Abstract
Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Keywords: Glioblastoma, M2 polarization, microglia, pathway analysis, systems biology, zinc finger nucleases.
CNS & Neurological Disorders - Drug Targets
Title:The Potential for Genetically Altered Microglia to Influence Glioma Treatment
Volume: 12 Issue: 6
Author(s): W. Li, R.M.D. Holsinger, C.A. Kruse, A. Flügel and M.B. Graeber
Affiliation:
Keywords: Glioblastoma, M2 polarization, microglia, pathway analysis, systems biology, zinc finger nucleases.
Abstract: Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Export Options
About this article
Cite this article as:
Li W., Holsinger R.M.D., Kruse C.A., Flügel A. and Graeber M.B., The Potential for Genetically Altered Microglia to Influence Glioma Treatment, CNS & Neurological Disorders - Drug Targets 2013; 12 (6) . https://dx.doi.org/10.2174/18715273113126660171
DOI https://dx.doi.org/10.2174/18715273113126660171 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
New Quinoline Based Sulfonamide Derivatives: Cytotoxic and Apoptotic Activity Evaluation Against Pancreatic Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry ER Stress and Autophagy
Current Molecular Medicine Triazene Compounds in the Treatment of Acute Myeloid Leukemia: A Short Review and a Case Report
Current Medicinal Chemistry Lipoic Acid: A Novel Therapeutic Approach for Multiple Sclerosis and Other Chronic Inflammatory Diseases of the CNS
Endocrine, Metabolic & Immune Disorders - Drug Targets A Combination of Two Antioxidants (An SOD Mimic and Ascorbate) Produces a Pro-Oxidative Effect Forcing Escherichia coli to Adapt Via Induction of oxyR Regulon
Anti-Cancer Agents in Medicinal Chemistry Imaging of Integrins as Biomarkers for Tumor Angiogenesis
Current Pharmaceutical Design Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review
Current Topics in Medicinal Chemistry Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity?
Current Pharmacogenomics and Personalized Medicine Targeted Delivery of Tumor Suppressor microRNA-1 by Transferrin- Conjugated Lipopolyplex Nanoparticles to Patient-Derived Glioblastoma Stem Cells
Current Pharmaceutical Biotechnology Peripheral Benzodiazepine Receptor (PBR) New Insight in Cell Proliferation and Cell Differentiation Review
Current Clinical Pharmacology Isomers of 4-[<sup>18</sup>F]fluoro-proline: Radiosynthesis, Biological Evaluation and Results in Humans Using PET
Current Radiopharmaceuticals Growth Inhibition of Human Non-Small Lung Cancer Cells H460 By Green Tea and Ginger Polyphenols
Anti-Cancer Agents in Medicinal Chemistry Antibodies as Crypts of Antiinfective and Antitumor Peptides
Current Medicinal Chemistry Identification of WHO II/III Gliomas by 16 Prognostic-related Gene Signatures using Machine Learning Methods
Current Medicinal Chemistry ADP-Ribosyl Cyclase as a Therapeutic Target for Central Nervous System Diseases
Central Nervous System Agents in Medicinal Chemistry Transductional Targeting with Recombinant Adenovirus Vectors
Current Gene Therapy MicroRNA-34 Family, Mechanisms of Action in Cancer: A Review
Current Cancer Drug Targets MiRNA-145 and Its Direct Downstream Targets in Digestive System Cancers: A Promising Therapeutic Target
Current Pharmaceutical Design Role of FoxM1 in the Progression and Epithelial to Mesenchymal Transition of Gastrointestinal Cancer
Recent Patents on Anti-Cancer Drug Discovery Imaging Primary Brain Tumors by Single-Photon Emission Computerized Tomography (SPECT) with Technetium-99m Sestamibi (MIBI) and Tetrofosmin
Current Medical Imaging