Review Article

Na +,K + -ATP作为治疗组织纤维化的靶点

卷 26, 期 3, 2019

页: [564 - 575] 页: 12

弟呕挨: 10.2174/0929867324666170619105407

价格: $65

摘要

肌成纤维细胞活化是组织纤维化发病机制中的关键过程,占所有死亡的45%。没有有效的治疗方法可用于治疗纤维化疾病。我们将我们的小型评论集中在最近的数据上,这些数据显示已知为强效Na +,K + -ATP酶抑制剂的强心类固醇(CTS)以细胞类型特异性方式影响肌成纤维细胞分化。在培养的人肺成纤维细胞(HLF),上皮细胞和癌相关成纤维细胞中,CTS阻断由促纤维化细胞因子TGF-β触发的肌成纤维细胞分化。相反,在不存在TGF-β的情况下,CTS增强了培养的心脏成纤维细胞的肌成纤维细胞分化。 CTS在肌成纤维细胞分化中的细胞类型特异性作用与体内研究中获得的数据一致。因此,通过渗透微型泵输注哇巴因减弱了经博来霉素处理的小鼠中肺纤维化的发展,而marinobufagenin刺激了具有实验性肾损伤的大鼠的肾和心脏纤维化。在TGF-β处理的HLF中,哇巴因对肌成纤维细胞分化的抑制是由[Na +] i / [K +] i比率的升高介导的,并且伴随着环加氧酶COX-2的上调和TGF-β受体TGFBR2的下调。通过抑制Na + / Ca 2+交换来消除COX-2的增强表达,表明[Ca 2+] i介导的信号传导的关键作用。在几种类型的CTS处理细胞中记录的[Na +] i,[K +] iindependent信号传导对组织纤维化的相对影响是什么?在哇巴因和marinobufagenin存在下,Na +,K +-ATPaseα1亚基的不同构象转变是否有助于它们明显参与肌成纤维细胞分化?应该进行另外的实验来回答这些问题并开发用于治疗纤维化相关病症的新型药理学方法。

关键词: Na +,K + -ATP酶,心脏类固醇,纤维化,肌成纤维细胞,环加氧酶,TGF-β受体,COX-2,细胞内Na +和K +。

« Previous
[1]
Masini, E.; Lucarini, L.; Sydbom, A.; Dahlen, B.; Dahlen, S-E. Histamine in Asthmatic and Fibrotic Lung Disorders. In: Histamine H4 Receptor: a novel drug target for immunoregulation and inflammation; Holger , Stark., Ed.; Versita Ltd.: London, 2013; p. 153.
[2]
Noble, P.W.; Homer, R.J. Back to the future: Historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2005, 33(2), 113-120.
[3]
Hardie, W.D.; Glasser, S.W.; Hagood, J.S. Emerging concepts in the pathogenesis of lung fibrosis. Am. J. Pathol., 2009, 175(1), 3-16.
[4]
Kisseleva, T.; Brenner, D.A. Mechanisms of fibrogenesis. Exp. Biol. Med. (Maywood), 2008, 233(2), 109-122.
[5]
Neary, R.; Watson, C.J.; Baugh, J.A. Epigenetics and the overhealing wound: The role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair, 2015, 8, 18.
[6]
Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, 214(2), 199-210.
[7]
Pini, A.; Viappiani, S.; Bolla, M.; Masini, E.; Bani, D. Prevention of bleomycin-induced lung fibrosis in mice by a novel approach of parallel inhibition of cyclooxygenase and nitric-oxide donation using NCX 466, a prototype cyclooxygenase inhibitor and nitric-oxide donor. J. Pharmacol. Exp. Ther., 2012, 341(2), 493-499.
[8]
McAnulty, R.J. Fibroblasts and myofibroblasts: Their source, function and role in disease. Int. J. Biochem. Cell Biol., 2007, 39(4), 666-671.
[9]
Harvey, A.; Montezano, A.C.; Lopes, R.A.; Rios, F.; Touyz, R.M. Vasscular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can. J. Cardiol., 2016, 32(5), 659-668.
[10]
Leask, A.; Abraham, D.J. TGF-beta signaling and the fibrotic response. FASEB J., 2004, 18(7), 816-827.
[11]
Therien, A.G.; Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol., 2000, 279(3), C541-C566.
[12]
Scheiner-Bobis, G. The sodium pump. Its molecular properties and mechanics of ion transport. Eur. J. Biochem., 2002, 269(10), 2424-2433.
[13]
Dvela, M.; Rosen, H.; Feldmann, T.; Nesher, M.; Lichtstein, D. Diverse biological responses to different cardiotonic steroids. Pathophysiology, 2007, 14(3-4), 159-166.
[14]
Wood, E.H.; Moe, G.K. Studies on the effect of digitalis glycosides on potassium ion loss from the heart. Am. J. Physiol., 1938, 123, 219-220.
[15]
Schatzmann, H.J. [Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane]. Helv. Physiol. Pharmacol. Acta, 1953, 11(4), 346-354.
[16]
Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta, 1957, 23(2), 394-401.
[17]
Skou, J.C. Further investigation on a Mg2+ + Na+-activated adenosinetriphosphatase possibly related to the active transport of Na+ and K+ across the nerve cell membrane. Biochim. Biophys. Acta, 1960, 42, 6-23.
[18]
Krenn, L.; Kopp, B. Bufadienolides from animal and plant sources. Phytochemistry, 1998, 48(1), 1-29.
[19]
Dmitrieva, R.I.; Doris, P.A. Cardiotonic steroids: potential endogenous sodium pump ligands with diverse function. Exp. Biol. Med. (Maywood), 2002, 227(8), 561-569.
[20]
Orlov, S.N.; Akimova, O.A.; Hamet, P. Cardiotonic steroids: Novel mechanisms of Na+i-mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death. Curr. Hypertens. Rev., 2005, 1(3), 243-257.
[21]
Schoner, W.; Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides: Their roles in hypertension, salt metabolism, and cell growth. Am. J. Physiol. Cell Physiol., 2007, 293(2), C509-C536.
[22]
Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev., 2009, 61(1), 9-38.
[23]
Riganti, C.; Campia, I.; Kopecka, J.; Gazzano, E.; Doublier, S.; Aldieri, E.; Bosia, A.; Ghigo, D. Pleiotropic effects of cardioactive glycosides. Curr. Med. Chem., 2011, 18(6), 872-885.
[24]
Matsui, H.; Schwartz, A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim. Biophys. Acta, 1968, 151(3), 655-663.
[25]
Lingrel, J.B.; Croyle, M.L.; Woo, A.L.; Argüello, J.M. Ligand binding sites of Na,K-ATPase. Acta Physiol. Scand. Suppl., 1998, 643(Suppl. 643), 69-77.
[26]
Lingrel, J.B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu. Rev. Physiol., 2010, 72, 395-412.
[27]
Xie, Z.; Askari, A. Na(+)/K(+)-ATPase as a signal transducer. Eur. J. Biochem., 2002, 269(10), 2434-2439.
[28]
Aperia, A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J. Intern. Med., 2007, 261(1), 44-52.
[29]
Liu, J.; Xie, Z.J. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim. Biophys. Acta, 2010, 1802(12), 1237-1245.
[30]
Orlov, S.N.; Klimanova, E.A.; Tverskoi, A.M.; Vladychenskaya, E.A.; Smolyaninova, L.V.; Lopina, O.D. Na+i,K+i-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts. Molecules, 2017, 22(4), E635.
[31]
Sime, P.J.; Xing, Z.; Graham, F.L.; Csaky, K.G.; Gauldie, J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest., 1997, 100(4), 768-776.
[32]
Hinz, B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur. J. Cell Biol., 2006, 85(3-4), 175-181.
[33]
Desmoulière, A.; Chaponnier, C.; Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen., 2005, 13(1), 7-12.
[34]
Wilborn, J.; Crofford, L.J.; Burdick, M.D.; Kunkel, S.L.; Strieter, R.M.; Peters-Golden, M. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J. Clin. Invest., 1995, 95(4), 1861-1868.
[35]
Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol., 2002, 3(5), 349-363.
[36]
Sanjabi, S.; Zenewicz, L.A.; Kamanaka, M.; Flavell, R.A. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr. Opin. Pharmacol., 2009, 9(4), 447-453.
[37]
Massagué, J. TGFbeta in Cancer. Cell, 2008, 134(2), 215-230.
[38]
Feng, X.H.; Derynck, R. Specificity and versatility in TGF-beta signaling through Smads. Annu. Rev. Cell Dev. Biol., 2005, 21, 659-693.
[39]
Sandbo, N.; Kregel, S.; Taurin, S.; Bhorade, S.; Dulin, N.O. Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-β. Am. J. Respir. Cell Mol. Biol., 2009, 41(3), 332-338.
[40]
Sandbo, N.; Lau, A.; Kach, J.; Ngam, C.; Yau, D.; Dulin, N.O. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L656-L666.
[41]
Huang, S.K.; Wettlaufer, S.H.; Chung, J.; Peters-Golden, M. Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am. J. Respir. Cell Mol. Biol., 2008, 39(4), 482-489.
[42]
Liu, X.; Ostrom, R.S.; Insel, P.A. cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am. J. Physiol. Cell Physiol., 2004, 286(5), C1089-C1099.
[43]
Di Paola, R.; Talero, E.; Galuppo, M.; Mazzon, E.; Bramanti, P.; Motilva, V.; Cuzzocrea, S. Adrenomedullin in inflammatory process associated with experimental pulmonary fibrosis. Respir. Res., 2011, 12, 41.
[44]
Kach, J.; Sandbo, N.; Sethakorn, N.; Williams, J.; Reed, E.B.; La, J.; Tian, X.; Brain, S.D.; Rajendran, K.; Krishnan, R.; Sperling, A.I.; Birukov, K.; Dulin, N.O. Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 304(11), L757-L764.
[45]
Dackor, R.T.; Cheng, J.; Voltz, J.W.; Card, J.W.; Ferguson, C.D.; Garrett, R.C.; Bradbury, J.A.; DeGraff, L.M.; Lih, F.B.; Tomer, K.B.; Flake, G.P.; Travlos, G.S.; Ramsey, R.W., Jr; Edin, M.L.; Morgan, D.L.; Zeldin, D.C. Prostaglandin E2 protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L645-L655.
[46]
Zhu, Y.; Liu, Y.; Zhou, W.; Xiang, R.; Jiang, L.; Huang, K.; Xiao, Y.; Guo, Z.; Gao, J. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir. Res., 2010, 11, 34.
[47]
Kolodsick, J.E.; Peters-Golden, M.; Larios, J.; Toews, G.B.; Thannickal, V.J.; Moore, B.B. Prostaglandin E2 inhibits myofibroblast transition via E.prostanoid receptor 2 and cyclic adenosine monophosphate elevation. Am. J. Respir. Cell Mol. Biol., 2003, 29, 537-544.
[48]
Petkova, D.K.; Clelland, C.A.; Ronan, J.E.; Lewis, S.; Knox, A.J. Reduced expression of cyclooxygenase (COX) in idiopathic pulmonary fibrosis and sarcoidosis. Histopathology, 2003, 43(4), 381-386.
[49]
Gabasa, M.; Royo, D.; Molina-Molina, M.; Roca-Ferrer, J.; Pujols, L.; Picado, C.; Xaubet, A.; Pereda, J. Lung myofibroblasts are characterized by down-regulated cyclooxygenase-2 and its main metabolite, prostaglandin E2. PLoS One, 2013, 8(6), e65445.
[50]
Bauman, K.A.; Wettlaufer, S.H.; Okunishi, K.; Vannella, K.M.; Stoolman, J.S.; Huang, S.K.; Courey, A.J.; White, E.S.; Hogaboam, C.M.; Simon, R.H.; Toews, G.B.; Sisson, T.H.; Moore, B.B.; Peters-Golden, M. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J. Clin. Invest., 2010, 120(6), 1950-1960.
[51]
Coward, W.R.; Watts, K.; Feghali-Bostwick, C.A.; Knox, A.; Pang, L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol., 2009, 29(15), 4325-4339.
[52]
Vancheri, C.; Sortino, M.A.; Tomaselli, V.; Mastruzzo, C.; Condorelli, F.; Bellistrí, G.; Pistorio, M.P.; Canonico, P.L.; Crimi, N. Different expression of TNF-alpha receptors and prostaglandin E(2)Production in normal and fibrotic lung fibroblasts: potential implications for the evolution of the inflammatory process. Am. J. Respir. Cell Mol. Biol., 2000, 22(5), 628-634.
[53]
Bonner, J.C.; Rice, A.B.; Ingram, J.L.; Moomaw, C.R.; Nyska, A. Bradbury, a.; Sessoms, A. R.; Chulada, P. C.; Morgan, D. L.; Zeldin, D. C.; Langenbach, R. Susceptibility of cyclooxygense-2-deficient mice to pulmonary fibrosis. Am. J. Pathol., 2002, 161, 459-470.
[54]
Giri, S.N.; Hyde, D.M. Increases in severity of lung damage and mortality by treatment with cyclo and lipoxygenase inhibitors in bleomycin and hyperoxia model of lung injury in hamsters. Pathology, 1987, 19(2), 150-158.
[55]
Hodges, R.J.; Jenkins, R.G.; Wheeler-Jones, C.P.; Copeman, D.M.; Bottoms, S.E.; Bellingan, G.J.; Nanthakumar, C.B.; Laurent, G.J.; Hart, S.L.; Foster, M.L.; McAnulty, R.J. Severity of lung injury in cyclooxygenase-2-deficient mice is dependent on reduced prostaglandin E(2) production. Am. J. Pathol., 2004, 165(5), 1663-1676.
[56]
Stumm, C.L.; Wettlaufer, S.H.; Jancar, S.; Peters-Golden, M. Airway remodeling in murine asthma correlates with a defect in PGE2 synthesis by lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L636-L644.
[57]
Keerthisingam, C.B.; Jenkins, R.G.; Harrison, N.K.; Hernandez-Rodriguez, N.A.; Booth, H.; Laurent, G.J.; Hart, S.L.; Foster, M.L.; McAnulty, R.J. Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-beta in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol., 2001, 158(4), 1411-1422.
[58]
Card, J.W.; Voltz, J.W.; Carey, M.A. Bradbury, a.; DeGraff, L. M.; Lih, F. B.; Bonner, J. C.; Morgan, D. L.; Flake, G. P.; Zeldin, D. C. Cyclooxygenase-2 deficiency exacerbates bleomycin-induced lung disfunction but not fibrosis. Am. J. Respir. Crit. Care Med., 2007, 37, 300-308.
[59]
Koltsova, S.V.; Trushina, Y.; Haloui, M.; Akimova, O.A.; Tremblay, J.; Hamet, P.; Orlov, S.N. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling. PLoS One, 2012, 7(5), e38032.
[60]
La, J.; Reed, E.B.; Koltsova, S.; Akimova, O.; Hamanaka, R.B.; Mutlu, G.M.; Orlov, S.N.; Dulin, N.O. Regulation of myofibroblast differentiation by cardiac glycosides. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(9), L815-L823.
[61]
De Pont, J.J.; Swarts, H.G.; Karawajczyk, A.; Schaftenaar, G.; Willems, P.H.; Koenderink, J.B. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase. Pflugers Arch., 2009, 457(3), 623-634.
[62]
Ghebremariam, Y.T.; Cooke, J.P.; Gerhart, W.; Griego, C.; Brower, J.B.; Doyle-Eisele, M.; Moeller, B.C.; Zhou, Q.; Ho, L.; de Andrade, J.; Raghu, G.; Peterson, L.; Rivera, A.; Rosen, G.D. Pleiotropic effect of the proton pump inhibitor esomeprazole leading to suppression of lung inflammation and fibrosis. J. Transl. Med., 2015, 13, 249.
[63]
Nelson, C.; Lee, J.; Ko, K.; Sikora, A.G.; Bonnen, M.D.; Enkhbaatar, P.; Ghebre, Y.T. Therapeutic efficacy of esomeprazole in cotton smoke-induced lung injury model. Front. Pharmacol., 2017, 8, 16.
[64]
Blaustein, M.P.; Lederer, W.J. Sodium/calcium exchange: its physiological implications. Physiol. Rev., 1999, 79(3), 763-854.
[65]
McDonald, T.F.; Pelzer, S.; Trautwein, W.; Pelzer, D.J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev., 1994, 74(2), 365-507.
[66]
Nakao, S.; Ogata, Y.; Modéer, T.; Segawa, M.; Furuyama, S.; Sugiya, H. Bradykinin induces a rapid cyclooxygenase-2 mRNA expression via Ca2+ mobilization in human gingival fibroblasts primed with interleukin-1 beta. Cell Calcium, 2001, 29(6), 446-452.
[67]
Zhu, Y.; Hua, P.; Rafiq, S.; Waffner, E.J.; Duffey, M.E.; Lance, P. Ca2+- and PKC-dependent stimulation of PGE2 synthesis by deoxycholic acid in human colonic fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(3), G503-G510.
[68]
Gundersen, K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol. Rev. Camb. Philos. Soc., 2011, 86(3), 564-600.
[69]
Ma, H.; Groth, R.D.; Wheeler, D.G.; Barrett, C.F.; Tsien, R.W. Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci. Res., 2011, 70(1), 2-8.
[70]
La, J.; Reed, E.; Chan, L.; Smolyaninova, L.V.; Akomova, O.A.; Mutlu, G.M.; Orlov, S.N.; Dulin, N.O. Downregulation of TGF-beta receptor-2 expression and signaling through inhibition of Na/K-ATPase. PLoS One, 2016, 11(12), e0168363.
[71]
Yunos, N.M.; Bellomo, R.; Story, D.; Kellum, J. Bench-to-bedside review: Chloride in critical illness. Crit. Care, 2010, 14(4), 226.
[72]
Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin, B.; Westman-Naeser, S. Cardiac glycosides and breast cancer. Lancet, 1979, 1(8115), 563.
[73]
Stenkvist, B. Is digitalis a therapy for breast carcinoma? Oncol. Rep., 1999, 6(3), 493-496.
[74]
Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Cardiac glycosides and cancer therapy. OncoImmunology, 2013, 2(2), e23082.
[75]
Mijatovic, T.; Van Quaquebeke, E.; Delest, B.; Debeir, O.; Darro, F.; Kiss, R. Cardiotonic steroids on the road to anti-cancer therapy. Biochim. Biophys. Acta, 2007, 1776(1), 32-57.
[76]
Rønnov-Jessen, L.; Petersen, O.W.; Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev., 1996, 76(1), 69-125.
[77]
Polanska, U.M.; Orimo, A. Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol., 2013, 228(8), 1651-1657.
[78]
Coleman, D.T.; Gray, A.L.; Stephens, C.A.; Scott, M.L.; Cardelli, J.A. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget, 2016, 7(22), 32200-32209.
[79]
Elkareh, J.; Kennedy, D.J.; Yashaswi, B.; Vetteth, S.; Shidyak, A.; Kim, E.G.; Smaili, S.; Periyasamy, S.M.; Hariri, I.M.; Fedorova, L.; Liu, J.; Wu, L.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Fedorova, O.V.; Kashkin, V.A.; Bagrov, A.Y.; Shapiro, J.I. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension, 2007, 49(1), 215-224.
[80]
Ramdas, V.; McBride, M.; Denby, L.; Baker, A.H. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am. J. Pathol., 2013, 183(6), 1885-1896.
[81]
Qin, W.; Chung, A.C.; Huang, X.R.; Meng, X.M.; Hui, D.S.; Yu, C.M.; Sung, J.J.; Lan, H.Y. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol., 2011, 22(8), 1462-1474.
[82]
van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13027-13032.
[83]
El-Okdi, N.; Smaili, S.; Raju, V.; Shidyak, A.; Gupta, S.; Fedorova, L.; Elkareh, J.; Periyasamy, S.; Shapiro, A.P.; Kahaleh, M.B.; Malhotra, D.; Xie, Z.; Chin, K.V.; Shapiro, J.I. Effects of cardiotonic steroids on dermal collagen synthesis and wound healing. J. Appl. Physiol., 2008, 105(1), 30-36.
[84]
Czuwara-Ladykowska, J.; Shirasaki, F.; Jackers, P.; Watson, D.K.; Trojanowska, M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J. Biol. Chem., 2001, 276(24), 20839-20848.
[85]
Elkareh, J.; Periyasamy, S.M.; Shidyak, A.; Vetteth, S.; Schroeder, J.; Raju, V.; Hariri, I.M.; El-Okdi, N.; Gupta, S.; Fedorova, L.; Liu, J.; Fedorova, O.V.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Watson, D.K.; Bagrov, A.Y.; Shapiro, J.I. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am. J. Physiol. Renal Physiol., 2009, 296(5), F1219-F1226.
[86]
Fedorova, O.V.; Emelianov, I.V.; Bagrov, K.A.; Grigorova, Y.N.; Wei, W.; Juhasz, O.; Frolova, E.V.; Marshall, C.A.; Lakatta, E.G.; Konradi, A.O.; Bagrov, A.Y. Marinobufagenin-induced vascular fibrosis is a likely target for mineralocorticoid antagonists. J. Hypertens., 2015, 33(8), 1602-1610.
[87]
Segel, G.B.; Lichtman, M.A. The apparent discrepancy of ouabain inhibition of cation transport and of lymphocyte proliferation is explained by time-dependency of ouabain binding. J. Cell. Physiol., 1980, 104(1), 21-26.
[88]
Tverskoi, A.M.; Sidorenko, S.V.; Klimanova, E.A.; Akimova, O.A.; Smolyaninova, L.V.; Lopina, O.D.; Orlov, S.N. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. Biochemistry (Mosc.), 2016, 81(8), 876-883.
[89]
Klimanova, E.A.; Tverskoi, A.M.; Koltsova, S.V.; Sidorenko, S.V.; Lopina, O.D.; Tremblay, J.; Hamet, P.; Kapilevich, L.V.; Orlov, S.N. Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: A comparative analysis. Sci. Rep., 2017, 7, 45403.
[90]
Liu, L.; Wu, J.; Kennedy, D.J. Regulation of cardiac remodelong by cardiac Na+/K+ isoforms. Front. Physiol., 2016, 7, 382.
[91]
Roubille, F.; Busseuil, D.; Merlet, N.; Kritikou, E.A.; Rhéaume, E.; Tardif, J.C. Investigational drugs targeting cardiac fibrosis. Expert Rev. Cardiovasc. Ther., 2014, 12(1), 111-125.
[92]
Williams, J.F., Jr; Braunwald, E. Studies on digitalis. XI. Effects of digitoxin on the development of cardiac hypertrophy in the rat subjected to aortic constriction. Am. J. Cardiol., 1965, 16(4), 534-539.
[93]
Wu, J.; Li, D.; Du, L.; Baldawi, M.; Gable, M.E.; Askari, A.; Liu, L. Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase α in mouse. Cell Biosci., 2015, 5, 64.
[94]
Saltzman, H.E.; Sharma, K.; Mather, P.J.; Rubin, S.; Adams, S.; Whellan, D.J. Renal dysfunction in heart failure patients: What is the evidence? Heart Fail. Rev., 2007, 12(1), 37-47.
[95]
Kennedy, D.J.; Vetteth, S.; Periyasamy, S.M.; Kanj, M.; Fedorova, L.; Khouri, S.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Kolodkin, N.I.; Lakatta, E.G.; Fedorova, O.V.; Bagrov, A.Y.; Shapiro, J.I. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension, 2006, 47(3), 488-495.
[96]
Haller, S.T.; Kennedy, D.J.; Shidyak, A.; Budny, G.V.; Malhotra, D.; Fedorova, O.V.; Shapiro, J.I.; Bagrov, A.Y. Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am. J. Hypertens., 2012, 25(6), 690-696.
[97]
Grigorova, Y.N.; Juhasz, O.; Zernetkina, V.; Fishbein, K.W.; Lakatta, E.G.; Fedorova, O.V.; Bagrov, A.Y. Aortic fibrosis, induced by high salt intake in the absence of hypertensive response, is reduced by monoclonal antibody to marinobufagenin. Am. J. Hypertens., 2016, 29(5), 641-646.
[98]
Moore, B.B.; Hogaboam, C.M. Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(2), L152-L160.
[99]
Della Latta, V.; Cecchettini, A.; Del Ry, S.; Morales, M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol. Res., 2015, 97, 122-130.
[100]
Akimova, O.A.; Tverskoi, A.M.; Smolyaninova, L.V.; Mongin, A.A.; Lopina, O.D.; La, J.; Dulin, N.O.; Orlov, S.N. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis, 2015, 20(9), 1200-1210.
[101]
Orlov, S.N.; Hamet, P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch., 2015, 467(3), 489-498.
[102]
Verkhratsky, A.; Noda, M.; Parpura, V.; Kirischuk, S. Sodium fluxes and astroglial function. Adv. Exp. Med. Biol., 2013, 961, 295-305.
[103]
Klimanova, E.A.; Petrushanko, I.Y.; Mitkevich, V.A.; Anashkina, A.A.; Orlov, S.N.; Makarov, A.A.; Lopina, O.D. Binding of ouabain and marinobufagenin leads to different structural changes in Na,K-ATPase and depends on the enzyme conformation. FEBS Lett., 2015, 589(19 Pt B), 2668-2674.
[104]
Bernau, K.; Ngam, C.; Torr, T.E.; Acton, B.; Kach, J.; Dulin, N.O.; Sandbo, N. Megakaryoblastic leukemia-1 is required for the development of bleomycin-induced pulmonary fibrosis. Respir. Res., 2015, 16, 45.
[105]
Kach, J.; Sandbo, N.; La, J.; Denner, D.; Reed, E.B.; Akimova, O.; Koltsova, S.; Orlov, S.N.; Dulin, N.O. Antifibrotic effects of noscapine through activation of prostaglandin E2 receptors and protein kinase A. J. Biol. Chem., 2014, 289(11), 7505-7513.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy