[1]
Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; Sherman, S.I.; Steward, D.L.; Tuttle, R.M. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2009, 19(11), 1167-1214.
[2]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M. J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66.
[3]
Schlumberger, M.; Chevillard, S.; Ory, K.; Dupuy, C.; Le Guen, B.; de Vathaire, F. [Thyroid cancer following exposure to ionising radiation]. Cancer Radiother. 2011, 15(5), 394-399.
[4]
Fushiki, S. Radiation hazards in children - lessons from Chernobyl, Three Mile Island and Fukushima. Brain Dev., 2013, 35(3), 220-227.
[5]
Miccoli, P.; Antonelli, A.; Spinelli, C.; Ferdeghini, M.; Fallahi, P.; Baschieri, L. Completion total thyroidectomy in children with thyroid cancer secondary to the Chernobyl accident. Arch. Surg., 1998, 133(1), 89-93.
[6]
Suzuki, K.; Yamashita, S. Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 2012, 42(7), 563-568.
[7]
Antonelli, A.; Silvano, G.; Gambuzza, C.; Bianchi, F.; Tana, L.; Baschieri, L. Is occupationally induced exposure to radiation a risk factor of thyroid nodule formation? Arch. Environ. Health, 1996, 51(3), 177-180.
[8]
Knobel, M.; Medeiros-Neto, G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq. Bras. Endocrinol. Metabol, 2007, 51(5), 701-712.
[9]
Donati, L.; Antonelli, A.; Bertoni, F.; Moscogiuri, D.; Andreani, M.; Venturi, S.; Filippi, T.; Gasperini, L.; Neri, S.; Baschieri, L. Clinical picture of endemic cretinism in central Apennines (Montefeltro). Thyroid, 1992, 2(4), 283-290.
[10]
Stein, S.A.; Wartofsky, L. Primary thyroid lymphoma: A clinical review. J. Clin. Endocrinol. Metab., 2013, 98(8), 3131-3138.
[11]
Jankovic, B.; Le, K.T.; Hershman, J.M. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J. Clin. Endocrinol. Metab., 2013, 98(2), 474-482.
[12]
Antonelli, A.; Ferri, C.; Fallahi, P.; Nesti, C.; Zignego, A.L.; Maccheroni, M. Thyroid cancer in HCV-related mixed cryoglobulinemia patients. Clin. Exp. Rheumatol., 2002, 20(5), 693-696.
[13]
Antonelli, A.; Ferri, C.; Fallahi, P.; Pampana, A.; Ferrari, S.M.; Barani, L.; Marchi, S.; Ferrannini, E. Thyroid cancer in HCV-related chronic hepatitis patients: A case-control study. Thyroid, 2007, 17(5), 447-451.
[14]
Haugen, B.R. Radioiodine remnant ablation: current indications and dosing regimens. Endocr. Pract., 2012, 18(4), 604-610.
[15]
Antonelli, A.; Miccoli, P.; Ferdeghini, M.; Di Coscio, G.; Alberti, B.; Iacconi, P.; Baldi, V.; Fallahi, P.; Baschieri, L. Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer. Thyroid, 1995, 5(1), 25-28.
[16]
Antonelli, A.; Miccoli, P.; Fallahi, P.; Grosso, M.; Nesti, C.; Spinelli, C.; Ferrannini, E. Role of neck ultrasonography in the follow-up of children operated on for thyroid papillary cancer. Thyroid, 2003, 13(5), 479-484.
[17]
Haugen, B.R. Management of the patient with progressive radioiodine non-responsive disease. Semin. Surg. Oncol., 1999, 16(1), 34-41.
[18]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med., 2005, 353(2), 172-187.
[19]
Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol., 2011, 7(10), 569-580.
[20]
Lemoine, N.R.; Mayall, E.S.; Wyllie, F.S.; Williams, E.D.; Goyns, M.; Stringer, B.; Wynford-Thomas, D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene, 1989, 4(2), 159-164.
[21]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Frascerra, S.; Piaggi, S.; Gelmini, S.; Lupi, C.; Minuto, M.; Berti, P.; Benvenga, S.; Basolo, F.; Orlando, C.; Miccoli, P. Dysregulation of secretion of CXC alpha-chemokine CXCL10 in papillary thyroid cancer: modulation by peroxisome proliferator-activated receptor-gamma agonists. Endocr. Relat. Cancer, 2009, 16(4), 1299-1311.
[22]
Lorusso, P.M.; Eder, J.P. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin. Investig. Drugs, 2008, 17(7), 1013-1028.
[23]
Antonelli, A.; Ferri, C.; Ferrari, S.M.; Sebastiani, M.; Colaci, M.; Ruffilli, I.; Fallahi, P. New targeted molecular therapies for dedifferentiated thyroid cancer. J. Oncol., 2010, 2010, 921682.
[24]
Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; Sherman, S.I.; Smit, J.W.; Chung, J.; Kappeler, C.; Peña, C.; Molnár, I.; Schlumberger, M.J. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940), 319-328.
[25]
Wells, S.A., Jr; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; Read, J.; Langmuir, P.; Ryan, A.J.; Schlumberger, M.J. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol., 2012, 30(2), 134-141.
[26]
Cabanillas, M.E.; Brose, M.S.; Ramies, D.A.; Lee, Y.; Miles, D.; Sherman, S.I. Antitumor activity of cabozantinib (XL184) in a cohort of patients (pts) with differentiated thyroid cancer (DTC). Proceedings of the 48th American Society of Clinical Oncology Meeting Chicago, USAJ. une 1-5 2012.
[27]
Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; Taylor, M.H.; Kim, S.B.; Krzyzanowska, M.K.; Dutcus, C.E.; de las Heras, B.; Zhu, J.; Sherman, S.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med., 2015, 372(7), 621-630.
[28]
Gómez-Sáez, J.M. Sunitinib for the treatment of thyroid cancer. Expert Opin. Investig. Drugs, 2016, 25(11), 1345-1352.
[29]
Hao, Z.; Sadek, I. Sunitinib: The antiangiogenic effects and beyond. OncoTargets Ther., 2016, 9, 5495-5505.
[30]
Capozzi, M.; Arx, V.O.N.C.; D.E., Divitiis C.; Ottaiano, A.; Tatangelo, F.; Romano, G.M.; Tafuto, S.; (On behalf of ENETS Center of excellence multidisciplinary group for neuroendocrine tumors in naples, italy). Antiangiogenic therapy in pancreatic neuroendocrine tumors. Anticancer Res., 2016, 36(10), 5025-5030.
[31]
Imbulgoda, A.; Heng, D.Y.; Kollmannsberger, C. Sunitinib in the treatment of advanced solid tumors. Recent Results Cancer Res., 2014, 201, 165-184.
[32]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[34]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; Chen, I.; Bycott, P.W.; Baum, C.M.; Figlin, R.A. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med., 2007, 356(2), 115-124.
[35]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; Garcia-del-Muro, X.; Sosman, J.A.; Solska, E.; Wilding, G.; Thompson, J.A.; Kim, S.T.; Chen, I.; Huang, X.; Figlin, R.A. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2009, 27(22), 3584-3590.
[37]
Berardi, R.; Morgese, F.; Torniai, M.; Savini, A.; Partelli, S.; Rinaldi, S.; Caramanti, M.; Ferrini, C.; Falconi, M.; Cascinu, S.; Berardi, R.; Morgese, F.; Torniai, M.; Savini, A.; Partelli, S.; Rinaldi, S.; Caramanti, M.; Ferrini, C.; Falconi, M.; Cascinu, S. Medical treatment for gastro-entero-pancreatic neuroendocrine tumours. World J. Gastrointest. Oncol., 2016, 8(4), 389-401.
[38]
Kim, S.; Ding, W.; Zhang, L.; Tian, W.; Chen, S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. OncoTargets Ther., 2014, 7, 719-728.
[39]
Kim, D.W.; Jo, Y.S.; Jung, H.S.; Chung, H.K.; Song, J.H.; Park, K.C.; Park, S.H.; Hwang, J.H.; Rha, S.Y.; Kweon, G.R.; Lee, S.J.; Jo, K.W.; Shong, M. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J. Clin. Endocrinol. Metab., 2006, 91(10), 4070-4076.
[40]
Fenton, M.S.; Marion, K.M.; Salem, A.K.; Hogen, R.; Naeim, F.; Hershman, J.M. Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid, 2010, 20(9), 965-974.
[41]
Jeong, W.J.; Mo, J.H.; Park, M.W.; Choi, I.J.; An, S.Y.; Jeon, E.H.; Ahn, S.H. Sunitinib inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation. Cancer Biol. Ther., 2011, 12(5), 458-465.
[42]
D’Agostino, M.; Voce, P.; Celano, M.; Sponziello, M.; Moretti, S.; Maggisano, V.; Verrienti, A.; Durante, C.; Filetti, S.; Puxeddu, E.; Russo, D. Sunitinib exerts only limited effects on the proliferation and differentiation of anaplastic thyroid cancer cells. Thyroid, 2012, 22(2), 138-144.
[43]
Piscazzi, A.; Costantino, E.; Maddalena, F.; Natalicchio, M.I.; Gerardi, A.M.; Antonetti, R.; Cignarelli, M.; Landriscina, M. Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab., 2012, 97(6), E898-E906.
[44]
Di Desidero, T.; Fioravanti, A.; Orlandi, P.; Canu, B.; Giannini, R.; Borrelli, N.; Man, S.; Xu, P.; Fontanini, G.; Basolo, F.; Kerbel, R.S.; Francia, G.; Danesi, R.; Bocci, G. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1. J. Clin. Endocrinol. Metab., 2013, 98(9), E1465-E1473.
[45]
Dawson, S.J.; Conus, N.M.; Toner, G.C.; Raleigh, J.M.; Hicks, R.J.; McArthur, G.; Rischin, D. Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma. Anticancer Drugs, 2008, 19(5), 547-552.
[46]
Bugalho, M.J.; Domingues, R.; Borges, A. A case of advanced medullary thyroid carcinoma successfully treated with sunitinib. Oncologist, 2009, 14(11), 1083-1087.
[47]
Cabanillas, M.E.; Waguespack, S.G.; Bronstein, Y.; Williams, M.D.; Feng, L.; Hernandez, M.; Lopez, A.; Sherman, S.I.; Busaidy, N.L. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: The M. D. Anderson experience. J. Clin. Endocrinol. Metab., 2010, 95(6), 2588-2595.
[48]
Kaldrymides, P.; Kostoglou-Athanassiou, I.; Gkountouvas, A.; Veniou, E.; Ziras, N. Partial remission of metastatic papillary thyroid carcinoma with sunitinib. Report of a case and review of the literature. Endocrine, 2010, 37(1), 6-10.
[49]
Pasqualetti, G.; Ricci, S.; Dardano, A.; Ferdeghini, M.; Del Tacca, M.; Monzani, F. The emerging role of sunitinib in the treatment of advanced epithelial thyroid cancer: our experience and review of literature. Mini Rev. Med. Chem., 2011, 11(9), 746-752.
[50]
Currás Freixes, M.; Díaz Pérez, J.Á.; Casado Herráez, A.; Ochagavía Cámara, S. Three cases of sporadic medullary thyroid carcinoma in progression treated with sunitinib. Endocrinol. Nutr., 2014, 61(1), 62-63.
[51]
Gori, S.; Foglietta, J.; Rossi, M.; Hamzaj, A.; Stocchi, L.; Galuppo, C.; Picece, V.; Puxeddu, E.; Furlani, L. Sunitinib therapy in metastatic papillary thyroid cancer. Tumori, 2013, 99(6), 285e-287e.
[52]
Díez, J.J.; Iglesias, P.; Alonso, T.; Grande, E. Activity and safety of sunitinib in patients with advanced radioactive iodine-refractory differentiated thyroid carcinoma in clinical practice. Endocrine, 2015, 48(2), 582-588.
[53]
Marotta, V.; Di Somma, C.; Rubino, M.; Sciammarella, C.; Modica, R.; Camera, L.; Del Prete, M.; Marciello, F.; Ramundo, V.; Circelli, L.; Buonomano, P.; Colao, A.; Faggiano, A. Second-line sunitinib as a feasible approach for iodine-refractory differentiated thyroid cancer after the failure of first-line sorafenib. Endocrine, 2015, 49(3), 854-858.
[54]
Schoenfeld, J.D.; Odejide, O.O.; Wirth, L.J.; Chan, A.W. Survival of a patient with anaplastic thyroid cancer following intensity-modulated radiotherapy and sunitinib--a case report. Anticancer Res., 2012, 32(5), 1743-1746.
[55]
Grande, E.; Capdevila, J.; Díez, J.J.; Longo, F.; Carrato, A. A significant response to sunitinib in a patient with anaplastic thyroid carcinoma. J. Res. Med. Sci., 2013, 18(7), 623-625.
[56]
Cohen, E.E.; Needles, B.M.; Cullen, K.J.; Wong, S.J.; Wade, J.L.; Ivy, S.P.; Villaflor, V.M.; Seiwert, T.Y.; Nichols, K.; Vokes, E.E. In Phase 2 study of sunitinib in refractory thyroid cancer. Proceedings of the 44th American Society of Clinical Oncology Meeting Chicago, 2008.
[57]
Goulart, B.; Carr, L.; Martins, R.G.; Eaton, K.; Kell, E.; Wallace, S.; Capell, P.; Mankoff, D. Phase II study of sunitinib in iodine refractory, well-differentiated thyroid cancer (WDTC) and metastatic medullary thyroid carcinoma (MTC). Proceedings of the 44th American Society of Clinical Oncology Meeting Chicago, USAMay 30 - June 3, 2008
[58]
Ravaud, A.; de la Fouchardière, C.; Caron, P.; Doussau, A.; Do Cao, C.; Asselineau, J.; Rodien, P.; Pouessel, D.; Nicolli-Sire, P.; Klein, M.; Bournaud-Salinas, C.; Wemeau, J.L.; Gimbert, A.; Picat, M.Q.; Pedenon, D.; Digue, L.; Daste, A.; Catargi, B.; Delord, J.P. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: Mature data from the THYSU study. Eur. J. Cancer, 2017, 76, 110-117.
[59]
Ravaud, A.; de la Fouchardière, C.; Asselineau, J.; Delord, J.P.; Do Cao, C.; Niccoli, P.; Rodien, P.; Klein, M.; Catargi, B. Efficacy of sunitinib in advanced medullary thyroid carcinoma: Intermediate results of phase II THYSU. Oncologist, 2010, 15(2), 212-213.
[60]
Carr, L.L.; Mankoff, D.A.; Goulart, B.H.; Eaton, K.D.; Capell, P.T.; Kell, E.M.; Bauman, J.E.; Martins, R.G. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res., 2010, 16(21), 5260-5268.
[61]
De Souza, J.A.; Busaidy, N.; Zimrin, A.; Seiwert, T.Y.; Villaflor, V.M.; Poluru, K.B.; Reddy, P.L.; Nam, J.; Vokes, E.E.; Cohen, E.E. The University of Chicago, IL. Proceedings of the 46th American Society of Clinical Oncology Meeting Chicago, June 4-8, 2010.
[62]
Massicotte, M.H.; Brassard, M.; Claude-Desroches, M.; Borget, I.; Bonichon, F.; Giraudet, A.L.; Do Cao, C.; Chougnet, C.N.; Leboulleux, S.; Baudin, E.; Schlumberger, M.; de la Fouchardière, C. Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network. Eur. J. Endocrinol., 2014, 170(4), 575-582.
[63]
Bikas, A.; Kundra, P.; Desale, S.; Mete, M.; O’Keefe, K.; Clark, B.G.; Wray, L.; Gandhi, R.; Barett, C.; Jelinek, J.S.; Wexler, J.A.; Wartofsky, L.; Burman, K.D. Phase 2 clinical trial of sunitinib as adjunctive treatment in patients with advanced differentiated thyroid cancer. Eur. J. Endocrinol., 2016, 174(3), 373-380.
[64]
Atallah, V.; Hocquelet, A.; Do Cao, C.; Zerdoud, S.; De La Fouchardiere, C.; Bardet, S.; Italiano, A.; Dierick-Galet, A.; Leduc, N.; Bonichon, F.; Leboulleux, S.; Godbert, Y. Activity and safety of sunitinib in patients with advanced radioiodine refractory thyroid carcinoma: A retrospective analysis of 57 patients. Thyroid, 2016, 26(8), 1085-1092.
[66]
Harvey, R.D.; Owonikoko, T.K.; Lewis, C.M.; Akintayo, A.; Chen, Z.; Tighiouart, M.; Ramalingam, S.S.; Fanucchi, M.P.; Nadella, P.; Rogatko, A.; Shin, D.M.; El-Rayes, B.; Khuri, F.R.; Kauh, J.S. A phase 1 Bayesian dose selection study of bortezomib and sunitinib in patients with refractory solid tumor malignancies. Br. J. Cancer, 2013, 108(4), 762-765.
[67]
Fallahi, P.; Ferrari, S.M.; Vita, R.; Di Domenicantonio, A.; Corrado, A.; Benvenga, S.; Antonelli, A. Thyroid dysfunctions induced by tyrosine kinase inhibitors. Expert Opin. Drug Saf., 2014, 13(6), 723-733.
[68]
Gild, M.L.; Bullock, M.; Robinson, B.G.; Clifton-Bligh, R. Multikinase inhibitors: A new option for the treatment of thyroid cancer. Nat. Rev. Endocrinol., 2011, 7(10), 617-624.
[69]
Liu, R.; Liu, D.; Xing, M. The Akt inhibitor MK2206 synergizes, but perifosine antagonizes, the BRAF(V600E) inhibitor PLX4032 and the MEK1/2 inhibitor AZD6244 in the inhibition of thyroid cancer cells. J. Clin. Endocrinol. Metab., 2012, 97(2), E173-E182.
[70]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Minuto, M.; Giannini, R.; Marchetti, I.; Barani, L.; Basolo, F.; Ferrannini, E.; Miccoli, P. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin. Endocrinol. (Oxf.), 2009, 70(6), 946-953.
[71]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Ruffilli, I.; Di Domenicantonio, A.; Fioravanti, A.; Sartini, S.; Minuto, M.; Piaggi, S.; Corti, A.; Alì, G.; Di Desidero, T.; Berti, P.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM94, a novel cyclic amide with anti-VEGFR-2 and antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab., 2012, 97(4), E528-E536.
[72]
Newell, D.R. Flasks, fibres and flanks--pre-clinical tumour models for predicting clinical antitumour activity. Br. J. Cancer, 2001, 84(10), 1289-1290.
[73]
Schroyens, W.; Tueni, E.; Dodion, P.; Bodecker, R.; Stoessel, F.; Klastersky, J. Validation of clinical predictive value of in vitro colorimetric chemosensitivity assay in head and neck cancer. Eur. J. Cancer, 1990, 26(7), 834-838.
[74]
Antonelli, A. Molecular profiling and ways towards personalized medicine in advanced differentiated thyroid cancer. Curr. Genomics, 2014, 15(3), 161.
[75]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Marchetti, I.; Ugolini, C.; Basolo, F.; Miccoli, P.; Ferrannini, E. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur. J. Endocrinol., 2008, 159(3), 283-291.
[76]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Barani, L.; Marchetti, I.; Ferrannini, E.; Miccoli, P. Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin. Endocrinol. (Oxf.), 2008, 69(1), 148-152.
[77]
Ferrari, S.M.; Fallahi, P.; La Motta, C.; Bocci, G.; Corrado, A.; Materazzi, G.; Galleri, D.; Piaggi, S.; Danesi, R.; Da Settimo, F.; Miccoli, P.; Antonelli, A. Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer in vitro. Surgery, 2014, 156(5), 1167-1176.
[78]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Corrado, A.; Fioravanti, A.; Sartini, S.; Orlandi, P.; Piaggi, S.; Corti, A.; Materazzi, G.; Galleri, D.; Ulisse, S.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Mol. Cell. Endocrinol., 2014, 393(1-2), 56-64.
[79]
Antonelli, A.; Bocci, G.; Fallahi, P.; La Motta, C.; Ferrari, S.M.; Mancusi, C.; Fioravanti, A.; Di Desidero, T.; Sartini, S.; Corti, A.; Piaggi, S.; Materazzi, G.; Spinelli, C.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab., 2014, 99(4), E572-E581.
[80]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Fioravanti, A.; Sartini, S.; Minuto, M.; Piaggi, S.; Corti, A.; Alì, G.; Berti, P.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral activity in vitro and in vivo in papillary dedifferentiated thyroid cancer. J. Clin. Endocrinol. Metab., 2011, 96(2), E288-E296.
[81]
Aiello, A.; Pandini, G.; Frasca, F.; Conte, E.; Murabito, A.; Sacco, A.; Genua, M.; Vigneri, R.; Belfiore, A. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology, 2006, 147(9), 4463-4475.
[82]
Marlow, L.A.; Reynolds, L.A.; Cleland, A.S.; Cooper, S.J.; Gumz, M.L.; Kurakata, S.; Fujiwara, K.; Zhang, Y.; Sebo, T.; Grant, C.; McIver, B.; Wadsworth, J.T.; Radisky, D.C.; Smallridge, R.C.; Copland, J.A. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res., 2009, 69(4), 1536-1544.
[83]
Bravo, S.B.; García-Rendueles, M.E.; Seoane, R.; Dosil, V.; Cameselle-Teijeiro, J.; López-Lázaro, L.; Zalvide, J.; Barreiro, F.; Pombo, C.M.; Alvarez, C.V. Plitidepsin has a cytostatic effect in human undifferentiated (anaplastic) thyroid carcinoma. Clin. Cancer Res., 2005, 11(21), 7664-7673.
[84]
Karwowski, J.K.; Nowels, K.W.; McDougall, I.R.; Weigel, R.J. Needle track seeding of papillary thyroid carcinoma from fine needle aspiration biopsy. A case report. Acta Cytol., 2002, 46(3), 591-595.
[85]
Uchida, N.; Suda, T.; Inoue, T.; Fujiwara, Y.; Ishiguro, K. Needle track dissemination of follicular thyroid carcinoma following fine-needle aspiration biopsy: Report of a case. Surg. Today, 2007, 37(1), 34-37.