De Schutter, A.; Lopez-Jimenez, F.; Milani, R.V.; Ventura, H.O. Update on obesity and obesity paradox in heart failure. Prog. Cardiovasc. Dis., 2016, 58(4), 393-400.
[http://dx.doi.org/10.1016/j.pcad.2015.12.003] [PMID: 26721180]
[49]
Farré, N.; Aranyó, J.; Enjuanes, C.; Verdú-Rotellar, J.M.; Ruiz, S.; Gonzalez-Robledo, G.; Meroño, O.; de Ramon, M.; Moliner, P.; Bruguera, J.; Comin-Colet, J. Differences in neurohormonal activity partially explain the obesity paradox in patients with heart failure: The role of sympathetic activation. Int. J. Cardiol., 2015, 181, 120-126.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.025] [PMID: 25497534]
[50]
Kalil, G.Z.; Haynes, W.G. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens. Res., 2012, 35(1), 4-16.
[http://dx.doi.org/10.1038/hr.2011.173] [PMID: 22048570]
[51]
Carbone, S.; Lavie, C.J.; Arena, R. Obesity and heart failure: focus on the obesity paradox. Mayo Clin. Proc., 2017, 92(2), 266-279.
[http://dx.doi.org/10.1016/j.mayocp.2016.11.001] [PMID: 28109619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy