[1]
Society, R. Nanoscience and Nanotechnologies: Opportunities and Uncertainties; The Royal Society, 2004.
[2]
Guozhong, C. Nanostructures and Nanomaterials; World Scientific Publishing Co., 2004.
[3]
Martín-Palma, R.J.; Lakhtakia, A. Nanotechnology: A Crash Course; SPIE, 2010.
[4]
Nasir, A.; Friedman, A.; Wang, S. Nanotechnology in Dermatology; Springer Science & Business Media, 2012.
[5]
De Villiers, M.M.; Aramwit, P.; Kwon, G.S. Nanotechnology in Drug Delivery; Springer Science & Business Media, 2008.
[6]
Sivakumar, P.M.; Kodolov, V.I.; Zaikov, G.E.; Haghi, A.K. Nanostructure, Nanosystems, and Nanostructured Materials: Theory, Production and Development; CRC Press, 2013.
[7]
Cabrini, S.; Kawata, S. Nanofabrication Handbook; CRC Press, 2012.
[8]
Utke, I.; Moshkalev, S.; Russell, P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications; Oxford University Press, 2012.
[9]
Hennessy, T.C. Lithography: Principle, Processes and Materials; Nova Science Pub Inc, 2011.
[10]
Al-Shamery, K.; Rubahn, H-G.; Sitter, H. Organic Nanostructures for Next Generation Devices; Springer Science & Business Media, 2007.
[11]
Xu, Y. Direct Synthesis of Multifunctional Heterostructured Magnetic Nanoparticles in Gas Phase; ProQuest, 2007.
[12]
Nalwa, H.S. Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set Vol. 3; Academic Press, 1999.
[13]
Zhiqun, L.; Wang, J. Low-Cost Nanomaterials; Springer, 2014.
[14]
Mishra, Y.K.; Mohapatra, S.; Kabiraj, D.; Tripathi, A.; Pivin, J.C.; Avasthi, D.K. Growth of Au nanostructures by annealing electron beam evaporated thin films. J. Opt. A, Pure Appl. Opt., 2007, 9, S410-S414.
[15]
Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett., 2002, 81, 757.
[16]
Mitzi, D. Solution Processing of Inorganic Materials; John Wiley & Sons, 2009.
[17]
Catherine, L. Gold Nanoparticles for Physics, Chemistry and Biology; Imperial College Press, 2012.
[19]
Qi, S.; Shen, X.; Lin, Z.; Tian, G.; Wu, D.; Jin, R. Synthesis of silver nanocubes with controlled size using water-soluble poly(amic acid) salt as the intermediate via a novel ion-exchange self-assembly technique. Nanoscale, 2013, 5, 12132-12135.
[20]
Wu, H-L.; Tsai, H-R.; Hung, Y-T.; Lao, K-U.; Liao, C-W.; Chung, P-J.; Huang, J-S.; Chen, I-C.; Huang, M.H. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates. Inorg. Chem., 2011, 50, 8106-8111.
[21]
Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
[22]
Soga, T. Nanostructured Materials for Solar Energy Conversion; Elsevier, 2006.
[23]
Jin, M.L.; Choi, J.K.; Kim, D.W.; Park, J-M.; An, C.J.; Kim, H.J.; Kim, B.J.; Diao, Y.; Jung, H-T. Enhanced thermal stability of organic solar cells on nano structured electrode by simple acid etching. Org. Electron., 2014, 15, 680-684.
[24]
Ray, B.; Member, S.; Khan, M.R.; Black, C.; Member, S.; Alam, M.A. Nanostructured electrodes for organic solar cells: Analysis and design fundamentals. IEEE J. Photovoltaics, 2013, 3, 318-329.
[25]
Cheng, Y-S.; Gau, C. Efficiency improvement of organic solar cells with imprint of nanostructures by capillary force lithography. Sol. Energy Mater. Sol. Cells, 2014, 120, 566-571.
[26]
Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett., 2010, 10, 1082-1087.
[27]
Yu, R.; Ching, K-L.; Lin, Q.; Leung, S-F.; Arcrossito, D.; Fan, Z. Strong light absorption of self-organized 3-d nanospike arrays for photovoltaic applications. ACS Nano, 2011, 5, 9291-9298.
[28]
Peer, A.; Biswas, R. Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals. ACS Photonics, 2014, 1, 840-847.
[29]
Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater., 2008, 20, 3516-3520.
[30]
Tang, Z.; Tress, W.; Inganäs, O. Light trapping in thin film organic solar cells. Mater. Today, 2014, 17, 389-396.
[31]
Chou, C-H.; Chen, F-C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444-8458.
[32]
Niesen, B.; Rand, B.P.; Van Dorpe, P.; Cheyns, D.; Tong, L.; Dmitriev, A.; Heremans, P. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode. Adv. Energy Mater., 2013, 3, 145-150.
[33]
Gan, Q.; Bartoli, F.J.; Kafafi, Z.H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier. Adv. Mater., 2013, 25, 2385-2396.
[34]
Zhu, J.; Xue, M.; Hoekstra, R.; Xiu, F.; Zeng, B.; Wang, K.L. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Nanoscale, 2012, 4, 1978-1981.
[35]
Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J-J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells, 2009, 93, 1377-1382.
[36]
Kim, S-S.; Na, S-I.; Jo, J.; Kim, D-Y.; Nah, Y-C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett., 2008, 93, 073307.
[37]
Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 2014, 106, 23-37.
[38]
Chiu, N-F.; Hou, C-H.; Cheng, C-J.; Tsai, F-Y. Plasmonic circular nanostructure for enhanced light absorption in organic solar cells. Int. J. Photoenergy, 2013, 2013, Article ID 502576.
[39]
de Oliveira Hansen, R.M.; Liu, Y.; Madsen, M.; Rubahn, H-G. Flexible organic solar cells including efficiency enhancing grating structures. Nanotechnology, 2013, 24, 145301.
[40]
Li, X.H.; Sha, W.E.I.; Choy, W.C.H.; Fung, D.D.S.; Xie, F.X. Efficient inverted polymer solar cells with directly patterned active layer and silver back grating. J. Phys. Chem. C, 2012, 116, 7200-7206.
[41]
Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem., 1997, 7, 1075-1087.
[42]
Eftekhari, A. Nanostructured Materials in Electrochemistry; John Wiley and Sons, 2008.
[43]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268, 1466-1468.
[44]
Yang, R.; Sui, C.; Gong, J.; Qu, L. Silver nanowires prepared by modified AAO template method. Mater. Lett., 2007, 61, 900-903.
[45]
Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials (Basel), 2010, 4, 487-526.
[46]
Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for plasmonics. ACS Nano, 2014, 8, 834-840.
[47]
Martin, J.; Plain, J. Fabrication of aluminium nanostructures for plasmonics. J. Phys. D Appl. Phys., 2015, 48, 184002.
[48]
Lee, M.H.; Lim, N.; Ruebusch, D.J.; Jamshidi, A.; Kapadia, R.; Lee, R.; Seok, T.J.; Takei, K.; Cho, K.Y.; Fan, Z.; Jang, H.; Wu, M.; Cho, G.; Javey, A. Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett., 2011, 11, 3425-3430.
[49]
Miles, R.W.; Zoppi, G.; Forbes, I. Inorganic photovoltaic cells. Mater. Today, 2007, 10, 20-27.
[50]
Gregg, B.A.; Hanna, M.C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys., 2003, 93, 3605-3614.
[51]
Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res., 2011, 19, 1924-1945.
[52]
Bagher, A.M. Comparison of organic solar cells and inorganic solar cells. Int. J. Renew. Sustain. Energy, 2014, 3, 53-58.
[53]
Kirchartz, T.; Agostinelli, T.; Campoy-Quiles, M.; Gong, W.; Nelson, J. Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: The influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett., 2012, 3, 3470-3475.
[54]
Hazar Apaydın, D.; Esra Yıldız, D.; Cirpan, A.; Toppare, L. Optimizing the organic solar cell efficiency: Role of the active layer thickness. Sol. Energy Mater. Sol. Cells, 2013, 113, 100-105.
[56]
Blakers, A.; Zin, N.; McIntosh, K.R.; Fong, K. High efficiency silicon solar cells. Energy Procedia, 2013, 33, 1-10.
[57]
Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci., 2013, 38, 1929-1940.
[58]
Watkins, P.K.; Walker, A.B.; Verschoor, G.L.B. Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano Lett., 2005, 5, 1814-1818.
[59]
Wiedemann, W.; Sims, L.; Abdellah, A.; Exner, A.; Meier, R.; Musselman, K.P.; MacManus-Driscoll, J.L.; Müller-Buschbaum, P.; Scarpa, G.; Lugli, P.; Schmidt-Mende, L. Nanostructured interfaces in polymer solar cells. Appl. Phys. Lett., 2010, 96, 263109.
[60]
Niggemann, M.; Riede, M.; Gombert, A.; Leo, K. Light trapping in organic solar cells. Phys. Status Solidi, 2008, 205, 2862-2874.
[61]
Ko, D-H.; Tumbleston, J.R.; Gadisa, A.; Aryal, M.; Liu, Y.; Lopez, R.; Samulski, E.T. Light-trapping nano-structures in organic photovoltaic cells. J. Mater. Chem., 2011, 21, 16293-16303.
[62]
Yu, Z.; Raman, A.; Fan, S. Nanophotonic light-trapping theory for solar cells. Appl. Phys., A., 2011, 105, 329-339.
[63]
Ahn, S.; Rourke, D.; Park, W. Plasmonic nanostructures for organic photovoltaic devices. J. Opt., 2016, 18, 33001.
[64]
Grote, R.R.; Brown, S.J.; Driscoll, J.B.; Osgood, R.M.; Schuller, J.A. Morphology-dependent light trapping in thin-film organic solar cells. Opt. Express, 2013, 21, A847-A863.
[65]
Xu, M.; Feng, J.; Liu, Y-S.; Jin, Y.; Wang, H-Y.; Sun, H-B. Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett., 2014, 105, 153303.
[66]
In, S.; Mason, D.R.; Lee, H.; Jung, M.; Lee, C.; Park, N. Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: A coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics, 2015, 2, 78-85.
[67]
Müller-Meskamp, L.; Kim, Y.H.; Roch, T.; Hofmann, S.; Scholz, R.; Eckardt, S.; Leo, K.; Lasagni, A.F. Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv. Mater., 2012, 24, 906-910.
[68]
Sha, W.E.I.; Choy, W.C.H.; Chew, W.C. Angular response of thin-film organic solar cells with periodic metal back nanostrips. Opt. Lett., 2011, 36, 478-480.
[69]
Zhu, J.; Xue, M.; Shen, H.; Wu, Z.; Kim, S.; Ho, J.J.; Hassani-Afshar, A.; Zeng, B.; Wang, K.L. Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres. Appl. Phys. Lett., 2011, 98, 151110.
[70]
Fallahpour, A.H.; Ulisse, G.; Auf der Maur, M.; Di Carlo, A.; Brunetti, F. 3-D simulation and optimization of organic solar cell with periodic back contact grating electrode. IEEE J. Photovoltaics, 2015, 5, 591-596.
[71]
Zu, F-S.; Shi, X-B.; Liang, J.; Xu, M-F.; Lee, C-S.; Wang, Z-K.; Liao, L-S. Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. Appl. Phys. Lett., 2014, 104, 243904.
[72]
Cho, C.; Kim, H.; Jeong, S.; Baek, S-W.; Seo, J-W.; Han, D.; Kim, K.; Park, Y.; Yoo, S.; Lee, J-Y. Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Sol. Energy Mater. Sol. Cells, 2013, 115, 36-41.
[73]
Zhou, L.; Ou, Q-D.; Chen, J-D.; Shen, S.; Tang, J-X.; Li, Y-Q.; Lee, S-T. Light manipulation for organic optoelectronics using bio-inspired Moth’s eye nanostructures. Sci. Rep., 2014, 4, 4040.
[74]
Chen, J-D.; Cui, C.; Li, Y-Q.; Zhou, L.; Ou, Q-D.; Li, C.; Li, Y.; Tang, J-X. Single-Junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater., 2015, 27, 1035-1041.
[75]
Yun, J.; Wang, W.; Kim, S.M.; Bae, T-S.; Lee, S.; Kim, D.; Lee, G-H.; Lee, H-S.; Song, M. Light trapping in bendable organic solar cells using silica nanoparticle arrays. Energy Environ. Sci., 2015, 8, 932-940.
[76]
Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; de Leeuw, D.M. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401, 685-688.
[77]
Zhou, M.; Aryal, M.; Mielczarek, K.; Zakhidov, A.; Hu, W. Hole
mobility enhancement by chain alignment in nanoimprinted poly(3-
hexylthiophene) nanogratings for organic electronics. J. Vac. Sci.
Technol. B. Nanotechnol. Microelectron.,, 2010, 28, C6M63-
C6M67.
[78]
Buff, H. Ueber das electrische verhalten des aluminiums. Justus Liebigs Ann. Chem., 1857, 102(3), 265-284.
[79]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[80]
Hoar, T.P.; Mott, N.F. A mechanism for the formation of porous anodic oxide films on aluminium. J. Phys. Chem. Solids, 1959, 9, 97-99.
[81]
O’Sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. A Math. Phys. Eng. Sci., 1970, p. 317, 511-543.
[82]
Kawai, S. Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co-Ni. J. Electrochem. Soc., 1975, 122, 32-36.
[83]
Kawai, S. Recording characteristics of anodic oxide films on aluminum containing electrodeposited ferromagnetic metals and alloys. J. Electrochem. Soc., 1976, 123, 1047-1051.
[84]
Goad, D.G.W.; Moskovits, M. Colloidal metal in aluminum-oxide. J. Appl. Phys., 1978, 49, 2929-2934.
[85]
Lupu, N., Ed.; Electrodeposited Nanowires and Their Applications; INTECH: Croatia, 2010.
[86]
Brüggemann, D. Nanoporous aluminium oxide membranes as cell interfaces. J. Nanomater., 2013, 2013, 1-18.
[87]
Tsao, Y-C.; Fisker, C.; Garm Pedersen, T. Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications. Opt. Commun., 2014, 315, 17-25.
[88]
Tsui, K.H.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P.; Fan, Z. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater., 2014, 26, 2805-2811.
[89]
Lin, J.L.; Chu, Y.M.; Hsaio, S.H.; Chin, Y.L.; Sun, T.P. Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors. Jpn. J. Appl. Phys., 2006, 45, 7999-8004.
[90]
Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci., 2013, 58, 636-704.
[91]
Lee, W.; Park, S-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev., 2014, 114, 7487-7556.
[92]
Li, F.; Zhang, L.; Metzger, R. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater., 1998, 10, 2470-2480.
[93]
Sattler, K.D. Handbook of Nanophysics. 5, Functional Nanomaterials; CRC Press, 2011.
[94]
Losic, D.; Santos, A., Eds.; Nanoporous Alumina: Fabrication, Structure, Properties and Applications; Springer International Publishing, 2015.
[95]
Ottone, C.; Laurenti, M.; Bejtka, K.; Sanginario, A.; Cauda, V.; Caud, V. The effects of the film thickness and roughness in the anodization process of very thin aluminum films. J. Mater. Sci. Nanotechnol., 2014, 1, 9.
[96]
Su, Z.; Hähner, G.; Zhou, W. Investigation of the pore formation in anodic aluminium oxide. J. Mater. Chem., 2008, 18, 5787-5795.
[97]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem., 2015, 750, 79-88.
[98]
Norek, M.; Włodarski, M.; Stępniowski, W.J. Tailoring of UV/violet plasmonic properties in Ag, and Cu coated Al concaves arrays. Appl. Surf. Sci., 2014, 314, 807-814.
[99]
Goszczak, A.J.; Cielecki, P.P.; Fiutowski, J.; Rubahn, H-G.; Madsen, M. Nanoscale aluminum concaves for light-trapping in organic thin films. Opt. Commun., 2016, 370, 135-139.
[100]
Pang, Y.; Chandrasekar, R. Cylindrical and spherical membranes of anodic aluminum oxide with highly ordered conical nanohole arrays. Nat. Sci., 2015, 7, 232-237.
[101]
Malinovskis, U.; Poplausks, R.; Apsite, I.; Meija, R.; Prikulis, J.; Lombardi, F.; Erts, D. Ultrathin anodic aluminum oxide membranes for production of dense sub-20 Nm nanoparticle arrays. J. Phys. Chem. C, 2014, 118, 8685-8690.
[102]
Khan, K.A.; Kasi, J.K.; Afzulpurkar, N.; Bohez, E.; Tuantranont, A.; Mahaisavariya, B. Novel Anodic Aluminum Oxide (AAO) nanoporous membrane for wearable hemodialysis device. In International Conference on Communications and Electronics IEEE 2010, 2010, pp. 98-101.
[103]
Coakley, K.M.; Liu, Y.; McGehee, M.D.; Frindell, K.L.; Stucky, G.D. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater., 2003, 13, 301-306.
[104]
Coakley, K.M.; Srinivasan, B.S.; Ziebarth, J.M.; Goh, C.; Liu, Y.; McGehee, M.D. Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater., 2005, 15, 1927-1932.
[105]
Moynihan, S.; Iacopino, D.; O’Carroll, D.; Lovera, P.; Redmond, G. Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mater., 2008, 20, 996-1003.
[106]
Haberkorn, N.; Gutmann, J.S.; Theato, P. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: Toward ordered bulk-heterojunction solar cells. ACS Nano, 2009, 3, 1415-1422.
[107]
Baek, S.; Park, J.B.; Lee, W.; Han, S-H.; Lee, J.; Lee, S-H. A facile method to prepare regioregular poly(3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force. New J. Chem., 2009, 33, 986-990.
[108]
Santos, A.; Formentin, P.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. Quasi-ordered P3HT nanopillar-nanocap structures with controlled size. Mater. Lett., 2010, 64, 371-374.
[109]
Santos, A.; Formentín, P.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. Fabrication and characterization of high-density arrays of P3HT nanopillars on ITO/glass substrates. Sol. Energy Mater. Sol. Cells, 2010, 94, 1247-1253.
[110]
Haberkorn, N.; Kim, S.; Kim, K-S.; Sommer, M.; Thelakkat, M.; Sohn, B-H.; Theato, P. Template-assisted fabrication of highly ordered interpenetrating polymeric donor/acceptor nanostructures for photovoltaic applications. Macromol. Chem. Phys., 2011, 212, 2142-2150.
[111]
Hu, J.; Shirai, Y.; Han, L.; Wakayama, Y. Template method for fabricating interdigitate P-N heterojunction for organic solar cell. Nanoscale Res. Lett., 2012, 7, 1-5.
[112]
Kim, J.S.; Park, Y.; Lee, D.Y.; Lee, J.H.; Park, J.H.; Kim, J.K.; Cho, K. Poly(3-hexylthiophene) nanorods with aligned chain orientation for organic photovoltaics. Adv. Funct. Mater., 2010, 20, 540-545.
[113]
Wang, H-S.; Lin, L-H.; Chen, S-Y.; Wang, Y-L.; Wei, K-H. Ordered polythiophene/fullerene composite core–shell nanorod arrays for solar cell applications. Nanotechnology, 2009, 20, 075201.
[114]
Wang, H-S.; Chen, S-Y.; Su, M-H.; Wang, Y-L.; Wei, K-H. Inverted heterojunction solar cells incorporating fullerene/ polythiophene composite core/shell nanorod arrays. Nanotechnology, 2010, 21, 145203.
[115]
Kim, T.; Yoon, H.; Song, H-J.; Haberkorn, N.; Cho, Y.; Sung, S.H.; Lee, C.H.; Char, K.; Theato, P. Toward mass producible ordered bulk heterojunction organic photovoltaic devices. Macromol. Rapid Commun., 2012, 33, 2035-2040.
[116]
Chang, C-Y.; Wu, C-E.; Chen, S-Y.; Cui, C.; Cheng, Y-J.; Hsu, C-S.; Wang, Y-L.; Li, Y. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew. Chem. Int. Ed., 2011, 50, 9386-9390.
[117]
Allen, J.E.; Yager, K.G.; Hlaing, H.; Nam, C-Y.; Ocko, B.M.; Black, C.T. Enhanced charge collection in confined bulk heterojunction organic solar cells. Appl. Phys. Lett., 2011, 99, 163301.
[118]
Allen, J.E.; Black, C.T. Improved power conversion efficiency in bulk heterojunction organic solar cells with radial electron contacts. ACS Nano, 2011, 5, 7986-7991.
[119]
Ko, H-W.; Chang, C-W.; Chi, M-H.; Chu, C-W.; Cheng, M-H.; Fang, Z-X.; Luo, K-H.; Chen, J-T. Hierarchical hybrid nanostructures: Controlled assembly of polymer-encapsulated gold nanoparticles via a rayleigh-instability-driven transformation under cylindrical confinement. RSC Adv., 2016, 6, 54539-54543.
[120]
Wang, C.C.D.; Choy, W.C.H.; Duan, C.; Fung, D.D.S.; Sha, W.E.I.; Xie, F-X.; Huang, F.; Cao, Y. Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J. Mater. Chem., 2012, 22, 1206-1211.
[121]
Cao, J.; Sun, J.; Shi, G.; Chen, H.; Zhang, Q.; Wang, D.; Wang, M. Photovoltaic properties of polythiophene nano-tubule films. Mater. Chem. Phys., 2003, 82, 44-48.
[122]
Park, D.H.; Kim, B.H.; Jang, M.G.; Bae, K.Y.; Joo, J. Characteristics and photoluminescence of nanotubes and nanowires of poly (3-methylthiophene). Appl. Phys. Lett., 2005, 86, 113116.
[123]
Joo, J.; Kim, B.H.; Park, D.H.; Kim, H.S.; Seo, D.S.; Shim, J.H.; Lee, S.J.; Ryu, K.S.; Kim, K.; Jin, J-I.; Lee, T.J.; Lee, C.J. Fabrication and applications of conducting polymer nanotube, nanowire, nanohole, and double wall nanotube. Synth. Met., 2005, 153, 313-316.
[124]
Park, D.H.; Kim, B.H.; Jang, M.K.; Bae, K.Y.; Lee, S.J.; Joo, J. Synthesis and characterization of polythiophene and poly (3-methylthiophene) nanotubes and nanowires. Synth. Met., 2005, 153, 341-344.
[125]
Xiao, R.; Cho, S.I.; Liu, R.; Lee, S.B. Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc., 2007, 129, 4483-4489.
[126]
Lin, H-A.; Luo, S-C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H. Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Adv. Funct. Mater., 2013, 23, 3212-3219.
[127]
Bae, K.; Kim, K. In: Plasmonic Nanodot Array Optimization on
Organic Thin Film Solar Cells Using Anodic Aluminum Oxide
Templates,, SPIE Solar Energy + Technology, San Diego,
California, United States, September 11, 2013; SPIE, US, 2013; pp.
8823.
[128]
Sangar, A.; Merlen, A.; Torchio, P.; Vedraine, S.; Flory, F.; Patrone, L.; Delafosse, G.; Chevallier, V.; Moyen, E.; Hanbucken, M. Fabrication and characterization of large metallic nanodots arrays for organic thin film solar cells using anodic aluminum oxide templates. Sol. Energy Mater. Sol. Cells, 2013, 117, 657-662.
[129]
Robatjazi, H.; Bahauddin, S.M.; Macfarlan, L.H.; Fu, S.D.; Thomann, I. Ultrathin AAO membrane as a generic template for sub-100 Nm nanostructure fabrication. Chem. Mater., 2016, 28, 4546-4553.
[130]
Zhou, W. Nanoimprint Lithography: An Enabling Process for Nanofabrication; Springer: New York, 2013.
[131]
Guo, L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater., 2007, 19, 495-513.
[132]
Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W. Nanoimprinted polymer solar cell. ACS Nano, 2012, 6, 2877-2892.
[133]
Chen, D.; Zhao, W.; Russell, T.P. P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano, 2012, 6, 1479-1485.
[134]
Ding, G.; Li, C.; Li, X.; Wu, Y.; Liu, J.; Li, Y.; Hu, Z.; Li, Y. Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance. Nanoscale, 2015, 7, 11024-11032.
[135]
Pfadler, T.; Coric, M.; Palumbiny, C.M.; Jakowetz, A.C.; Strunk, K.; Dorman, J.A.; Ehrenreich, P.; Wang, C.; Hexemer, A.; Png, R.; Ho, P.K.H.; Müller-Buschbaum, P.; Weickert, J.; Schmidt-Mende, L. Influence of interfacial area on exciton separation and polaron recombination in nanostructured bilayer all-polymer solar cells. ACS Nano, 2014, 8, 12397-12409.
[136]
Ding, G.; Wu, Y.; Weng, Y.; Zhang, W.; Hu, Z. Solvent-assistant room temperature nanoimprinting-induced molecular orientation in poly (3-hexylthiophene) nanopillars. Macromolecules, 2013, 46, 8638-8643.
[137]
Cui, D.; Li, H.; Park, H.; Cheng, X. Improving organic thin-film transistor performance by nanoimprint-induced chain ordering. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2008, 26, 2404.
[138]
Kim, M-S.; Kim, J-S.; Cho, J.C.; Shtein, M.; Guo, L.J.; Kim, J. Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. Appl. Phys. Lett., 2007, 90, 123113.
[139]
Aryal, M.; Trivedi, K.; Hu, W.W. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography. ACS Nano, 2009, 3, 3085-3090.
[140]
Lee, J.H.; Kim, D.W.; Jang, H.; Choi, J.K.; Geng, J.; Jung, J.W.; Yoon, S.C.; Jung, H-T. Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small, 2009, 5, 2139-2143.
[141]
Dunbar, R.B.; Hesse, H.C.; Lembke, D.S.; Schmidt-Mende, L. Light-trapping plasmonic nanovoid arrays. Phys. Rev. B, 2012, 85, 035301.
[142]
Dunbar, R.B.; Pfadler, T.; Lal, N.N.; Baumberg, J.J.; Schmidt-Mende, L. Imprinting localized plasmons for enhanced solar cells. Nanotechnology, 2012, 23, 385202.
[143]
Park, J.B.; Bae, T.S.; Sohn, J.I.; Cha, S.; Lee, J.; Kim, S.K.; Hong, W-K. Fabrication of Ag nanorods-embedded P3HT/PCBM films for the enhancement of light absorption. ECS Solid State Lett., 2015, 4, Q5-Q9.
[144]
Ham, J.; Lee, J-L. ITO breakers: Highly transparent conducting Polymer/Metal/Dielectric (P/M/D) films for organic solar cells. Adv. Energy Mater., 2014, 4, 1400539.
[145]
Yang, K-Y.; Yoon, K-M.; Lim, S.; Lee, H. Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2009, 27, 2786.
[146]
Clapham, P.B.; Hutley, M.C. Reduction of lens reflexion by the “Moth Eye” principle. Nature, 1973, 244, 281-282.
[147]
Forberich, K.; Dennler, G.; Scharber, M.C.; Hingerl, K.; Fromherz, T.; Brabec, C.J. Performance Improvement of organic solar cells with moth eye anti-reflection coating. Thin Solid Films, 2008, 516, 7167-7170.
[148]
Leem, J.W.; Kim, S.; Lee, S.H.; Rogers, J.A.; Kim, E.; Yu, J.S. Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films. Adv. Energy Mater., 2014, 4, 1301315.
[149]
Ho, Y-H.; Liang, H.; Liu, S-W.; Tian, W-C.; Chen, F-C.; Wei, P-K. Efficiency improvement of organic bifunctional devices by applying omnidirectional antireflection nanopillars. RSC Adv., 2014, 4, 9588-9593.
[150]
Choi, K.; Park, S.H.; Song, Y.M.; Lee, Y.T.; Hwangbo, C.K.; Yang, H.; Lee, H.S. Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film. Adv. Mater., 2010, 22, 3713-3718.
[151]
Aryal, M.; Buyukserin, F.; Mielczarek, K.; Zhao, X-M.; Gao, J.; Zakhidov, A.; Hu, W. (Walter). Imprinted large-scale high density polymer nanopillars for organic solar cells. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2008, 26, 2562-2566.