Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Advancements in Artificial Intelligence-mediated Fabrication of 3D, 4D, and 5D Printed for Fabrication of Drug Delivery Formulations

Author(s): Shivani Yadav and Manoj Kumar Mishra*

Volume 14, Issue 4, 2024

Published on: 15 June, 2024

Page: [273 - 289] Pages: 17

DOI: 10.2174/0122103031309831240531084125

Price: $65

Abstract

One of the most powerful and inventive fabrication techniques used to create novel structures and solid materials using precise additive manufacturing technology is 5D and 4D printing, which is an improved version of 3D printing. It catches people's attention because of its capacity to generate fast, highly complex, adaptable product design and fabrication. Real-time sensing, change adaptation, and printing state prediction are made possible by this technology with the use of artificial intelligence (AI). The process of 3D printing involves the use of sophisticated materials and computer-aided design (CAD) with tomography scanning controlled by artificial intelligence (AI). The printing material is deposited according to the specifications of the file, typically in STL format; however, the printing process takes time.4D printing, which incorporates intelligent materials with time as a fourth dimension, can solve this drawback. About 80% of the time will be saved by this technique's self-repair and self-assembly qualities. One limitation of 3D printing is that it cannot print complex shapes with curved surfaces. However, this limitation can be solved by using 5D printing, which uses rotation of the print bed and extruder head to achieve additive manufacturing in five different axes. Some printed materials are made sensitive to temperature, humidity, light, and other parameters so they can respond to stimuli. With its effective and efficient manufacturing for the necessary design precision, this review assesses the potential of these procedures with AI intervention in medicine and pharmacy.

[1]
Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Construct., 2022, 141, 104440.
[http://dx.doi.org/10.1016/j.autcon.2022.104440]
[2]
Lai, J.; Wang, C.; Wang, M. 3D printing in biomedical engineering: Processes, materials, and applications. Appl. Phys. Rev., 2021, 8(2), 021322.
[http://dx.doi.org/10.1063/5.0024177]
[3]
Zhao, S.; Tayyebi, M. Mahdireza Yarigarravesh; Hu, G. A review of magnesium corrosion in bio-applications: Mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate. J. Mater. Sci., 2023, 58(30), 12158-12181.
[http://dx.doi.org/10.1007/s10853-023-08782-z]
[4]
Wang, C.; Huang, W.; Zhou, Y.; He, L.; He, Z.; Chen, Z.; He, X.; Tian, S.; Liao, J.; Lu, B.; Wei, Y.; Wang, M. 3D printing of bone tissue engineering scaffolds. Bioact. Mater., 2020, 5(1), 82-91.
[http://dx.doi.org/10.1016/j.bioactmat.2020.01.004] [PMID: 31956737]
[5]
Xie, K.; Wang, N.; Guo, Y.; Zhao, S.; Tan, J.; Wang, L.; Li, G.; Wu, J.; Yang, Y.; Xu, W.; Chen, J.; Jiang, W.; Fu, P.; Hao, Y. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivostudy. Bioact. Mater., 2022, 8, 140-152.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.032] [PMID: 34541392]
[6]
Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8), 773-785.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[7]
Gao, C.; Li, Y.; Liu, X.; Huang, J.; Zhang, Z. 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem. Eng. J., 2023, 451, 138788.
[http://dx.doi.org/10.1016/j.cej.2022.138788]
[8]
Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and applications. Adv. Funct. Mater., 2019, 29(2), 1805290.
[http://dx.doi.org/10.1002/adfm.201805290]
[9]
Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Zolfagharian, A.; Bodaghi, M.; Baghani, M. A new strategy for achieving shape memory effects in 4D printed two-layer composite structures. Polymers, 2022, 14(24), 5446.
[http://dx.doi.org/10.3390/polym14245446] [PMID: 36559813]
[10]
Aberoumand, M.; Soltanmohammadi, K.; Rahmatabadi, D.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D printing of polyvinyl chloride (PVC): A detailed analysis of microstructure, programming, and shape memory performance. Macromol. Mater. Eng., 2023, 308(7), 2200677.
[http://dx.doi.org/10.1002/mame.202200677]
[11]
Wang, M. 5D printing and its application in tissue engineering. In: Materials Research Society (MRS); Spring Meeting , 2021.
[12]
Chua, C.K.; Yeong, W.Y. Bioprinting: Principles and Applications; World Scientific Publishing Co Inc: Singapore, 2014.
[13]
Vacanti, J.P.; Langer, R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 1999, 354(Suppl. 1), S32-S34.
[http://dx.doi.org/10.1016/S0140-6736(99)90247-7] [PMID: 10437854]
[14]
Zhou, W.; Qiao, Z.; Nazarzadeh Zare, E.; Huang, J.; Zheng, X.; Sun, X.; Shao, M.; Wang, H.; Wang, X.; Chen, D.; Zheng, J.; Fang, S.; Li, Y.M.; Zhang, X.; Yang, L.; Makvandi, P.; Wu, A. 4D-printed dynamic materials in biomedical applications: Chemistry, challenges and their future perspectives in the clinical sector. J. Med. Chem., 2020, 63(15), 8003-8024.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02115] [PMID: 32255358]
[15]
Wang, C.; Zhao, Q.; Wang, M. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication, 2017, 9(2), 025031.
[http://dx.doi.org/10.1088/1758-5090/aa71c9] [PMID: 28589918]
[16]
Duan, B.; Wang, M.; Zhou, W.Y.; Cheung, W.L.; Li, Z.Y.; Lu, W.W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater., 2010, 6(12), 4495-4505.
[http://dx.doi.org/10.1016/j.actbio.2010.06.024] [PMID: 20601244]
[17]
Zhang, W.; Shi, W.; Wu, S.; Kuss, M.; Jiang, X.; Untrauer, J.B.; Reid, S.P.; Duan, B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication, 2020, 12, 035020.
[18]
Haleem, A.; Javaid, M.; Vaishya, R. 5D printing and its expected applications in Orthopaedics. J. Clin. Orthop. Trauma, 2019, 10(4), 809-810.
[http://dx.doi.org/10.1016/j.jcot.2018.11.014] [PMID: 31316262]
[19]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17(S4)(Suppl. 4), 467-479.
[http://dx.doi.org/10.1007/s00586-008-0745-3] [PMID: 19005702]
[20]
Georgantzinos, S.K.; Giannopoulos, G.I.; Bakalis, P.A. Additive manufacturing for effective smart structures: The idea of 6D printing. Journal of Composites Science, 2021, 5(5), 119.
[http://dx.doi.org/10.3390/jcs5050119]
[21]
Zhang, W.; Shi, W.; Wu, S.; Kuss, M.; Jiang, X.; Untrauer, J.B.; Reid, S.P.; Duan, B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication, 2020, 12(3), 035020.
[http://dx.doi.org/10.1088/1758-5090/ab906e] [PMID: 32369796]
[22]
Bose, S.; Bhattacharjee, A.; Banerjee, D.; Boccaccini, A.R.; Bandyopadhyay, A. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Addit. Manuf., 2021, 40, 101895.
[http://dx.doi.org/10.1016/j.addma.2021.101895] [PMID: 34692425]
[23]
Zhang, M.; Lin, R.; Wang, X.; Xue, J.; Deng, C.; Feng, C.; Zhuang, H.; Ma, J.; Qin, C.; Wan, L.; Chang, J.; Wu, C. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci. Adv., 2020, 6(12), eaaz6725.
[http://dx.doi.org/10.1126/sciadv.aaz6725] [PMID: 32219170]
[24]
Zhu, L.; Liang, H.; Lv, F.; Xie, D.; Wang, C.; Mao, Y.; Yang, Y.; Tian, Z.; Shen, L. Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting. ACS Biomater. Sci. Eng., 2021, 7(4), 1663-1672.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01392] [PMID: 33682413]
[25]
Lai, J.; Wang, C.; Liu, J.; Chen, S.; Liu, C.; Huang, X.; Wu, J.; Pan, Y.; Xie, Y.; Wang, M. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells. Biofabrication, 2022, 14(4), 045006.
[http://dx.doi.org/10.1088/1758-5090/ac84b0] [PMID: 35896092]
[26]
Li, S.; Wang, W.; Li, W.; Xie, M.; Deng, C.; Sun, X.; Wang, C.; Liu, Y.; Shi, G.; Xu, Y.; Ma, X.; Wang, J. Fabrication of thermoresponsive hydrogel scaffolds with engineered microscale vasculatures. Adv. Funct. Mater., 2021, 31(27), 2102685.
[http://dx.doi.org/10.1002/adfm.202102685]
[27]
Alexander, A.E.; Wake, N.; Chepelev, L.; Brantner, P.; Ryan, J.; Wang, K.C. A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards. 3D Printing Med., 2021, 7, 1-6.
[28]
Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp., 2015, 10(3), 103-122.
[http://dx.doi.org/10.1080/17452759.2015.1097054]
[29]
Lai, J.; Ye, X.; Liu, J.; Wang, C.; Li, J.; Wang, X.; Ma, M.; Wang, M. 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Mater. Des., 2021, 205, 109699.
[http://dx.doi.org/10.1016/j.matdes.2021.109699]
[30]
van Manen, T.; Janbaz, S.; Zadpoor, A.A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz., 2017, 4(6), 1064-1069.
[http://dx.doi.org/10.1039/C7MH00269F] [PMID: 29308207]
[31]
Weems, A.C.; Arno, M.C.; Yu, W.; Huckstepp, R.T.R.; Dove, A.P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun., 2021, 12(1), 3771.
[http://dx.doi.org/10.1038/s41467-021-23956-6] [PMID: 34226548]
[32]
Kim, S.H.; Seo, Y.B.; Yeon, Y.K.; Lee, Y.J.; Park, H.S.; Sultan, M.T.; Lee, J.M.; Lee, J.S.; Lee, O.J.; Hong, H.; Lee, H.; Ajiteru, O.; Suh, Y.J.; Song, S.H.; Lee, K.H.; Park, C.H. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials, 2020, 260, 120281.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120281] [PMID: 32858503]
[33]
Zheng, Y.; Han, Q.; Li, D.; Sheng, F.; Song, Z.; Wang, J. Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4 V porous scaffold prepared by 3D printing. Mater. Des., 2021, 197, 109219.
[http://dx.doi.org/10.1016/j.matdes.2020.109219]
[34]
Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. Inkjet bioprinting of biomaterials. Chem. Rev., 2020, 120(19), 10793-10833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00008] [PMID: 32902959]
[35]
Zhang, J.; Byers, P.; Erben, A.; Frank, C.; Schulte-Spechtel, L.; Heymann, M.; Docheva, D.; Huber, H.P.; Sudhop, S.; Clausen-Schaumann, H. Single cell bioprinting with ultrashort laser pulses. Adv. Funct. Mater., 2021, 31(19), 2100066.
[http://dx.doi.org/10.1002/adfm.202100066]
[36]
Shopperly, L.K.; Spinnen, J.; Krüger, J.P.; Endres, M.; Sittinger, M.; Lam, T.; Kloke, L.; Dehne, T. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. J. Biomed. Mater. Res. B Appl. Biomater., 2022, 110(10), 2310-2322.
[http://dx.doi.org/10.1002/jbm.b.35079] [PMID: 35532378]
[37]
You, S.; Xiang, Y.; Hwang, H.H.; Berry, D.B.; Kiratitanaporn, W.; Guan, J.; Yao, E.; Tang, M.; Zhong, Z.; Ma, X.; Wangpraseurt, D.; Sun, Y.; Lu, T.; Chen, S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv., 2023, 9(8), eade7923.
[http://dx.doi.org/10.1126/sciadv.ade7923] [PMID: 36812321]
[38]
Duan, B.; Hockaday, L.A.; Kang, K.H.; Butcher, J.T., 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A, 2013, 101A(5), 1255-1264.
[http://dx.doi.org/10.1002/jbm.a.34420] [PMID: 23015540]
[39]
Gregor, A.; Filová, E.; Novák, M.; Kronek, J.; Chlup, H.; Buzgo, M.; Blahnová, V.; Lukášová, V.; Bartoš, M.; Nečas, A.; Hošek, J. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng., 2017, 11(1), 31.
[http://dx.doi.org/10.1186/s13036-017-0074-3] [PMID: 29046717]
[40]
Wang, C.; Lai, J.; Li, K.; Zhu, S.; Lu, B.; Liu, J.; Tang, Y.; Wei, Y. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact. Mater., 2021, 6(1), 137-145.
[http://dx.doi.org/10.1016/j.bioactmat.2020.07.007] [PMID: 32817920]
[41]
Zhu, W.; Cui, H.; Boualam, B.; Masood, F.; Flynn, E.; Rao, R.D.; Zhang, Z.Y.; Zhang, L.G. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29(18), 185101.
[http://dx.doi.org/10.1088/1361-6528/aaafa1] [PMID: 29446757]
[42]
Hong, H.; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J.; Lee, H.; Ajiteru, O.; Sultan, M.T.; Lee, O.J.; Kim, S.H.; Park, C.H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232, 119679.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119679] [PMID: 31865191]
[43]
Jiang, X.; Wu, S.; Kuss, M.; Kong, Y.; Shi, W.; Streubel, P.N.; Li, T.; Duan, B. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact. Mater., 2020, 5(3), 636-643.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.017] [PMID: 32405578]
[44]
Touré, A.B.R.; Mele, E.; Christie, J.K. Multi-layer scaffolds of poly (Caprolactone), poly (glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning. Nanomaterials , 2020, 10(4), 626.
[http://dx.doi.org/10.3390/nano10040626] [PMID: 32231007]
[45]
Millik, S.C.; Dostie, A.M.; Karis, D.G.; Smith, P.T.; McKenna, M.; Chan, N.; Curtis, C.D.; Nance, E.; Theberge, A.B.; Nelson, A. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium. Biofabrication, 2019, 11(4), 045009.
[http://dx.doi.org/10.1088/1758-5090/ab2b4d] [PMID: 31220824]
[46]
Wang, Y.; Kankala, R.K.; Zhu, K.; Wang, S.B.; Zhang, Y.S.; Chen, A.Z. Coaxial extrusion of tubular tissue constructs using a gelatin/GelMA blend bioink. ACS Biomater. Sci. Eng., 2019, 5(10), 5514-5524.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00926] [PMID: 33464071]
[47]
Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.P.; Ta, A.H.; Johansson, F.; Randles, A.; Rosenkrantz, J.E.; Louis-Rosenberg, J.D.; Galie, P.A.; Stevens, K.R.; Miller, J.S. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 2019, 364(6439), 458-464.
[http://dx.doi.org/10.1126/science.aav9750] [PMID: 31048486]
[48]
Peng, K.; Liu, X.; Zhao, H.; Lu, H.; Lv, F.; Liu, L.; Huang, Y.; Wang, S.; Gu, Q. 3D bioprinting of reinforced vessels by dual-cross-linked biocompatible hydrogels. ACS Appl. Bio Mater., 2021, 4(5), 4549-4556.
[http://dx.doi.org/10.1021/acsabm.1c00283] [PMID: 35006791]
[49]
Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res., 2016, 34(3), 369-385.
[http://dx.doi.org/10.1002/jor.23075] [PMID: 26488900]
[50]
Bandyopadhyay, A.; Krishna, B.V.; Xue, W.; Bose, S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. Mater. Med., 2009, 20(S1)(Suppl. 1), 29-34.
[http://dx.doi.org/10.1007/s10856-008-3478-2] [PMID: 18521725]
[51]
Valot, L.; Martinez, J.; Mehdi, A.; Subra, G. Chemical insights into bioinks for 3D printing. Chem. Soc. Rev., 2019, 48(15), 4049-4086.
[http://dx.doi.org/10.1039/C7CS00718C] [PMID: 31271159]
[52]
Chen, Y.; Li, W.; Zhang, C.; Wu, Z.; Liu, J. Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv. Healthc. Mater., 2020, 9(23), 2000724.
[http://dx.doi.org/10.1002/adhm.202000724] [PMID: 32743960]
[53]
Zheng, X.; Huang, J.; Lin, J.; Yang, D.; Xu, T.; Chen, D.; Zan, X.; Wu, A. 3D bioprinting in orthopedics translational research. J. Biomater. Sci. Polym. Ed., 2019, 30(13), 1172-1187.
[http://dx.doi.org/10.1080/09205063.2019.1623989] [PMID: 31124402]
[54]
Wang, Y.; Zheng, G.; Jiang, N.; Ying, G.; Li, Y.; Cai, X.; Meng, J.; Mai, L.; Guo, M.; Zhang, Y.S.; Zhang, X. Nature-inspired micropatterns. Nature Reviews Methods Primers, 2023, 3(1), 68.
[http://dx.doi.org/10.1038/s43586-023-00251-w]
[55]
Ghosh, U.; Ning, S.; Wang, Y.; Kong, Y.L. Addressing unmet clinical needs with 3D printing technologies. Adv. Healthc. Mater., 2018, 7(17), 1800417.
[http://dx.doi.org/10.1002/adhm.201800417] [PMID: 30004185]
[56]
Qian, Q.; Kamps, J.H.; Price, B.; Gu, H.; Wildman, R.; Hague, R.; Begines, B.; Tuck, C. 3D reactive inkjet printing of bisphenol A-polycarbonate. Addit. Manuf., 2022, 54, 102745.
[http://dx.doi.org/10.1016/j.addma.2022.102745]
[57]
Jin, Z.; Li, Y.; Yu, K.; Liu, L.; Fu, J.; Yao, X.; Zhang, A.; He, Y. 3D printing of physical organ models: Recent developments and challenges. Adv. Sci., 2021, 8(17), 2101394.
[http://dx.doi.org/10.1002/advs.202101394] [PMID: 34240580]
[58]
Zub, K.; Hoeppener, S.; Schubert, U.S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater., 2022, 34(31), 2105015.
[http://dx.doi.org/10.1002/adma.202105015] [PMID: 35338719]
[59]
Paraskevoudis, K.; Karayannis, P.; Koumoulos, E.P. Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes , 2020, 8(11), 1464.
[http://dx.doi.org/10.3390/pr8111464]
[60]
Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater., 2020, 6(1), 27-47.
[http://dx.doi.org/10.1038/s41578-020-00235-2]
[61]
Armillotta, A.; Bellotti, M.; Cavallaro, M. Warpage of FDM parts: Experimental tests and analytic model. Robot. Comput.-Integr. Manuf., 2018, 50, 140-152.
[http://dx.doi.org/10.1016/j.rcim.2017.09.007]
[62]
Acharya, R.; Sharon, J.A.; Staroselsky, A. Prediction of microstructure in laser powder bed fusion process. Acta Mater., 2017, 124, 360-371.
[http://dx.doi.org/10.1016/j.actamat.2016.11.018]
[63]
Lee, V.K.; Kim, D.Y.; Ngo, H.; Lee, Y.; Seo, L.; Yoo, S.S.; Vincent, P.A.; Dai, G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials, 2014, 35(28), 8092-8102.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.083] [PMID: 24965886]
[64]
Cui, X.; Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30(31), 6221-6227.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.056] [PMID: 19695697]
[65]
Wang, Z.; Kapadia, W.; Li, C.; Lin, F.; Pereira, R.F.; Granja, P.L.; Sarmento, B.; Cui, W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J. Control. Release, 2021, 329, 237-256.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.044] [PMID: 33259853]
[66]
Zheng, F.; Derby, B.; Wong, J. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. Biofabrication, 2021, 13(3), 035006.
[http://dx.doi.org/10.1088/1758-5090/abd158] [PMID: 33285527]
[67]
Zhang, F.; Zhang, Z.; Zhou, T.; Liu, Y.; Leng, J. Shape memory polymer nanofibers and their composites: Electrospinning, structure, performance, and applications. Front. Mater., 2015, 2, 62.
[http://dx.doi.org/10.3389/fmats.2015.00062]
[68]
Chen, M.; Li, L.; Xia, L.; Zhang, F.; Jiang, S.; Hu, H.; Li, X.; Wang, H. Temperature responsive shape-memory scaffolds with circumferentially aligned nanofibers for guiding smooth muscle cell behavior. Macromol. Biosci., 2020, 20(2), 1900312.
[http://dx.doi.org/10.1002/mabi.201900312] [PMID: 31854123]
[69]
Niiyama, E.; Tanabe, K.; Uto, K.; Kikuchi, A.; Ebara, M. Shape-memory nanofiber meshes with programmable cell orientation. Fibers , 2019, 7(3), 20.
[http://dx.doi.org/10.3390/fib7030020]
[70]
Landsman, T.L.; Touchet, T.; Hasan, S.M.; Smith, C.; Russell, B.; Rivera, J.; Maitland, D.J.; Cosgriff-Hernandez, E. A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomater., 2017, 47, 91-99.
[http://dx.doi.org/10.1016/j.actbio.2016.10.008] [PMID: 27721009]
[71]
Sabzi, M.; Babaahmadi, M.; Rahnama, M. Thermally and electrically triggered triple-shape memory behavior of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation. ACS Appl. Mater. Interfaces, 2017, 9(28), 24061-24070.
[http://dx.doi.org/10.1021/acsami.7b02259] [PMID: 28640585]
[72]
Wang, J.; Xiong, H.; Zhu, T.; Liu, Y.; Pan, H.; Fan, C.; Zhao, X.; Lu, W.W. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano, 2020, 14(10), 12579-12595.
[http://dx.doi.org/10.1021/acsnano.0c03570] [PMID: 32786254]
[73]
Balakrishnan, H.K.; Badar, F.; Doeven, E.H.; Novak, J.I.; Merenda, A.; Dumée, L.F.; Loy, J.; Guijt, R.M. 3D printing: An alternative microfabrication approach with unprecedented opportunities in design. Anal. Chem., 2021, 93(1), 350-366.
[http://dx.doi.org/10.1021/acs.analchem.0c04672] [PMID: 33263392]
[74]
Rahman, S.S.; Arshad, M.; Qureshi, A.; Ullah, A. Fabrication of a self-healing, 3D printable, and reprocessable biobased elastomer. ACS Appl. Mater. Interfaces, 2020, 12(46), 51927-51939.
[http://dx.doi.org/10.1021/acsami.0c14220] [PMID: 33156602]
[75]
Daikuara, L.Y.; Yue, Z.; Skropeta, D.; Wallace, G.G. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomater., 2021, 123, 286-297.
[http://dx.doi.org/10.1016/j.actbio.2021.01.021] [PMID: 33476829]
[76]
Monks, P.; Wychowaniec, J.K.; McKiernan, E.; Clerkin, S.; Crean, J.; Rodriguez, B.J.; Reynaud, E.G.; Heise, A.; Brougham, D.F. Spatiotemporally resolved heat dissipation in 3D patterned magnetically responsive hydrogels. Small, 2021, 17(5), 2004452.
[http://dx.doi.org/10.1002/smll.202004452] [PMID: 33369876]
[77]
Messaoudi, O.; Henrionnet, C.; Bourge, K.; Loeuille, D.; Gillet, P.; Pinzano, A. Stem cells and extrusion 3D printing for hyaline cartilage engineering. Cells, 2020, 10(1), 2.
[http://dx.doi.org/10.3390/cells10010002] [PMID: 33374921]
[78]
Sager, V.F.; Munk, M.B.; Hansen, M.S.; Bredie, W.L.P.; Ahrné, L. Formulation of heat-induced whey protein gels for extrusion-based 3D printing. Foods, 2020, 10(1), 8.
[http://dx.doi.org/10.3390/foods10010008] [PMID: 33375171]
[79]
Unagolla, J.M.; Jayasuriya, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today, 2020, 18, 100479.
[http://dx.doi.org/10.1016/j.apmt.2019.100479] [PMID: 32775607]
[80]
Zhu, J.; Zhang, Q.; Yang, T.; Liu, Y.; Liu, R. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun., 2020, 11(1), 3462.
[http://dx.doi.org/10.1038/s41467-020-17251-z] [PMID: 32651379]
[81]
Kérourédan, O.; Hakobyan, D.; Rémy, M.; Ziane, S.; Dusserre, N.; Fricain, J.C.; Delmond, S.; Thébaud, N.B.; Devillard, R. In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration. Biofabrication, 2019, 11(4), 045002.
[http://dx.doi.org/10.1088/1758-5090/ab2620] [PMID: 31151125]
[82]
Kirillova, A.; Maxson, R.; Stoychev, G.; Gomillion, C.T.; Ionov, L. 4D biofabrication using shape‐morphing hydrogels. Adv. Mater., 2017, 29, 1703443.
[83]
Devillard, C.D.; Mandon, C.A.; Lambert, S.A.; Blum, L.J.; Marquette, C.A. Bioinspired multi-activities 4D printing objects: a new approach toward complex tissue engineering. Biotechnol. J., 2018, 13, 1800098.
[84]
Barui, S.; Panda, A.K.; Naskar, S.; Kuppuraj, R.; Basu, S.; Basu, B. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Biomaterials, 2019, 213, 119212.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.023] [PMID: 31152931]
[85]
Milić, J.V.; Diederich, F. The quest for molecular grippers: Photo-electric control of molecular gripping machinery. Chemistry, 2019, 25(36), 8440-8452.
[http://dx.doi.org/10.1002/chem.201900852] [PMID: 31111578]
[86]
Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(12), 3413-3428.
[http://dx.doi.org/10.1039/C9TC00107G]
[87]
Agarwal, S.; Jiang, S.; Chen, Y. Progress in the field of water and/or temperature-triggered polymer actuators. Macromol. Mater. Eng., 2019, 304(2), 1800548.
[http://dx.doi.org/10.1002/mame.201800548]
[88]
Gruhn, T.; Emmerich, H. Simulation of stimuli-responsive polymer networks. Chemosensors , 2013, 1(3), 43-67.
[http://dx.doi.org/10.3390/chemosensors1030043]
[89]
Cox, S.C.; Thornby, J.A.; Gibbons, G.J.; Williams, M.A.; Mallick, K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C, 2015, 47, 237-247.
[http://dx.doi.org/10.1016/j.msec.2014.11.024] [PMID: 25492194]
[90]
Feng, P.; Wu, P.; Gao, C.; Yang, Y.; Guo, W.; Yang, W.; Shuai, C. A multimaterial scaffold with tunable properties: Toward bone tissue repair. Adv. Sci. (Weinh.), 2018, 5(6), 1700817.
[http://dx.doi.org/10.1002/advs.201700817] [PMID: 29984132]
[91]
Matter, M.T.; Li, J.H.; Lese, I.; Schreiner, C.; Bernard, L.; Scholder, O.; Hubeli, J.; Keevend, K.; Tsolaki, E.; Bertero, E.; Bertazzo, S.; Zboray, R.; Olariu, R.; Constantinescu, M.A.; Figi, R.; Herrmann, I.K. Multiscale analysis of metal oxide nanoparticles in tissue: Insights into biodistribution and biotransformation. Adv. Sci. (Weinh.), 2020, 7(15), 2000912.
[http://dx.doi.org/10.1002/advs.202000912] [PMID: 32775166]
[92]
John, J.V.; McCarthy, A.; Wang, H.; Chen, S.; Su, Y.; Davis, E.; Li, X.; Park, J.S.; Reinhardt, R.A.; Xie, J. Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray. Small, 2020, 16(19), 1907393.
[http://dx.doi.org/10.1002/smll.201907393] [PMID: 32212416]
[93]
Xu, L.; Gao, S.; Zhou, R.; Zhou, F.; Qiao, Y.; Qiu, D. Bioactive pore‐forming bone adhesives facilitating cell ingrowth for fracture healing. Adv. Mater., 2020, 32(10), 1907491.
[http://dx.doi.org/10.1002/adma.201907491] [PMID: 31984560]
[94]
de Melo Pereira, D.; Habibovic, P. Biomineralization‐inspired material design for bone regeneration. Adv. Healthc. Mater., 2018, 7(22), 1800700.
[http://dx.doi.org/10.1002/adhm.201800700] [PMID: 30240157]
[95]
Adele, B. Bone mineral crystal size. Osteoporos. Int., 2003, 14(Suppl. 5), 16-21.
[http://dx.doi.org/10.1007/s00198-003-1468-2] [PMID: 14504701]
[96]
Zhou, F.; Hong, Y.; Liang, R.; Zhang, X.; Liao, Y.; Jiang, D.; Zhang, J.; Sheng, Z.; Xie, C.; Peng, Z.J.B. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 2020, 258, 120287.
[97]
Fernandez-Yague, M.A.; Abbah, S.A.; McNamara, L.; Zeugolis, D.I.; Pandit, A.; Biggs, M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev., 2015, 84, 1-29.
[http://dx.doi.org/10.1016/j.addr.2014.09.005] [PMID: 25236302]
[98]
Barros, N.R.; Kim, H.J.; Gouidie, M.J.; Lee, L.; Bandaru, P.; Banton, E.A.; Sarikhani, E.; Sun, W.; Zhang, S.; Cho, H.J.; Hartel, M.C.; Ostrovidov, S.; Ahadian, S.; Hussain, S.M.; Ashammakhi, N.; Dokmeci, M.R.; Herculano, R.D.; Lee, J.; Khademhosseini, A. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.
[99]
Murshed, M.; McKee, M.D. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr. Opin. Nephrol. Hypertens., 2010, 19(4), 359-365.
[http://dx.doi.org/10.1097/MNH.0b013e3283393a2b] [PMID: 20489614]
[100]
Langdahl, B.; Ferrari, S.; Dempster, D.W. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis., 2016, 8(6), 225-235.
[http://dx.doi.org/10.1177/1759720X16670154] [PMID: 28255336]
[101]
Liu, Y.; Luo, D.; Wang, T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016, 12(34), 4611-4632.
[http://dx.doi.org/10.1002/smll.201600626] [PMID: 27322951]
[102]
Tertuliano, O.A.; Greer, J.R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15(11), 1195-1202.
[http://dx.doi.org/10.1038/nmat4719] [PMID: 27500809]
[103]
Wang, L.; Zhu, L.; Wang, Z.; Lou, A.; Yang, Y.; Guo, Y.; Liu, S.; Zhang, C.; Zhang, Z.; Hu, H.; Yang, B.; Zhang, P.; Ouyang, H.; Zhang, Z. Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials, 2018, 175, 44-60.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.017] [PMID: 29800757]
[104]
Anada, T.; Pan, C.C.; Stahl, A.; Mori, S.; Fukuda, J.; Suzuki, O.; Yang, Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int. J. Mol. Sci., 2019, 20(5), 1096.
[http://dx.doi.org/10.3390/ijms20051096] [PMID: 30836606]
[105]
Vidal, L.; Kampleitner, C.; Krissian, S.; Brennan, M.Á.; Hoffmann, O.; Raymond, Y.; Maazouz, Y.; Ginebra, M.P.; Rosset, P.; Layrolle, P. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Sci. Rep., 2020, 10(1), 7068.
[http://dx.doi.org/10.1038/s41598-020-63742-w] [PMID: 32341459]
[106]
Li, B.; Ruan, C.; Ma, Y.; Huang, Z.; Huang, Z.; Zhou, G.; Zhang, J.; Wang, H.; Wu, Z.; Qiu, G. Fabrication of vascularized bone flaps with sustained release of recombinant human bone morphogenetic protein-2 and arteriovenous bundle. Tissue Eng. Part A, 2018, 24(17-18), 1413-1422.
[http://dx.doi.org/10.1089/ten.tea.2018.0002] [PMID: 29676206]
[107]
Charbonnier, B.; Baradaran, A.; Sato, D.; Alghamdi, O.; Zhang, Z.; Zhang, Y.L.; Gbureck, U.; Gilardino, M.; Harvey, E.; Makhoul, N.; Barralet, J. Material‐induced venosome‐supported bone tubes. Adv. Sci., 2019, 6(17), 1900844.
[http://dx.doi.org/10.1002/advs.201900844] [PMID: 31508287]
[108]
Feng, C.; Zhang, W.; Deng, C.; Li, G.; Chang, J.; Zhang, Z.; Jiang, X.; Wu, C. 3D printing of lotus root‐like biomimetic materials for cell delivery and tissue regeneration. Adv. Sci. (Weinh.), 2017, 4(12), 1700401.
[http://dx.doi.org/10.1002/advs.201700401] [PMID: 29270348]
[109]
Tian, F.; Conde, J.; Bao, C.; Chen, Y.; Curtin, J.; Cui, D. Gold nanostars for efficient in vitro and in vivoreal-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials, 2016, 106, 87-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.014] [PMID: 27552319]
[110]
Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D bioprinting for biomedical applications. Trends Biotechnol., 2016, 34(9), 746-756.
[http://dx.doi.org/10.1016/j.tibtech.2016.03.004] [PMID: 27056447]
[111]
Miao, S.; Castro, N.; Nowicki, M.; Xia, L.; Cui, H.; Zhou, X.; Zhu, W.; Lee, S.; Sarkar, K.; Vozzi, G.; Tabata, Y.; Fisher, J.; Zhang, L.G. 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today, 2017, 20(10), 577-591.
[http://dx.doi.org/10.1016/j.mattod.2017.06.005] [PMID: 29403328]
[112]
Falahati, M.; Ahmadvand, P.; Safaee, S.; Chang, Y.C.; Lyu, Z.; Chen, R.; Li, L.; Lin, Y. Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today, 2020, 40, 215-245.
[http://dx.doi.org/10.1016/j.mattod.2020.06.001]
[113]
Wan, Z.; Zhang, P.; Liu, Y.; Lv, L.; Zhou, Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater., 2020, 101, 26-42.
[http://dx.doi.org/10.1016/j.actbio.2019.10.038] [PMID: 31672585]
[114]
Melocchi, A.; Uboldi, M.; Cerea, M.; Foppoli, A.; Maroni, A.; Moutaharrik, S.; Palugan, L.; Zema, L.; Gazzaniga, A. Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev., 2021, 173, 216-237.
[http://dx.doi.org/10.1016/j.addr.2021.03.013] [PMID: 33774118]
[115]
Zhang, C.; Cai, D.; Liao, P.; Su, J.W.; Deng, H.; Vardhanabhuti, B.; Ulery, B.D.; Chen, S.Y.; Lin, J. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater., 2021, 122, 101-110.
[http://dx.doi.org/10.1016/j.actbio.2020.12.042] [PMID: 33359298]
[116]
Miri, A.K.; Khalilpour, A.; Cecen, B.; Maharjan, S.; Shin, S.R.; Khademhosseini, A. Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.006] [PMID: 30244825]
[117]
Devillard, C.D.; Mandon, C.A.; Lambert, S.A.; Blum, L.J.; Marquette, C.A. Bioinspired multi‐activities 4D printing objects: A new approach toward complex tissue engineering. Biotechnol. J., 2018, 13(12), 1800098.
[http://dx.doi.org/10.1002/biot.201800098] [PMID: 30192055]
[118]
de Marco, C.; Pané, S.; Nelson, B.J. 4D printing and robotics. Sci. Robot., 2018, 3(18), eaau0449.
[http://dx.doi.org/10.1126/scirobotics.aau0449] [PMID: 33141711]
[119]
Kirillova, A.; Maxson, R.; Stoychev, G.; Gomillion, C.T.; Ionov, L. 4D biofabrication using shape‐morphing hydrogels. Adv. Mater., 2017, 29(46), 1703443.
[http://dx.doi.org/10.1002/adma.201703443] [PMID: 29024044]
[120]
Rafiee, M.; Farahani, R.D.; Therriault, D. Multi‐material 3D and 4D printing: A survey. Adv. Sci. (Weinh.), 2020, 7(12), 1902307.
[http://dx.doi.org/10.1002/advs.201902307] [PMID: 32596102]
[121]
Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol., 2015, 11(1), 45-54.
[http://dx.doi.org/10.1038/nrrheum.2014.164] [PMID: 25266456]
[122]
Ren, B.; Song, K.; Sanikommu, A.R.; Chai, Y.; Longmire, M.A.; Chai, W.; Murfee, W.L.; Huang, Y. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. Appl. Phys. Rev., 2022, 9(1), 011408.
[http://dx.doi.org/10.1063/5.0068329] [PMID: 35242266]
[123]
Shao, L.; Gao, Q.; Xie, C.; Fu, J.; Xiang, M.; He, Y. Synchronous 3D bioprinting of large‐scale cell‐laden constructs with nutrient networks. Adv. Healthc. Mater., 2020, 9(15), 1901142.
[http://dx.doi.org/10.1002/adhm.201901142] [PMID: 31846229]
[124]
Zeinali, K.; Khorasani, M.T.; Rashidi, A.; Daliri Jouparid, M. Fabrication of graphene oxide aerogel to repair neural tissue. Journal of Clinical Research in Paramedical Sciences, 2021, 10(2), e119221.
[http://dx.doi.org/10.5812/jcrps.119221]
[125]
Girão, A.F.; Sousa, J.; Domínguez-Bajo, A.; González-Mayorga, A.; Bdikin, I.; Pujades-Otero, E.; Casañ-Pastor, N.; Hortigüela, M.J.; Otero-Irurueta, G.; Completo, A.; Serrano, M.C.; Marques, P.A.A.P. 3D reduced graphene oxide scaffolds with a combinatorial fibrous-porous architecture for neural tissue engineering. ACS Appl. Mater. Interfaces, 2020, 12(35), 38962-38975.
[http://dx.doi.org/10.1021/acsami.0c10599] [PMID: 32805917]
[126]
Liu, X.; Hao, M.; Chen, Z.; Zhang, T.; Huang, J.; Dai, J.; Zhang, Z. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials, 2021, 272, 120771.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120771] [PMID: 33798962]
[127]
Miao, S.; Cui, H.; Nowicki, M.; Xia, L.; Zhou, X.; Lee, S.J.; Zhu, W.; Sarkar, K.; Zhang, Z.; Zhang, L.G. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Adv. Biosyst., 2018, 2(9), 1800101.
[http://dx.doi.org/10.1002/adbi.201800101] [PMID: 30906853]
[128]
Zhang, Z.; Jørgensen, M.L.; Wang, Z.; Amagat, J.; Wang, Y.; Li, Q.; Dong, M.; Chen, M. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials, 2020, 253, 120108.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120108] [PMID: 32428776]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy