Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Effect of Various Electrolyte Modifiers on Anodic Alumina (AAO) Growth and Morphology

Author(s): Małgorzata Norek* and Bogusław Budner

Volume 15, Issue 1, 2019

Page: [76 - 83] Pages: 8

DOI: 10.2174/1573413714666180125153857

Price: $65

Abstract

The review summarizes the recent results on the influence of various modifiers on the anodic aluminum oxide (AAO) growth and morphological parameters. It is demonstrated that the modifiers can play an important role in the formation and self-ordering of AAO. The intrinsic function of a modifier seems to depend on other operating conditions, such as a type of electrolyte used, applied anodizing voltage, the chemical structure of the modifier and its stability in the electric field, or a complex interplay between physical and chemical variables (electrical conductivity, viscosity, dielectric constant, pH, etc.). The function can also vary depending on whether the anodization is carried out under mild (MA) or hard (HA) conditions. Although there is still no coherent description of the role of modifiers in the aluminum anodization, the review shows a potential for prospective research and indicates a possibility to control the AAO formation by application of a given modifier.

Keywords: Anodic alumina (AAO), hard anodization, mild anodization, electrolyte modifiers, alcohols, polyols.

Graphical Abstract

[1]
Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progr. Mater. Sci., 2013, 58, 636-704.
[2]
Wu, H.; Yang, J.; Cao, S.; Huang, L.; Chen, L. Ordered organic nanostructures fabricated from anodic alumina oxide templates for organic bulk-heterojuncion photovoltaics. Macromol. Chem. Phys., 2014, 215, 584-596.
[3]
Kong, J-H.; Kim, T-H.; Kim, J.H.; Park, J-K.; Lee, D-W.; Kim, S-H.; Kim, J-M. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique. Nanoscale, 2014, 6, 1453-1461.
[4]
Banerjee, P.; Perez, I.; Henn-Lecordier, L.; Lee, S.B.; Rubloff, G.W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nano, 2009, 4, 292-296.
[5]
Wang, K.; Wang, Y.; Hosono, E.; Zhou, H. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C, 2009, 113, 1093-1097.
[6]
Toccafondi, C.; La Rocca, R.; Scarpellini, A.; Salerno, M.; Das, G.; Dante, S. Thin nanoporous alumina-based SERS platform for single cell sensing. Appl. Surf. Sci., 2015, 35, 1738-1745.
[7]
Toccafondi, C.; Dante, S.; Reverberi, A.P.; Salerno, M. Biomedical applications of anodic alumina. Curr. Nanosci., 2015, 11, 572-580.
[8]
Tsao, Y.C.; Søndergaard, T.; Skovsen, E.; Gurevich, L.; Pedersen, K.; Pedersen, T.G. Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Opt. Express, 2013, 21, A84-A95.
[9]
Norek, M.; Włodarski, M.; Nyga, P.; Budner, B.; Siemiaszko, D. Improved anti-reflective properties of amorphous silicon films deposited on Al nanoconcave arrays. Mater. Lett., 2014, 135, 199-201.
[10]
Huang, H.; Lu, L.; Wang, J.; Yang, J.; Leung, S.F.; Wang, Y.; Chen, D.; Chen, X.; Shen, G.; Li, D.; Fan, Z. Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci., 2013, 6, 2965-2971.
[11]
Shingubara, S. Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res., 2003, 5, 17-30.
[12]
Sulka, G.D. In: Nanostructured Materials in Electrochemistry;, 2008. Eftekhari, A. Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008; pp. 1-116.
[13]
Kikuchi, T.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Self-ordering behavior of anodic porous alumina via selenic acid anodizing. Electrochim. Acta, 2014, 137, 728-735.
[14]
Takenaga, A.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Self-ordered aluminum anodizing in phosphonoacetic acid and its structural coloration. ECS Solid State Lett., 2015, 4, 55-P58.
[15]
Kikuchi, T.; Yamamoto, T.; Natsui, S.; Suzuki, R.O. Fabrication of anodic porous alumina by squaric acid anodizing. Electrochim. Acta, 2014, 123, 14-22.
[16]
Kikuchi, T.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array. Electrochim. Acta, 2015, 156, 235-243.
[17]
Takenaga, A.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Exploration for the self-ordering of porous alumina fabricated via anodizing in etidronic acid. Electrochim. Acta, 2016, 211, 515-523.
[18]
Ono, S.; Saito, M.; Asoh, H. Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid-State Lett., 2004, 7, B21-B24.
[19]
Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc., 2004, 151, B473-B478.
[20]
Gabe, D.R. Hard anodizing – what do we mean by hard. Metal Finishing., 2002, 100, 52-58.
[21]
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature, 2006, 5, 741-747.
[22]
Li, Y.B.; Zheng, M.J.; Ma, L. High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range. Appl. Phys. Lett., 2007, 91, 073109.
[23]
Cheng, C.; Ngan, A.H. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization. Nanotechnology, 2013, 24, 215602.
[24]
Schwirn, K.; Lee, W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano, 2008, 2, 302-310.
[25]
Li, Y.; Ling, Z.Y.; Chen, S.S.; Wang, J.C. Fabrication of novel porous anodic alumina membranes by two-step hard anodization. Nanotechnology, 2008, 19, 225604.
[26]
Li, Y.; Zheng, M.; Ma, L.; Shen, W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006, 17, 5101-5105.
[27]
Su, Z.; Hähner, G.; Zhou, W. Investigation of the pore formation in anodic aluminium oxide. J. Mater. Chem., 2008, 18, 5787-5795.
[28]
Su, Z.; Zhou, W. Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater., 2008, 20, 3663-3667.
[29]
Su, Z.; Zhou, W. Pore diameter control in anodic titanium and aluminium oxides. J. Mater. Chem., 2011, 21, 357-362.
[30]
Akerlof, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc., 1932, 54, 4125-4139.
[31]
Zahn, M.; Ohki, Y.; Fenneman, D.B.; Gripshover, R.J.; Gehman, V.H. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc. IEEE, 1986, 74, 1182-1221.
[32]
Yi, L.; Zhiyuan, L.; Shuoshuo, C.; Xing, H.; Xinhua, H. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem. Commun., 2010, 46, 309-311.
[33]
Yi, L.; Zhiyuan, L.; Xing, H.; Yisen, L.; Yi, C. Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density. RSC Adv., 2012, 2, 5164-5171.
[34]
Li, Y.; Ling, Z.Y.; Hu, X.; Liu, Y.S.; Chang, Y. Unique fusiform alumina nanotubes fabricated by combined anodization. Chem. Commun., 2011, 47, 2173-2175.
[35]
Li, D.; Jiang, C.; Jiang, J.; Ren, X. Investigation on highly ordered porous alumina membranes formed by high electric field anodization. Mater. Chem. Phys., 2008, 111, 168-171.
[36]
Han, X.Y.; Shen, W.Z. Improved two-step anodization technique for ordered porous anodic aluminum membranes. J. Electroan. Chem., 2011, 655, 56-64.
[37]
Qin, X.; Zhang, J.; Meng, X.; Wang, L.; Deng, C.; Ding, G.; Zeng, H.; Xu, X. Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid. Surf. Coat. Technol., 2014, 254, 398-401.
[38]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroan. Chem., 2015, 750, 79-88.
[39]
Li, A-P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84, 6023-6026.
[40]
Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett., 1998, 72, 1173-1175.
[41]
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gosele, U. Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett., 2002, 2, 677-680.
[42]
Martín, J.; Manzano, C.V.; Martín-González, M. In-depth study of self-ordered porous alumina in the 140-400 nm pore diameter range. Microporous Mesoporous Mater., 2012, 151, 311-316.
[43]
Zaraska, L.; Sulka, G.D.; Jaskuła, M. The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol., 2010, 204, 1729-1737.
[44]
Chen, X.; Yu, D.; Cao, L.; Zhu, X.; Song, Y.; Huang, H.; Lu, L.; Chen, X. Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Mater. Res. Bull., 2014, 57, 116-120.
[45]
Wang, Q.; Long, Y.; Sun, B. Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution. J. Porous Mater., 2013, 20, 785-788.
[46]
Shulgov, V.; Ignashev, E.; Gurskaja, E. Correlation between formation conditions and breakdown voltage of anodic oxide films on aluminum. Microchim. Acta, 2007, 156, 147-150.
[47]
Martín, J.; Manzano, C.V.; Caballero-Calero, O.; Martín-González, M. High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces, 2013, 5, 72-79.
[48]
Manzano, C.V.; Martín, J.; Martín-González, M.S. Ultra-narrow 12 nm pore diameter self-ordered anodic alumina templates. Microporous Mesoporous Mater., 2014, 184, 177-183.
[49]
Abad, B.; Maiz, J.; Martin-Gonzalez, M. Rules to determine thermal conductivity and density of anodic aluminium oxide (AAO) membranes. J. Phys. Chem. C, 2016, 120, 5361-5370.
[50]
Parkhutik, V.P.; Shershulsky, V.I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D Appl. Phys., 1992, 25, 1258-1263.
[51]
Manzano, C.V.; Best, J.P.; Schwiedrzik, J.J.; Cantarero, A.; Michler, J.; Philippe, L. The influence of thickness, interpore distance and compositional structure on the optical properties of self-ordered anodic aluminum oxide films. J. Mater. Chem. C., 2016, 4, 7658-7666.
[52]
Song, Y.; Wu, H.; Yang, B.; Wang, J.; Yang, J.; Xu, C.; Zhu, X.; Jia, H. Effect of solvent on the structural features and the degree of ordering of pore arrays in porous anodic alumina. J. Electroan. Chem., 2012, 682, 110-115.
[53]
Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habazaki, H. A flow model of porous anodic film growth on aluminum. Electrochim. Acta, 2006, 52, 681-687.
[54]
Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Hashimoto, T.; Habazaki, H. Compositional evidence for flow in anodic films on aluminum under high electric fields. J. Electrochem. Soc., 2007, 154, C540-C545.
[55]
Norek, M.; Stępniowski, W.J.; Siemiaszko, D. Effect of ethylene glycol on morphology of anodic alumina prepared in hard anodization. J. Electroanal. Chem., 2016, 762, 20-28.
[56]
Norek, M.; Zasada, D.; Siemiaszko, D. Systematic study on morphology of anodic alumina produced by hard anodization in the electrolytes modified with ethylene glycol. J. Nano Res., 2017, 46, 165-178.
[57]
Morlidge, J.R.; Shimizu, K.; Skeldon, P.; Thompson, G.E.; Wood, G.C. Formation of anodicalumina films in tungstate/ethylene glycol electrolyte. Thin Solid Films, 1995, 258, 341-346.
[58]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Bombalska, A.; Nowak-Stępniowska, A.; Kwaśny, M.; Bojar, Z. Fabrication of anodic aluminium oxide with incorporated chromate ions. Appl. Surf. Sci., 2012, 259, 324-330.
[59]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Włodarski, M.; Bojar, Z. Incorporation of copper chelate ions into anodic alumina walls. Mater. Lett., 2013, 106, 242-245.
[60]
Stępniowski, W.J.; Norek, M.; Budner, B.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Kaliszewski, M.; Mostek, A.; Thorat, S.; Salerno, M.; Giersig, M.; Bojar, Z. In-situ electrochemical doping of nanoporous anodic alumina oxide with indigo carmine organic dye. Thin Solid Films, 2016, 598, 60-64.
[61]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Kaliszewski, M.; Chilimoniuk, P.; Bombalska, A.; Bojar, Z. Fabrication and luminescence of anodic alumina with incorporated vanadyl citrate chelate anions. J. Mater. Sci. Nanotechnol., 2014, 1, 1-7.
[62]
Stępniowski, W.J.; Forbot, D.; Norek, M.; Michalska-Domańska, M.; Król, A. The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide. Electrochim. Acta, 2014, 133, 57-64.
[63]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Forbot, D.; Król, A. Study on the correlation between criterion number derived from Rayleigh–Bénard convective cells and arrangement of nanoporous anodic aluminum oxide. Mater. Lett., 2014, 125, 124-127.
[64]
Chen, W.; Wu, J-S.; Xia, X-H. Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano, 2008, 2, 959-965.
[65]
Salerno, M.; Patra, N.; Losso, R.; Cingolani, R. Increased growth rate of anodic porous alumina by use of ionic liquid as electrolyte additive. Mater. Lett., 2009, 63, 1826-1829.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy