[1]
Masini, E.; Lucarini, L.; Sydbom, A.; Dahlen, B.; Dahlen, S-E. Histamine in Asthmatic and Fibrotic Lung Disorders. In: Histamine H4 Receptor: a novel drug target for immunoregulation and inflammation; Holger , Stark., Ed.; Versita Ltd.: London, 2013; p. 153.
[2]
Noble, P.W.; Homer, R.J. Back to the future: Historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2005, 33(2), 113-120.
[3]
Hardie, W.D.; Glasser, S.W.; Hagood, J.S. Emerging concepts in the pathogenesis of lung fibrosis. Am. J. Pathol., 2009, 175(1), 3-16.
[4]
Kisseleva, T.; Brenner, D.A. Mechanisms of fibrogenesis. Exp. Biol. Med. (Maywood), 2008, 233(2), 109-122.
[5]
Neary, R.; Watson, C.J.; Baugh, J.A. Epigenetics and the overhealing wound: The role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair, 2015, 8, 18.
[6]
Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, 214(2), 199-210.
[7]
Pini, A.; Viappiani, S.; Bolla, M.; Masini, E.; Bani, D. Prevention of bleomycin-induced lung fibrosis in mice by a novel approach of parallel inhibition of cyclooxygenase and nitric-oxide donation using NCX 466, a prototype cyclooxygenase inhibitor and nitric-oxide donor. J. Pharmacol. Exp. Ther., 2012, 341(2), 493-499.
[8]
McAnulty, R.J. Fibroblasts and myofibroblasts: Their source, function and role in disease. Int. J. Biochem. Cell Biol., 2007, 39(4), 666-671.
[9]
Harvey, A.; Montezano, A.C.; Lopes, R.A.; Rios, F.; Touyz, R.M. Vasscular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can. J. Cardiol., 2016, 32(5), 659-668.
[10]
Leask, A.; Abraham, D.J. TGF-beta signaling and the fibrotic response. FASEB J., 2004, 18(7), 816-827.
[11]
Therien, A.G.; Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol., 2000, 279(3), C541-C566.
[12]
Scheiner-Bobis, G. The sodium pump. Its molecular properties and mechanics of ion transport. Eur. J. Biochem., 2002, 269(10), 2424-2433.
[13]
Dvela, M.; Rosen, H.; Feldmann, T.; Nesher, M.; Lichtstein, D. Diverse biological responses to different cardiotonic steroids. Pathophysiology, 2007, 14(3-4), 159-166.
[14]
Wood, E.H.; Moe, G.K. Studies on the effect of digitalis glycosides on potassium ion loss from the heart. Am. J. Physiol., 1938, 123, 219-220.
[15]
Schatzmann, H.J. [Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane]. Helv. Physiol. Pharmacol. Acta, 1953, 11(4), 346-354.
[16]
Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta, 1957, 23(2), 394-401.
[17]
Skou, J.C. Further investigation on a Mg2+ + Na+-activated adenosinetriphosphatase possibly related to the active transport of Na+ and K+ across the nerve cell membrane. Biochim. Biophys. Acta, 1960, 42, 6-23.
[18]
Krenn, L.; Kopp, B. Bufadienolides from animal and plant sources. Phytochemistry, 1998, 48(1), 1-29.
[19]
Dmitrieva, R.I.; Doris, P.A. Cardiotonic steroids: potential endogenous sodium pump ligands with diverse function. Exp. Biol. Med. (Maywood), 2002, 227(8), 561-569.
[20]
Orlov, S.N.; Akimova, O.A.; Hamet, P. Cardiotonic steroids: Novel mechanisms of Na+i-mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death. Curr. Hypertens. Rev., 2005, 1(3), 243-257.
[21]
Schoner, W.; Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides: Their roles in hypertension, salt metabolism, and cell growth. Am. J. Physiol. Cell Physiol., 2007, 293(2), C509-C536.
[22]
Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev., 2009, 61(1), 9-38.
[23]
Riganti, C.; Campia, I.; Kopecka, J.; Gazzano, E.; Doublier, S.; Aldieri, E.; Bosia, A.; Ghigo, D. Pleiotropic effects of cardioactive glycosides. Curr. Med. Chem., 2011, 18(6), 872-885.
[24]
Matsui, H.; Schwartz, A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim. Biophys. Acta, 1968, 151(3), 655-663.
[25]
Lingrel, J.B.; Croyle, M.L.; Woo, A.L.; Argüello, J.M. Ligand binding sites of Na,K-ATPase. Acta Physiol. Scand. Suppl., 1998, 643(Suppl. 643), 69-77.
[26]
Lingrel, J.B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu. Rev. Physiol., 2010, 72, 395-412.
[27]
Xie, Z.; Askari, A. Na(+)/K(+)-ATPase as a signal transducer. Eur. J. Biochem., 2002, 269(10), 2434-2439.
[28]
Aperia, A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J. Intern. Med., 2007, 261(1), 44-52.
[29]
Liu, J.; Xie, Z.J. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim. Biophys. Acta, 2010, 1802(12), 1237-1245.
[30]
Orlov, S.N.; Klimanova, E.A.; Tverskoi, A.M.; Vladychenskaya, E.A.; Smolyaninova, L.V.; Lopina, O.D. Na+i,K+i-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts. Molecules, 2017, 22(4), E635.
[31]
Sime, P.J.; Xing, Z.; Graham, F.L.; Csaky, K.G.; Gauldie, J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest., 1997, 100(4), 768-776.
[32]
Hinz, B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur. J. Cell Biol., 2006, 85(3-4), 175-181.
[33]
Desmoulière, A.; Chaponnier, C.; Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen., 2005, 13(1), 7-12.
[34]
Wilborn, J.; Crofford, L.J.; Burdick, M.D.; Kunkel, S.L.; Strieter, R.M.; Peters-Golden, M. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J. Clin. Invest., 1995, 95(4), 1861-1868.
[35]
Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol., 2002, 3(5), 349-363.
[36]
Sanjabi, S.; Zenewicz, L.A.; Kamanaka, M.; Flavell, R.A. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr. Opin. Pharmacol., 2009, 9(4), 447-453.
[37]
Massagué, J. TGFbeta in Cancer. Cell, 2008, 134(2), 215-230.
[38]
Feng, X.H.; Derynck, R. Specificity and versatility in TGF-beta signaling through Smads. Annu. Rev. Cell Dev. Biol., 2005, 21, 659-693.
[39]
Sandbo, N.; Kregel, S.; Taurin, S.; Bhorade, S.; Dulin, N.O. Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-β. Am. J. Respir. Cell Mol. Biol., 2009, 41(3), 332-338.
[40]
Sandbo, N.; Lau, A.; Kach, J.; Ngam, C.; Yau, D.; Dulin, N.O. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L656-L666.
[41]
Huang, S.K.; Wettlaufer, S.H.; Chung, J.; Peters-Golden, M. Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am. J. Respir. Cell Mol. Biol., 2008, 39(4), 482-489.
[42]
Liu, X.; Ostrom, R.S.; Insel, P.A. cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am. J. Physiol. Cell Physiol., 2004, 286(5), C1089-C1099.
[43]
Di Paola, R.; Talero, E.; Galuppo, M.; Mazzon, E.; Bramanti, P.; Motilva, V.; Cuzzocrea, S. Adrenomedullin in inflammatory process associated with experimental pulmonary fibrosis. Respir. Res., 2011, 12, 41.
[44]
Kach, J.; Sandbo, N.; Sethakorn, N.; Williams, J.; Reed, E.B.; La, J.; Tian, X.; Brain, S.D.; Rajendran, K.; Krishnan, R.; Sperling, A.I.; Birukov, K.; Dulin, N.O. Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 304(11), L757-L764.
[45]
Dackor, R.T.; Cheng, J.; Voltz, J.W.; Card, J.W.; Ferguson, C.D.; Garrett, R.C.; Bradbury, J.A.; DeGraff, L.M.; Lih, F.B.; Tomer, K.B.; Flake, G.P.; Travlos, G.S.; Ramsey, R.W., Jr; Edin, M.L.; Morgan, D.L.; Zeldin, D.C. Prostaglandin E2 protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L645-L655.
[46]
Zhu, Y.; Liu, Y.; Zhou, W.; Xiang, R.; Jiang, L.; Huang, K.; Xiao, Y.; Guo, Z.; Gao, J. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir. Res., 2010, 11, 34.
[47]
Kolodsick, J.E.; Peters-Golden, M.; Larios, J.; Toews, G.B.; Thannickal, V.J.; Moore, B.B. Prostaglandin E2 inhibits myofibroblast transition via E.prostanoid receptor 2 and cyclic adenosine monophosphate elevation. Am. J. Respir. Cell Mol. Biol., 2003, 29, 537-544.
[48]
Petkova, D.K.; Clelland, C.A.; Ronan, J.E.; Lewis, S.; Knox, A.J. Reduced expression of cyclooxygenase (COX) in idiopathic pulmonary fibrosis and sarcoidosis. Histopathology, 2003, 43(4), 381-386.
[49]
Gabasa, M.; Royo, D.; Molina-Molina, M.; Roca-Ferrer, J.; Pujols, L.; Picado, C.; Xaubet, A.; Pereda, J. Lung myofibroblasts are characterized by down-regulated cyclooxygenase-2 and its main metabolite, prostaglandin E2. PLoS One, 2013, 8(6), e65445.
[50]
Bauman, K.A.; Wettlaufer, S.H.; Okunishi, K.; Vannella, K.M.; Stoolman, J.S.; Huang, S.K.; Courey, A.J.; White, E.S.; Hogaboam, C.M.; Simon, R.H.; Toews, G.B.; Sisson, T.H.; Moore, B.B.; Peters-Golden, M. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J. Clin. Invest., 2010, 120(6), 1950-1960.
[51]
Coward, W.R.; Watts, K.; Feghali-Bostwick, C.A.; Knox, A.; Pang, L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol., 2009, 29(15), 4325-4339.
[52]
Vancheri, C.; Sortino, M.A.; Tomaselli, V.; Mastruzzo, C.; Condorelli, F.; Bellistrí, G.; Pistorio, M.P.; Canonico, P.L.; Crimi, N. Different expression of TNF-alpha receptors and prostaglandin E(2)Production in normal and fibrotic lung fibroblasts: potential implications for the evolution of the inflammatory process. Am. J. Respir. Cell Mol. Biol., 2000, 22(5), 628-634.
[53]
Bonner, J.C.; Rice, A.B.; Ingram, J.L.; Moomaw, C.R.; Nyska, A. Bradbury, a.; Sessoms, A. R.; Chulada, P. C.; Morgan, D. L.; Zeldin, D. C.; Langenbach, R. Susceptibility of cyclooxygense-2-deficient mice to pulmonary fibrosis. Am. J. Pathol., 2002, 161, 459-470.
[54]
Giri, S.N.; Hyde, D.M. Increases in severity of lung damage and mortality by treatment with cyclo and lipoxygenase inhibitors in bleomycin and hyperoxia model of lung injury in hamsters. Pathology, 1987, 19(2), 150-158.
[55]
Hodges, R.J.; Jenkins, R.G.; Wheeler-Jones, C.P.; Copeman, D.M.; Bottoms, S.E.; Bellingan, G.J.; Nanthakumar, C.B.; Laurent, G.J.; Hart, S.L.; Foster, M.L.; McAnulty, R.J. Severity of lung injury in cyclooxygenase-2-deficient mice is dependent on reduced prostaglandin E(2) production. Am. J. Pathol., 2004, 165(5), 1663-1676.
[56]
Stumm, C.L.; Wettlaufer, S.H.; Jancar, S.; Peters-Golden, M. Airway remodeling in murine asthma correlates with a defect in PGE2 synthesis by lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L636-L644.
[57]
Keerthisingam, C.B.; Jenkins, R.G.; Harrison, N.K.; Hernandez-Rodriguez, N.A.; Booth, H.; Laurent, G.J.; Hart, S.L.; Foster, M.L.; McAnulty, R.J. Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-beta in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol., 2001, 158(4), 1411-1422.
[58]
Card, J.W.; Voltz, J.W.; Carey, M.A. Bradbury, a.; DeGraff, L. M.; Lih, F. B.; Bonner, J. C.; Morgan, D. L.; Flake, G. P.; Zeldin, D. C. Cyclooxygenase-2 deficiency exacerbates bleomycin-induced lung disfunction but not fibrosis. Am. J. Respir. Crit. Care Med., 2007, 37, 300-308.
[59]
Koltsova, S.V.; Trushina, Y.; Haloui, M.; Akimova, O.A.; Tremblay, J.; Hamet, P.; Orlov, S.N. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling. PLoS One, 2012, 7(5), e38032.
[60]
La, J.; Reed, E.B.; Koltsova, S.; Akimova, O.; Hamanaka, R.B.; Mutlu, G.M.; Orlov, S.N.; Dulin, N.O. Regulation of myofibroblast differentiation by cardiac glycosides. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(9), L815-L823.
[61]
De Pont, J.J.; Swarts, H.G.; Karawajczyk, A.; Schaftenaar, G.; Willems, P.H.; Koenderink, J.B. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase. Pflugers Arch., 2009, 457(3), 623-634.
[62]
Ghebremariam, Y.T.; Cooke, J.P.; Gerhart, W.; Griego, C.; Brower, J.B.; Doyle-Eisele, M.; Moeller, B.C.; Zhou, Q.; Ho, L.; de Andrade, J.; Raghu, G.; Peterson, L.; Rivera, A.; Rosen, G.D. Pleiotropic effect of the proton pump inhibitor esomeprazole leading to suppression of lung inflammation and fibrosis. J. Transl. Med., 2015, 13, 249.
[63]
Nelson, C.; Lee, J.; Ko, K.; Sikora, A.G.; Bonnen, M.D.; Enkhbaatar, P.; Ghebre, Y.T. Therapeutic efficacy of esomeprazole in cotton smoke-induced lung injury model. Front. Pharmacol., 2017, 8, 16.
[64]
Blaustein, M.P.; Lederer, W.J. Sodium/calcium exchange: its physiological implications. Physiol. Rev., 1999, 79(3), 763-854.
[65]
McDonald, T.F.; Pelzer, S.; Trautwein, W.; Pelzer, D.J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev., 1994, 74(2), 365-507.
[66]
Nakao, S.; Ogata, Y.; Modéer, T.; Segawa, M.; Furuyama, S.; Sugiya, H. Bradykinin induces a rapid cyclooxygenase-2 mRNA expression via Ca2+ mobilization in human gingival fibroblasts primed with interleukin-1 beta. Cell Calcium, 2001, 29(6), 446-452.
[67]
Zhu, Y.; Hua, P.; Rafiq, S.; Waffner, E.J.; Duffey, M.E.; Lance, P. Ca2+- and PKC-dependent stimulation of PGE2 synthesis by deoxycholic acid in human colonic fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(3), G503-G510.
[68]
Gundersen, K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol. Rev. Camb. Philos. Soc., 2011, 86(3), 564-600.
[69]
Ma, H.; Groth, R.D.; Wheeler, D.G.; Barrett, C.F.; Tsien, R.W. Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci. Res., 2011, 70(1), 2-8.
[70]
La, J.; Reed, E.; Chan, L.; Smolyaninova, L.V.; Akomova, O.A.; Mutlu, G.M.; Orlov, S.N.; Dulin, N.O. Downregulation of TGF-beta receptor-2 expression and signaling through inhibition of Na/K-ATPase. PLoS One, 2016, 11(12), e0168363.
[71]
Yunos, N.M.; Bellomo, R.; Story, D.; Kellum, J. Bench-to-bedside review: Chloride in critical illness. Crit. Care, 2010, 14(4), 226.
[72]
Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin, B.; Westman-Naeser, S. Cardiac glycosides and breast cancer. Lancet, 1979, 1(8115), 563.
[73]
Stenkvist, B. Is digitalis a therapy for breast carcinoma? Oncol. Rep., 1999, 6(3), 493-496.
[74]
Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Cardiac glycosides and cancer therapy. OncoImmunology, 2013, 2(2), e23082.
[75]
Mijatovic, T.; Van Quaquebeke, E.; Delest, B.; Debeir, O.; Darro, F.; Kiss, R. Cardiotonic steroids on the road to anti-cancer therapy. Biochim. Biophys. Acta, 2007, 1776(1), 32-57.
[76]
Rønnov-Jessen, L.; Petersen, O.W.; Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev., 1996, 76(1), 69-125.
[77]
Polanska, U.M.; Orimo, A. Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol., 2013, 228(8), 1651-1657.
[78]
Coleman, D.T.; Gray, A.L.; Stephens, C.A.; Scott, M.L.; Cardelli, J.A. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget, 2016, 7(22), 32200-32209.
[79]
Elkareh, J.; Kennedy, D.J.; Yashaswi, B.; Vetteth, S.; Shidyak, A.; Kim, E.G.; Smaili, S.; Periyasamy, S.M.; Hariri, I.M.; Fedorova, L.; Liu, J.; Wu, L.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Fedorova, O.V.; Kashkin, V.A.; Bagrov, A.Y.; Shapiro, J.I. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension, 2007, 49(1), 215-224.
[80]
Ramdas, V.; McBride, M.; Denby, L.; Baker, A.H. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am. J. Pathol., 2013, 183(6), 1885-1896.
[81]
Qin, W.; Chung, A.C.; Huang, X.R.; Meng, X.M.; Hui, D.S.; Yu, C.M.; Sung, J.J.; Lan, H.Y. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol., 2011, 22(8), 1462-1474.
[82]
van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13027-13032.
[83]
El-Okdi, N.; Smaili, S.; Raju, V.; Shidyak, A.; Gupta, S.; Fedorova, L.; Elkareh, J.; Periyasamy, S.; Shapiro, A.P.; Kahaleh, M.B.; Malhotra, D.; Xie, Z.; Chin, K.V.; Shapiro, J.I. Effects of cardiotonic steroids on dermal collagen synthesis and wound healing. J. Appl. Physiol., 2008, 105(1), 30-36.
[84]
Czuwara-Ladykowska, J.; Shirasaki, F.; Jackers, P.; Watson, D.K.; Trojanowska, M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J. Biol. Chem., 2001, 276(24), 20839-20848.
[85]
Elkareh, J.; Periyasamy, S.M.; Shidyak, A.; Vetteth, S.; Schroeder, J.; Raju, V.; Hariri, I.M.; El-Okdi, N.; Gupta, S.; Fedorova, L.; Liu, J.; Fedorova, O.V.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Watson, D.K.; Bagrov, A.Y.; Shapiro, J.I. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am. J. Physiol. Renal Physiol., 2009, 296(5), F1219-F1226.
[86]
Fedorova, O.V.; Emelianov, I.V.; Bagrov, K.A.; Grigorova, Y.N.; Wei, W.; Juhasz, O.; Frolova, E.V.; Marshall, C.A.; Lakatta, E.G.; Konradi, A.O.; Bagrov, A.Y. Marinobufagenin-induced vascular fibrosis is a likely target for mineralocorticoid antagonists. J. Hypertens., 2015, 33(8), 1602-1610.
[87]
Segel, G.B.; Lichtman, M.A. The apparent discrepancy of ouabain inhibition of cation transport and of lymphocyte proliferation is explained by time-dependency of ouabain binding. J. Cell. Physiol., 1980, 104(1), 21-26.
[88]
Tverskoi, A.M.; Sidorenko, S.V.; Klimanova, E.A.; Akimova, O.A.; Smolyaninova, L.V.; Lopina, O.D.; Orlov, S.N. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. Biochemistry (Mosc.), 2016, 81(8), 876-883.
[89]
Klimanova, E.A.; Tverskoi, A.M.; Koltsova, S.V.; Sidorenko, S.V.; Lopina, O.D.; Tremblay, J.; Hamet, P.; Kapilevich, L.V.; Orlov, S.N. Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: A comparative analysis. Sci. Rep., 2017, 7, 45403.
[90]
Liu, L.; Wu, J.; Kennedy, D.J. Regulation of cardiac remodelong by cardiac Na+/K+ isoforms. Front. Physiol., 2016, 7, 382.
[91]
Roubille, F.; Busseuil, D.; Merlet, N.; Kritikou, E.A.; Rhéaume, E.; Tardif, J.C. Investigational drugs targeting cardiac fibrosis. Expert Rev. Cardiovasc. Ther., 2014, 12(1), 111-125.
[92]
Williams, J.F., Jr; Braunwald, E. Studies on digitalis. XI. Effects of digitoxin on the development of cardiac hypertrophy in the rat subjected to aortic constriction. Am. J. Cardiol., 1965, 16(4), 534-539.
[93]
Wu, J.; Li, D.; Du, L.; Baldawi, M.; Gable, M.E.; Askari, A.; Liu, L. Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase α in mouse. Cell Biosci., 2015, 5, 64.
[94]
Saltzman, H.E.; Sharma, K.; Mather, P.J.; Rubin, S.; Adams, S.; Whellan, D.J. Renal dysfunction in heart failure patients: What is the evidence? Heart Fail. Rev., 2007, 12(1), 37-47.
[95]
Kennedy, D.J.; Vetteth, S.; Periyasamy, S.M.; Kanj, M.; Fedorova, L.; Khouri, S.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Kolodkin, N.I.; Lakatta, E.G.; Fedorova, O.V.; Bagrov, A.Y.; Shapiro, J.I. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension, 2006, 47(3), 488-495.
[96]
Haller, S.T.; Kennedy, D.J.; Shidyak, A.; Budny, G.V.; Malhotra, D.; Fedorova, O.V.; Shapiro, J.I.; Bagrov, A.Y. Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am. J. Hypertens., 2012, 25(6), 690-696.
[97]
Grigorova, Y.N.; Juhasz, O.; Zernetkina, V.; Fishbein, K.W.; Lakatta, E.G.; Fedorova, O.V.; Bagrov, A.Y. Aortic fibrosis, induced by high salt intake in the absence of hypertensive response, is reduced by monoclonal antibody to marinobufagenin. Am. J. Hypertens., 2016, 29(5), 641-646.
[98]
Moore, B.B.; Hogaboam, C.M. Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(2), L152-L160.
[99]
Della Latta, V.; Cecchettini, A.; Del Ry, S.; Morales, M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol. Res., 2015, 97, 122-130.
[100]
Akimova, O.A.; Tverskoi, A.M.; Smolyaninova, L.V.; Mongin, A.A.; Lopina, O.D.; La, J.; Dulin, N.O.; Orlov, S.N. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis, 2015, 20(9), 1200-1210.
[101]
Orlov, S.N.; Hamet, P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch., 2015, 467(3), 489-498.
[102]
Verkhratsky, A.; Noda, M.; Parpura, V.; Kirischuk, S. Sodium fluxes and astroglial function. Adv. Exp. Med. Biol., 2013, 961, 295-305.
[103]
Klimanova, E.A.; Petrushanko, I.Y.; Mitkevich, V.A.; Anashkina, A.A.; Orlov, S.N.; Makarov, A.A.; Lopina, O.D. Binding of ouabain and marinobufagenin leads to different structural changes in Na,K-ATPase and depends on the enzyme conformation. FEBS Lett., 2015, 589(19 Pt B), 2668-2674.
[104]
Bernau, K.; Ngam, C.; Torr, T.E.; Acton, B.; Kach, J.; Dulin, N.O.; Sandbo, N. Megakaryoblastic leukemia-1 is required for the development of bleomycin-induced pulmonary fibrosis. Respir. Res., 2015, 16, 45.
[105]
Kach, J.; Sandbo, N.; La, J.; Denner, D.; Reed, E.B.; Akimova, O.; Koltsova, S.; Orlov, S.N.; Dulin, N.O. Antifibrotic effects of noscapine through activation of prostaglandin E2 receptors and protein kinase A. J. Biol. Chem., 2014, 289(11), 7505-7513.