Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Intranasal Route an Alternative Approach for Systemic Drug Delivery: Recent Strategies and Progression

Author(s): Rajni Bala, Deepinder Singh Malik*, Reecha Madan, Shammy Jindal and Vimanpreet Kaur

Volume 14, Issue 4, 2024

Published on: 22 January, 2024

Page: [259 - 272] Pages: 14

DOI: 10.2174/0122103031273192240102054301

Price: $65

Abstract

Intranasal administration has proven to be a viable alternative for local and systemic delivery of varied therapeutic agents. This route has been potentially researched for delivering polar compounds, vaccines, hormones, peptides, proteins, etc. Being non-invasive and painless with a fast onset of action (both local and systemic), intranasal has become an ideal route for medication to children. This route is specifically employed for the delivery of drugs that are unstable in GIT, which gets significantly degraded or metabolized by the first-pass effect. The nasal route's high absorption and permeability profile has led to its exploration as a substitute for parenteral delivery. This paper reviews the feasibility and potentials of intranasal administration, discussing its benefits, drawbacks, market analysis, factors affecting nasal drug delivery system, conventional and novel strategies (polymeric and nano-carrier-based delivery systems) to improve nasal ab-sorption and its clinical management of varied systemic and topical disorders viz. neurodegenerative, pulmonary, microbial, neoplastic, etc.

Next »
[1]
Lombardo, R.; Musumeci, T.; Carbone, C.; Pignatello, R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm. Dev. Technol., 2021, 26(8), 824-845.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[2]
Kumar, H.; Mishra, G.; Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Gupta, U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm. Nanotechnol., 2017, 5(3), 203-214.
[PMID: 28521670]
[3]
Rawal, S.U.; Patel, B.M.; Patel, M.M. New drug delivery systems developed for brain targeting. Drugs, 2022, 82(7), 749-792.
[http://dx.doi.org/10.1007/s40265-022-01717-z] [PMID: 35596879]
[4]
Crowe, T.P.; Hsu, W.H. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics, 2022, 14(3), 629-654.
[http://dx.doi.org/10.3390/pharmaceutics14030629] [PMID: 35336004]
[5]
Forbes, B.; Bommer, R.; Goole, J.; Hellfritzsch, M.; De Kruijf, W.; Lambert, P.; Caivano, G.; Regard, A.; Schiaretti, F.; Trenkel, M.; Vecellio, L.; Williams, G.; Sonvico, F.; Scherließ, R. A consensus research agenda for optimising nasal drug delivery. Expert Opin. Drug Deliv., 2020, 17(2), 127-132.
[http://dx.doi.org/10.1080/17425247.2020.1714589] [PMID: 31928241]
[6]
Yale, J.F.; Dulude, H.; Egeth, M.; Piché, C.A.; Lafontaine, M.; Carballo, D.; Margolies, R.; Dissinger, E.; Shames, A.R.; Kaplowitz, N.; Zhang, M.X.; Zhang, S.; Guzman, C.B. Faster use and fewer failures with needle-free nasal glucagon versus injectable glucagon in severe hypoglycemia rescue: A simulation study. Diabetes Technol. Ther., 2017, 19(7), 423-432.
[http://dx.doi.org/10.1089/dia.2016.0460] [PMID: 28556672]
[7]
Rogol, A.D.; Tkachenko, N.; Bryson, N. Natesto ™, a novel testosterone nasal gel, normalizes androgen levels in hypogonadal men. Andrology, 2016, 4(1), 46-54.
[http://dx.doi.org/10.1111/andr.12137] [PMID: 26695758]
[8]
Lochhead, J.J.; Kumar, N.N.; Nehra, G.; Stenslik, M.J.; Bradley, L.H.; Thorne, R.G. Intranasal drug delivery to the brain. AAPS Advances in the Pharmaceutical Sciences Series, 2022, 33, 461-500.
[http://dx.doi.org/10.1007/978-3-030-88773-5_15]
[9]
Alnasser, S. A review on nasal drug delivery system and its contribution in therapeutic management. Asian J. Pharm. Clin. Res., 2019, 12(1), 40-45.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29443]
[10]
Sarkar, M.A. Drug metabolism in the nasal mucosa. Pharm. Res., 1992, 9(1), 1-9.
[http://dx.doi.org/10.1023/A:1018911206646] [PMID: 1589391]
[11]
Tai, J.; Han, M.; Lee, D.; Park, I.H.; Lee, S.H.; Kim, T.H. Different methods and formulations of drugs and vaccines for nasal administration. Pharmaceutics, 2022, 14(5), 1073.
[http://dx.doi.org/10.3390/pharmaceutics14051073] [PMID: 35631663]
[12]
Wüthrich, P.; Buri, P. [The transnasal route of drug administration. Aspects of nasal anatomy and physiology] Pharm. Acta Helv., 1989, 64(12), 322-331.
[PMID: 2694178]
[13]
Marple, B.; Roland, P.; Benninger, M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: An overview of conflicting data and opinions. Otolaryngol. Head Neck Surg., 2004, 130(1), 131-141.
[http://dx.doi.org/10.1016/j.otohns.2003.07.005] [PMID: 14726922]
[14]
Frank, D.O.; Kimbell, J.S.; Pawar, S.; Rhee, J.S. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol. Head Neck Surg., 2012, 146(2), 313-319.
[http://dx.doi.org/10.1177/0194599811427519] [PMID: 22049020]
[15]
Guo, Y.; Laube, B.; Dalby, R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm. Res., 2005, 22(11), 1871-1878.
[http://dx.doi.org/10.1007/s11095-005-7391-9] [PMID: 16091994]
[16]
Upadhyay, S.; Parikh, A.; Joshi, P.; Upadhyay, U.M.; Chotai, N.P. Intranasal drug delivery system-A glimpse to become maestro. J. Appl. Pharm. Sci., 2011, 1(3), 34-44.
[17]
Bernstein, J.M.; Reddy, M.S.; Scannapieco, F.A.; Faden, H.S.; Ballow, M. The microbial ecology and immunology of the adenoid: Implications for otitis media. Ann. N. Y. Acad. Sci., 1997, 830(1), 19-31.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb51876.x] [PMID: 9616664]
[18]
Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci., 2004, 26(3), 137-142.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[19]
Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 2022, 12(4), 735-757.
[http://dx.doi.org/10.1007/s13346-020-00891-5] [PMID: 33491126]
[20]
Illum, L. The nasal delivery of peptides and proteins. Trends Biotechnol., 1991, 9(1), 284-289.
[http://dx.doi.org/10.1016/0167-7799(91)90091-U] [PMID: 1367569]
[21]
Kumar, P.; Garg, V.; Mittal, N. Nose to brain drug delivery system: A comprehensive review. Drug Deliv. Lett., 2020, 10(4), 288-299.
[http://dx.doi.org/10.2174/2210303110999200526123006]
[22]
Szente, V.; Zelkó, R. [Site-specific drug delivery systems. III. Nasal drug delivery] Acta Pharm. Hung., 2008, 78(2), 87-90.
[PMID: 18807389]
[23]
Illum, L. Nasal drug delivery — Recent developments and future prospects. J. Control. Release, 2012, 161(2), 254-263.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.024] [PMID: 22300620]
[24]
Dodane, V.; Amin Khan, M.; Merwin, J.R. Effect of chitosan on epithelial permeability and structure. Int. J. Pharm., 1999, 182(1), 21-32.
[http://dx.doi.org/10.1016/S0378-5173(99)00030-7] [PMID: 10332071]
[25]
Chirag, P.; Tyagi, S.; Mangukia, D.; Ishita, S.; Shreya, P.; Kumar, U. A recent review on alternative system of parenteral delivery: Nasal drug delivery system. J Drug DiscovTher, 2013, 1(1), 12-18.
[26]
Jadhav, K.; Gambhire, M.; Shaikh, I.; Kadam, V.; Pisal, S. Nasal drug delivery system-factors affecting and applications. Curr. Drug Ther., 2007, 2(1), 27-38.
[http://dx.doi.org/10.2174/157488507779422374]
[27]
Ghadiri, M.; Young, P.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[28]
Agu, R.U. Challenges in nasal drug absorption: How far have we come? Ther. Deliv., 2016, 7(7), 495-510.
[http://dx.doi.org/10.4155/tde-2016-0022] [PMID: 27403632]
[29]
Hou, H.; Li, Y.; Xu, Z.; Yu, Z.; Peng, B.; Wang, C.; Liu, W.; Li, W.; Ye, Z.; Zhang, G. Applications and research progress of Traditional Chinese medicine delivered via nasal administration. Biomed. Pharmacother., 2023, 157, 113933.
[http://dx.doi.org/10.1016/j.biopha.2022.113933] [PMID: 36399826]
[30]
Soane, R.J.; Hinchcliffe, M.; Davis, S.S.; Illum, L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm., 2001, 217(1-2), 183-191.
[http://dx.doi.org/10.1016/S0378-5173(01)00602-0] [PMID: 11292554]
[31]
Lee, V.H. Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst., 1988, 5(2), 69-97.
[PMID: 3052875]
[32]
Khosrow Tayebati, S.; Ejike Nwankwo, I.; Amenta, F. Intranasal drug delivery to the central nervous system: Present status and future outlook. Curr. Pharm. Des., 2013, 19(3), 510-526.
[http://dx.doi.org/10.2174/138161213804143662] [PMID: 23116337]
[33]
Khatri, U.; Saini, S.; Bharkatiya, M. Pharmaceutical considerations of nasal in-situ gel as a drug delivery system. Asian J. Pharm. Res. Dev., 2021, 9(3), 94-103.
[http://dx.doi.org/10.22270/ajprd.v9i3.950]
[34]
Garg, T.; Kumar Goyal, A. Iontophoresis: Drug delivery system by applying an electrical potential across the skin. Drug Deliv. Lett., 2012, 2(4), 270-280.
[http://dx.doi.org/10.2174/2210304x11202040005]
[35]
Fisher, A.N.; Illum, L.; Davis, S.S.; Schacht, E.H. Di-iodo-L-tyrosine-labelled dextrans as molecular size markers of nasal absorption in the rat. J. Pharm. Pharmacol., 2011, 44(7), 550-554.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb05462.x] [PMID: 1383490]
[36]
Garg, T.; Singh, S.; Goyal, A.K. Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(5), 369-409.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007259] [PMID: 24099326]
[37]
Jiang, X.G.; Lu, X.; Cui, J.B.; Qiu, L.; Xi, N.Z. [Studies on octanol-water partition coefficient and nasal drug absorption] Yao Xue Xue Bao, 1997, 32(6), 458-460.
[PMID: 11596329]
[38]
Frey, W.H.; Liu, J.; Chen, X.; Thorne, R.G.; Fawcett, J.R.; Ala, T.A.; Rahman, Y.E. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv., 1997, 4(2), 87-92.
[http://dx.doi.org/10.3109/10717549709051878]
[39]
Haumann, R.; Videira, J.C.; Kaspers, G.J.L.; van Vuurden, D.G.; Hulleman, E. Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs, 2020, 34(11), 1121-1131.
[http://dx.doi.org/10.1007/s40263-020-00766-w] [PMID: 32965590]
[40]
Davies, M.G.; Geddes, D.M.; Alton, E.W.F.W. The effect of varying tonicity on nasal epithelial ion transport in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2005, 171(7), 760-763.
[http://dx.doi.org/10.1164/rccm.200310-1423OC] [PMID: 15618459]
[41]
Hussain, T.; Garg, T.; Goyal, A.K.; Rath, G. Biomedical applications of nanofiber scaffolds in tissue engineering. J. Biomater. Tissue Eng., 2014, 4(8), 600-623.
[http://dx.doi.org/10.1166/jbt.2014.1214]
[42]
Suzuki, Y.; Makino, Y. Mucosal drug delivery using cellulose derivatives as a functional polymer. J. Control. Release, 1999, 62(1-2), 101-107.
[http://dx.doi.org/10.1016/S0168-3659(99)00184-4] [PMID: 10518641]
[43]
Jones, N. The nose and paranasal sinuses physiology and anatomy. Adv. Drug Deliv. Rev., 2001, 51(1-3), 5-19.
[http://dx.doi.org/10.1016/S0169-409X(01)00172-7] [PMID: 11516776]
[44]
Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1167-1176.
[PMID: 25749276]
[45]
Joshi, D.; Garg, T.; Goyal, A.K.; Rath, G. Advanced drug delivery approaches against periodontitis. Drug Deliv., 2016, 23(2), 363-377.
[http://dx.doi.org/10.3109/10717544.2014.935531] [PMID: 25005586]
[46]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.; Goyal, A.K. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv., 2016, 23(6), 1912-1925.
[PMID: 25544602]
[47]
Rassu, G.; Soddu, E.; Cossu, M.; Brundu, A.; Cerri, G.; Marchetti, N.; Ferraro, L.; Regan, R.F.; Giunchedi, P.; Gavini, E.; Dalpiaz, A. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J. Control. Release, 2015, 201, 68-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.025] [PMID: 25620068]
[48]
Gizurarson, S. The relevance of nasal physiology to the design of drug absorption studies. Adv. Drug Deliv. Rev., 1993, 11(3), 329-347.
[http://dx.doi.org/10.1016/0169-409X(93)90015-V]
[49]
Alsarra, I.A.; Hamed, A.Y.; Alanazi, F.K.; El Maghraby, G.M.; Maghraby, E. Vesicular systems for intranasal drug delivery. Neuromethods, 2010, 45, 175-203.
[http://dx.doi.org/10.1007/978-1-60761-529-3_8]
[50]
Hussain, M.A.; Koval, C.A.; Shenvi, A.B.; Aungst, B.J. Recovery of rat nasal mucosa from the effects of aminopeptidase inhibitors. J. Pharm. Sci., 1990, 79(5), 398-400.
[http://dx.doi.org/10.1002/jps.2600790507] [PMID: 2352157]
[51]
Chaturvedi, M.; Kumar, M.; Pathak, K. A review on mucoadhesive polymer used in nasal drug delivery system. J. Adv. Pharm. Technol. Res., 2011, 2(4), 215-222.
[http://dx.doi.org/10.4103/2231-4040.90876] [PMID: 22247888]
[52]
Morimoto, K.; Yamaguchi, H.; Iwakura, Y.; Miyazaki, M.; Nakatani, E.; Iwamoto, T.; Ohashi, Y.; Nakai, Y. Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue. Pharm. Res., 1991, 8(9), 1175-1179.
[http://dx.doi.org/10.1023/A:1015862603939] [PMID: 1724082]
[53]
Morimoto, K.; Miyazaki, M.; Kakemi, M. Effects of proteolytic enzyme inhibitors on nasal absorption of salmon calcitonin in rats. Int. J. Pharm., 1995, 113(1), 1-8.
[http://dx.doi.org/10.1016/0378-5173(94)00158-2]
[54]
Suresh, S.; Bhaskaran, S. Nasal drug Delivery: An overview. Indian J. Pharm. Sci., 2005, 67(1), 19-25.
[55]
Illum, L. Improved delivery of drugs to mucosal services. European patent EP0975367B1., 2000.
[56]
Kahraman, E.; Karagöz, A.; Dinçer, S. özsoy, Y. Polyethylenimine modified and non-modified polymeric micelles used for nasal administration of carvedilol. J. Biomed. Nanotechnol., 2015, 11(5), 890-899.
[http://dx.doi.org/10.1166/jbn.2015.1915] [PMID: 26349400]
[57]
Ennis, R.D.; Borden, L.; Lee, W.A. The effects of permeation enhancers on the surface morphology of the rat nasal mucosa: A scanning electron microscopy study. Pharm. Res., 1990, 7(5), 468-475.
[http://dx.doi.org/10.1023/A:1015856430657] [PMID: 2367314]
[58]
Illum, L. Nasal drug delivery—possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[59]
Ikechukwu Ugwoke, M.; Kaufmann, G.; Verbeke, N.; Kinget, R. Intranasal bioavailability of apomorphine from carboxymethylcellulose-based drug delivery systems. Int. J. Pharm., 2000, 202(1-2), 125-131.
[http://dx.doi.org/10.1016/S0378-5173(00)00434-8] [PMID: 10915935]
[60]
v, J.N.I.; saRaswaThI, R. Development and characterization of inhaled chitosan nanoparticles loaded with Isoniazid. J. Pharm. Technol. Res., 2014, 2(2), 159-170.
[http://dx.doi.org/10.15415/jptrm.2014.22011]
[61]
Debnath, S.K.; Saisivam, S.; Debanth, M.; Omri, A. Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of prothionamide. PLoS One, 2018, 13(1), e0190976.
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[62]
Quadir, M.; Zia, H.; Needham, T.E. Development and evaluation of nasal formulations of ketorolac. Drug Deliv., 2000, 7(4), 223-229.
[http://dx.doi.org/10.1080/107175400455155] [PMID: 11195429]
[63]
Ikeda, K.; Murata, K.; Kobayashi, M.; Noda, K. Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem. Pharm. Bull. , 1992, 40(8), 2155-2158.
[http://dx.doi.org/10.1248/cpb.40.2155] [PMID: 1423772]
[64]
Lai, S.K.; Suk, J.S.; Pace, A.; Wang, Y.Y.; Yang, M.; Mert, O.; Chen, J.; Kim, J.; Hanes, J. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials, 2011, 32(26), 6285-6290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.008] [PMID: 21665271]
[65]
Pisal, S.S.; Paradkar, A.R.; Mahadik, K.R.; Kadam, S.S. Pluronic gels for nasal delivery of Vitamin B12. Part I: Preformulation study. Int. J. Pharm., 2004, 270(1-2), 37-45.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.005] [PMID: 14726120]
[66]
Cho, H.J.; Balakrishnan, P.; Park, E.K.; Song, K.W.; Hong, S.S.; Jang, T.Y.; Kim, K.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J. Pharm. Sci., 2011, 100(2), 681-691.
[http://dx.doi.org/10.1002/jps.22314] [PMID: 20803575]
[67]
Zaki, N.M.; Awad, G.A.; Mortada, N.D.; Abd ElHady, S.S. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci., 2007, 32(4-5), 296-307.
[http://dx.doi.org/10.1016/j.ejps.2007.08.006] [PMID: 17920822]
[68]
Parkman, H.P.; Carlson, M.R.; Gonyer, D. Metoclopramide nasal spray is effective in symptoms of gastroparesis in diabetics compared to conventional oral tablet. Neurogastroenterol. Motil., 2014, 26(4), 521-528.
[http://dx.doi.org/10.1111/nmo.12296] [PMID: 24372829]
[69]
Ugwoke, M.I.; Exaud, S.; Van Den Mooter, G.; Verbeke, N.; Kinget, R. Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur. J. Pharm. Sci., 1999, 9(2), 213-219.
[http://dx.doi.org/10.1016/S0928-0987(99)00061-5] [PMID: 10620734]
[70]
Bera, K.; Mazumder, B.; Khanam, J. Study of the mucoadhesive potential of carbopol polymer in the preparation of microbeads containing the antidiabetic drug glipizide. AAPS PharmSciTech, 2016, 17(3), 743-756.
[http://dx.doi.org/10.1208/s12249-015-0396-8] [PMID: 26335417]
[71]
Balakrishnan, P.; Park, E.K.; Song, C.K.; Ko, H.J.; Hahn, T.W.; Song, K.W.; Cho, H.J. Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules, 2015, 20(3), 4124-4135.
[http://dx.doi.org/10.3390/molecules20034124] [PMID: 25749681]
[72]
Yadav, A.V.; Mote, H.H. Development of biodegradable starch microspheres for intranasal delivery. Indian J. Pharm. Sci., 2008, 70(2), 170-174.
[http://dx.doi.org/10.4103/0250-474X.41450] [PMID: 20046707]
[73]
Kashikar, V.; Dhole, S.; Kandekar, U.; Khose, P. Study of mucoadhesive microsphere of pirfenidone for nasal drug delivery. Asian J. Pharm., 2014, 8(1), 43.
[http://dx.doi.org/10.4103/0973-8398.134099]
[74]
Picone, P.; Sabatino, M.A.; Ditta, L.A.; Amato, A.; San Biagio, P.L.; Mulè, F.; Giacomazza, D.; Dispenza, C.; Di Carlo, M. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J. Control. Release, 2018, 270, 23-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.040] [PMID: 29196041]
[75]
Marttin, E.; Schipper, N.G.M.; Verhoef, J.C.; Merkus, F.W.H.M. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 13-38.
[http://dx.doi.org/10.1016/S0169-409X(97)00059-8] [PMID: 10837578]
[76]
Kao, H.D.; Traboulsi, A.; Itoh, S.; Dittert, L.; Hussain, A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm. Res., 2000, 17(8), 978-984.
[http://dx.doi.org/10.1023/A:1007583422634] [PMID: 11028945]
[77]
Yang, C.; Gao, H.; Mitra, A.K. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J. Pharm. Sci., 2001, 90(5), 617-624.
[http://dx.doi.org/10.1002/1520-6017(200105)90:5<617:AID-JPS1018>3.0.CO;2-5] [PMID: 11288106]
[78]
Rudman, K.L.; O’Brien, E.K.; Leopold, D.A. Radiographic distribution of drops and sprays within the sinonasal cavities. Am. J. Rhinol. Allergy, 2011, 25(2), 94-97.
[http://dx.doi.org/10.2500/ajra.2011.25.3569] [PMID: 21679510]
[79]
Hammarlund-Udenaes, M. Pharmacokinetic concepts in brain drug delivery. In: Drug delivery to the brain; Springer: New York, NY, 2014, pp. 127-161.
[http://dx.doi.org/10.1007/978-1-4614-9105-7_5]
[80]
Harmon, B.T.; Aly, A.E.; Padegimas, L.; Sesenoglu-Laird, O.; Cooper, M.J.; Waszczak, B.L. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther., 2014, 21(5), 514-521.
[http://dx.doi.org/10.1038/gt.2014.28] [PMID: 24670994]
[81]
Kaye, R.S.; Purewal, T.S.; Alpar, O.H. Development and testing of particulate formulations for the nasal delivery of antibodies. J. Control. Release, 2009, 135(2), 127-135.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.009] [PMID: 19059291]
[82]
Hardy, J.G.; Lee, S.W.; Wilson, C.G. Intranasal drug delivery by spray and drops. J. Pharm. Pharmacol., 2011, 37(5), 294-297.
[http://dx.doi.org/10.1111/j.2042-7158.1985.tb05069.x] [PMID: 2862235]
[83]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[84]
Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev., 2009, 61(2), 140-157.
[http://dx.doi.org/10.1016/j.addr.2008.09.005] [PMID: 19121350]
[85]
Jojo, G.M.; Kuppusamy, G.; De, A.; Karri, V.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev. Ind. Pharm., 2019, 45(7), 1061-1072.
[http://dx.doi.org/10.1080/03639045.2019.1593439] [PMID: 30922126]
[86]
Cunha, S.; Forbes, B.; Sousa Lobo, J.M. Silva, A.C. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nano emulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int. J. Nanomedicine, 2021, 16, 4373-4390.
[http://dx.doi.org/10.2147/IJN.S305851] [PMID: 34234432]
[87]
Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul., 2020, 37(5), 355-365.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[88]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[89]
Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci., 2020, 27(1), 500-517.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.008] [PMID: 31889876]
[90]
Abdulla, N.A.; Balata, G.F.; El-ghamry, H.A.; Gomaa, E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm. J., 2021, 29(12), 1466-1485.
[http://dx.doi.org/10.1016/j.jsps.2021.11.006] [PMID: 35002385]
[91]
Yadav, D.; Mazumder, A.; Khar, R.K. Preparation and characterization of mucoadhesive nano emulsion containing piperine for nasal drug delivery system. Res J Pharm Technol, 2021, 14(5), 2381-2386.
[http://dx.doi.org/10.52711/0974-360X.2021.00420]
[92]
Beg, S.; Rahman, M.; Panda, S.K.; Alharbi, K.S.; Alruwaili, N.K. Ameeduzzafar; Singh, P.K.; Thappa, M.; Singh, B. Nasal mucoadhesive microspheres of lercanidipine with improved systemic bioavailability and antihypertensive activity. J. Pharm. Innov., 2021, 16(2), 237-246.
[http://dx.doi.org/10.1007/s12247-020-09441-5]
[93]
Akel, H.; Ismail, R.; Katona, G.; Sabir, F.; Ambrus, R.; Csóka, I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int. J. Pharm., 2021, 604, 120724.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120724] [PMID: 34023443]
[94]
Nethra, V.G.; Alagusundaram, M.; Chandrasekar, K.B. Formulation and optimization and in vitro characterization of olanzapine liposome. Int J Appl Sci, 2021, 13(5), 109-114.
[95]
Padalkar, R.R.; Madgulkar, A.R.; Bhalekar, M.R. Brain targeted delivery of rizatriptan using glutathione conjugated liposomes through transmucosal nasal route. Int. J. Pharm. Investig., 2020, 10(3), 344-350.
[http://dx.doi.org/10.5530/ijpi.2020.3.61]
[96]
Newman, S.P.; Pitcairn, G.R.; Dalby, R.N. Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(1), 46.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i1.20] [PMID: 15099184]
[97]
Le Guellec, S.; Ehrmann, S.; Vecellio, L. In vitro - in vivo correlation of intranasal drug deposition. Adv. Drug Deliv. Rev., 2021, 170, 340-352.
[http://dx.doi.org/10.1016/j.addr.2020.09.002] [PMID: 32918968]
[98]
Chen, J.; Martin, A.R.; Finlay, W.H. Recent in vitro and in silico advances in the understanding of intranasal drug delivery. Curr. Pharm. Des., 2021, 27(12), 1482-1497.
[http://dx.doi.org/10.2174/1381612826666201112143230] [PMID: 33183191]
[99]
Watson, J.; Wright, S.; Lucas, A.; Clarke, K.L.; Viggers, J.; Cheetham, S.; Jeffrey, P.; Porter, R.; Read, K.D. Receptor occupancy and brain free fraction. Drug Metab. Dispos., 2009, 37(4), 753-760.
[http://dx.doi.org/10.1124/dmd.108.022814] [PMID: 19158315]
[100]
Kalita, B.; Saikia, K.; Kalita, B. Development and characterization of mucoadhesive microsphere-loaded intranasal gel of venlafaxine hydrochloride. Asian J. Pharm. Clin. Res., 2016, 9(3), 139-144.
[101]
Bhupinder, S.S. Surfactants: Pharmaceutical and medicinal aspects. J. Pharm. Technol. Res. Manage., 2013, 1, 43-68.
[102]
Gaikwad, D.; Kurane, P.; Mali, D.; Jadhav, N. Development of particulate mucoadhesive gel for intranasal delivery. Asian J. Pharm. Clin. Res., 2017, 10(5), 222-227.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17212]
[103]
Rajendran, R.; Balan, R.; Ganesan, N.; Thiruvengadam, D. Recent modalities in drug delivery via inhalation therapy-An advanced treatment strategy for pulmonary Carcinoma. Int. J. Pharm. Pharm. Sci., 2015, 7(6), 8-21.
[104]
Wilkins, J.V., Jr; Golshahi, L.; Rahman, N.; Li, L. Evaluation of intranasal vaccine delivery using anatomical replicas of infant nasal airways. Pharm. Res., 2021, 38(1), 141-153.
[http://dx.doi.org/10.1007/s11095-020-02976-9] [PMID: 33449250]
[105]
Giuliani, A.; Balducci, A.G.; Zironi, E.; Colombo, G.; Bortolotti, F.; Lorenzini, L.; Galligioni, V.; Pagliuca, G.; Scagliarini, A.; Calzà, L.; Sonvico, F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv., 2018, 25(1), 376-387.
[http://dx.doi.org/10.1080/10717544.2018.1428242] [PMID: 29382237]
[106]
Arora, D.; Bhatt, S.; Kumar, M.; Vattikonda, H.D.C.; Taneja, Y.; Jain, V.; Joshi, V.; Gali, C.C. Intranasal lipid particulate drug delivery systems: An update on clinical challenges and biodistribution studies of cerebroactive drugs in alzheimer’s disease. Curr. Pharm. Des., 2020, 26(27), 3281-3299.
[http://dx.doi.org/10.2174/1381612826666200331085854] [PMID: 32228421]
[107]
Kehagia, E.; Papakyriakopoulou, P.; Valsami, G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine, 2023, 41(24), 3589-3603.
[http://dx.doi.org/10.1016/j.vaccine.2023.05.011] [PMID: 37179163]
[108]
Yusuf, H.; Kett, V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccin. Immunother., 2017, 13(1), 34-45.
[http://dx.doi.org/10.1080/21645515.2016.1239668] [PMID: 27936348]
[109]
Geurkink, N. Nasal anatomy, physiology, and function. J. Allergy Clin. Immunol., 1983, 72(2), 123-128.
[http://dx.doi.org/10.1016/0091-6749(83)90518-3] [PMID: 6350406]
[110]
Fonseca, L.C.; Lopes, J.A.; Vieira, J.; Viegas, C.; Oliveira, C.S.; Hartmann, R.P.; Fonte, P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv. Transl. Res., 2021, 11(2), 411-425.
[http://dx.doi.org/10.1007/s13346-021-00940-7] [PMID: 33638130]
[111]
Upadhaya, P.; Hazari, P.P.; Mishra, A.K.; Dutta, B.; Hassan, P.; Patravale, V. Radiolabelled folate micellar carriers as proposed diagnostic aid for CNS tumors by nasal route. Drug Deliv. Transl. Res., 2023, 13(10), 2604-2613.
[http://dx.doi.org/10.1007/s13346-023-01341-8] [PMID: 37084174]
[112]
Smith, T.R.; Winner, P.; Aurora, S.K.; Jeleva, M.; Hocevar-Trnka, J.; Shrewsbury, S.B. STOP 301: A Phase 3, open‐label study of safety, tolerability, and exploratory efficacy of INP104, precision olfactory delivery (POD ®) of dihydroergotamine mesylate, over 24/52 weeks in acute treatment of migraine attacks in adult patients. Headache, 2021, 61(8), 1214-1226.
[http://dx.doi.org/10.1111/head.14184] [PMID: 34363701]
[113]
Data, M.; Map, H. Impel neuropharma announces US FDA approval of TRUDHESA™ (DihydroergotamineMesylate) nasal spray for the acute treatment of migraine; Impel, 2021.
[114]
Bernstein, J.A.; Prenner, B.; Ferguson, B.J.; Portnoy, J.; Wheeler, W.J.; Sacks, H.J. Double-blind, placebo-controlled trial of reformulated azelastine nasal spray in patients with seasonal allergic rhinitis. Am. J. Rhinol. Allergy, 2009, 23(5), 512-517.
[http://dx.doi.org/10.2500/ajra.2009.23.3396] [PMID: 19807985]
[115]
Martin, V.; Hoekman, J.; Aurora, S.K.; Shrewsbury, S.B. Nasal delivery of acute medications for migraine: The upper versus lower nasal space. J. Clin. Med., 2021, 10(11), 2468.
[http://dx.doi.org/10.3390/jcm10112468] [PMID: 34199479]
[116]
Kverno, K.S.; Mangano, E. Treatment-resistant depression: Approaches to treatment. J. Psychosoc. Nurs. Ment. Health Serv., 2021, 59(9), 7-11.
[http://dx.doi.org/10.3928/02793695-20210816-01] [PMID: 34459676]
[117]
Guttman Krader, C. Varenicline nasal spray approved as a treatment for dry eye disease. Ophthal Times, 2021, 46, 1-36.
[118]
Lamb, Y.N. Olopatadine/mometasone combination nasal spray in allergic rhinitis: A profile of its use. Drugs Ther. Perspect., 2020, 36(11), 494-501.
[http://dx.doi.org/10.1007/s40267-020-00778-y]
[119]
Bartos, C.; Varga, P.; Szabó-Révész, P.; Ambrus, R. Physico-chemical and in vitro characterization of chitosan-based microspheres intended for nasal administration. Pharmaceutics, 2021, 13(5), 608.
[http://dx.doi.org/10.3390/pharmaceutics13050608] [PMID: 33922172]
[120]
Emad, N.A.; Ahmed, B.; Alhalmi, A.; Alzobaidi, N.; Al-Kubati, S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2021, 64, 102642.
[http://dx.doi.org/10.1016/j.jddst.2021.102642]
[121]
Rabiee, N.; Ahmadi, S.; Afshari, R.; Khalaji, S.; Rabiee, M.; Bagherzadeh, M.; Fatahi, Y.; Dinarvand, R.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv. Ther., 2021, 4, 1-24.
[122]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy