[1]
Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by
Self-Organized Anodizing. In: Nanostructured Materials in Electrochemistry.;
A. Eftekhari, Ed.; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, Germany, 2008, 1, 1-116.
[2]
Vrublevsky, I.; Jagminas, A.; Chernyakova, K. Re-anodizing technique as a method of investigation of thermally activated defects in anodic alumina films. J. Electrochem. Soc., 2013, 160, C285-C290.
[3]
Lambert, J.; Guthmann, C.; Ortega, C.; Saint-Jean, M. Permanent polarization and charge injection in thin anodic alumina layers studied by electrostatic force microscopy. J. Appl. Phys., 2002, 91, 9161-9169.
[4]
Chernyakova, K.V.; Vrublevsky, I.A.; Ivanovskaya, M.I.; Kotsikau, D.A. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid. J. Appl. Spectr., 2012, 79, 76-82.
[5]
Morgan, D.V.; Guile, A.E.; Bektore, Y. Stored charge in anodic aluminum oxide films. J. Phys. D Appl. Phys., 1980, 13, 307-312.
[6]
Bernstein, J.J.; White, R.M. Piezo-electrocapillary effect: A new effect observed in porous anodic oxide films. J. Electrochem. Soc., 1984, 131, 1050-1053.
[7]
Belov, V.T.; Zudov, A.I.; Zudova, I.A. Symbiosis of concepts of structural anion, crucial current-density, and negative bulk charge as applied to anode aluminum-oxide. Russ. J. Electrochem., 1993, 29, 1022-1026.
[8]
Fromhold, Jr., A.T. In: Oxides and Oxide Films; J.W. Diggle, A.K.
Vijh Dekker, Eds; Marcel Dekker Inc.: New York, 1976, Vol. 3, pp. 1 271.
[9]
Despic, A.; Parkhutik, V.P. In: Modern Aspects of Electrochemistry; J.O, Bockris.; R.E, White.; B.E, Conway., Eds.; Plenum: New York, 1989, Vol. 20, pp. 401-503.
[10]
Ispas, A.; Bund, A.; Vrublevsky, I. Investigations on current transients in porous alumina films during reanodizing using the electrochemical quartz crystal microbalance. J. Solid State Electrochem., 2010, 14, 2121-2128.
[11]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Electronic properties of electrolyte/anodic alumina junction during porous anodizing. Appl. Surf. Sci., 2007, 253, 4680-4687.
[12]
Hickmott, T.W. Electrolyte effects on charge, polarization, and conduction in thin anodic Al2O3 films. I. Initial charge and temperature-dependent polarization. J. Appl. Phys., 2007, 102, 093706.
[13]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[14]
Thompson, G.E.; Xu, Y.; Skeldon, P.; Shimizu, K.; Han, S.H.; Wood, G.C. Anodic oxidation of aluminium. Phil. Mag., 1987, B55, 651-667.
[15]
Patermarakis, G.; Karayianni, H.; Masavetas, K.; Chandrinos, J. Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films. Choronopotensiometry, kinetics of film mass and thickness evolution and a high field ionic migration model. J. Solid State Electrochem., 2009, 13, 1831-1847.
[16]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Embedded space charge in porous alumina films formed in phosphoric acid. Electrochim. Acta, 2007, 53, 300-304.
[17]
Hickmott, T.W. Polarization and Fowler-Nordheim tunneling in anodized Al-Al2O3-Au diodes. J. Appl. Phys., 2000, 87, 7903-7912.
[18]
Bessone, J.; Mayer, C.; Jüttner, K. AC impedance measurements of aluminum barrier type oxide films. Electrochim. Acta, 1983, 28, 171-175.
[19]
Akolkar, R.; Landau, U.; Kuo, H.; Wang, Y-M. Modeling of the current distribution in aluminum anodization. J. Appl. Electrochem., 2004, 34, 807-813.
[20]
Thompson, G.E.; Wood, G.C. Treatise on materials and technology.
Corrosion: Aqueous Processed and Passive Films. Herman, H.
Eds.; Academic Press, 1983, 23, 205-329.
[21]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Potentiodynamic behavior of as-grown and annealed porous anodic alumina films: Current overshoots and oscillations in transients. Solid State Sci., 2008, 10, 1605-1611.
[22]
Maissel, L. In: Handbook of Thin Film Technology; L, Maissel.; R, Glang., Eds.; McGraw-Hill: New York, 1970, pp. 14-35.
[23]
Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A point defect model for anodic passive films: I. Film growth kinetics. J. Electrochem. Soc., 1981, 128, 1187-1194.
[24]
Lin, L.F.; Chao, C.Y.; Macdonald, D.D. A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc., 1981, 128, 1194-1198.
[25]
Macdonald, D.D.; Urquidi-Macdonald, M. Theory of steady-state passive films. J. Electrochem. Soc., 1990, 137, 2395-2402.
[26]
Belca, I.; Kasalica, B.; Zekovic, L.J.; Jovanic, B.; Vasilic, R. Galvanoluminescence spectra of porous oxide layers formed by aluminum anodization in oxalic acid. Electrochim. Acta, 1999, 45, 993-996.
[27]
Stojadinovic, S.; Tadic, M.; Belca, I.; Kasalica, B.; Zekovic, L.J. The galvanoluminescence spectra of barrier oxide films on aluminum formed in organic electrolytes. Electrochim. Acta, 2007, 52, 7166-7170.
[28]
Stojadinovic, S.; Belca, I.; Kasalica, B.; Zekovic, L.J.; Tadic, M. The galvanoluminescence spectra of barrier oxide films on aluminum formed in inorganic electrolytes. Electrochem. Commun., 2006, 8, 1621-1624.
[29]
Güntherschulze, A.; Betz, H. Elektrolytkondensatoren, 2nd ed; Herbert Cram: Berlin, 1952.
[30]
Wood, G.C.; Pearson, C. Dielectric breakdown of anodic oxide films on valve metals. Corros. Sci., 1967, 7, 119-125.
[31]
Vijh, A.K. Sparking voltage and side reactions during anodization of valve metals in terms of electron tunneling. Corros. Sci., 1971, 11, 411-417.
[32]
Albella, J.M.; Montero, I.; Martinez-Duart, J.M. Electron injection and avalanche during the anodic oxidation of tantalum. J. Electrochem. Soc., 1984, 131, 1101-1104.
[33]
Montero, I.; Albella, J.M.; Martinez-Duart, J.M. Influence of electrolyte concentration on the anodization and breakdown characteristics of Ta2O5 films. J. Electrochem. Soc., 1985, 132, 814-818.
[34]
Albella, J.M.; Montero, I.; Martinez-Duart, J.M. A theory of avalanche breaakdown during anodic-oxidation. Electrochim. Acta, 1987, 32, 255-258.
[35]
Ikonopisov, S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta, 1977, 22, 1077-1082.
[36]
Kodary, V.; Klein, N. Electrical breakdown. I. During the anodic growth of tantalum. J. Electrochem. Soc., 1980, 127, 139-151.
[37]
Thompson, G.E.; Furneaux, R.C.; Wood, G.C. Electron microscopy of ion beam thinned porous anodic films formed on aluminium. Corros. Sci., 1978, 18, 481-498.
[38]
Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J. Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci., 2004, 236, 270-277.
[39]
Fukuda, Y.; Fukushima, T. Behavior of sulfate ions during formation of anodic oxide film on aluminium. Bull. Chem. Soc. Jpn., 1980, 53, 3125-3130.
[40]
Vrublevsky, I.; Parkoun, V.; Schreckenbach, J.; Goedel, W.A. Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique. Appl. Surf. Sci., 2006, 252, 5100-5108.
[41]
Diggle, J.W. In: Oxides and oxide films; J.W, Diggle., Ed.; Marcel Dekker Inc.: New York, 1972, Vol. 1, pp. 92-281.
[42]
Vrublevsky, I.; Ispas, A.; Chernyakova, K.; Bund, A. Effect of continuous magnetic field on the growth mechanism of nanoporous anodic alumina films on different substrates. J. Solid State Electrochem., 2016, 20, 2765-2772.
[43]
Zaraska, L.; Sulka, G.D.; Jaskuła, M. Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem., 2011, 15, 2427-2436.
[44]
Hassel, A.W.; Lohrengel, M.M. Initial stages of cathodic breakdown of thin anodic aluminium oxide films. Electrochim. Acta, 1995, 40, 433-437.