Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Formulation and Evaluation of Niosomal Loaded Transdermal Patches for the Treatment of Osteoarthritis

Author(s): Kajal*, Dev Raj Sharma, Vinay Pandit and Mahendra Ashawat

Volume 14, Issue 4, 2024

Published on: 02 July, 2024

Page: [290 - 307] Pages: 18

DOI: 10.2174/0122103031283166240619043041

Price: $65

Abstract

Introduction: Osteoarthritis (OA) is a degenerative joint disease resulting from the breakdown of joint cartilage and underlying bone. The most common symptoms of osteoarthritis are joint pain and stiffness. The major hurdle in its treatment is that the oral administration of NSAIDs (Lornoxicam) causes side effects like GI side effects, cardiovascular problems, liver is-sues, or renal problems. Thus, there is a need to develop a Transdermal drug delivery system for the transport of drugs, which reduces side effects and has several benefits over oral delivery, and a Novel drug delivery system to enhance the permeation of drugs and give relief from symptoms of OA.

Objectives: This work deals with the formulation and evaluation of niosomal-loaded Transdermal Patches for the treatment of Osteoarthritis.

Method: The Niosomes were prepared using the thin film hydration method, and Niosomal-loaded Transdermal patches were prepared using the Solvent Casting method. The preliminary evaluation and characterization studies were conducted to find the optimized formulation. The in-vitro release and ex-vivo permeation studies were investigated. Stability studies were also assessed.

Result: The prepared Niosomes suspension (F2) was found to have particle size 320.2 nm, Zeta potential 23.9 mV, and Drug entrapment 79 ± 0.32%. The in-vitro drug release studies of optimized formulation show 96.44 ± 0.34 % drug release for 24 hours. Then, the optimized Niosome formulation (F2) was loaded into the transdermal patches. The in-vitro permeation studies of Niosomal-loaded transdermal patch F1 (NLXTP) were performed, which showed a higher permeability than plain drug-loaded transdermal patch. F1 (NLXTP) followed Zero order release kinetic model, which shows a non-fickian controlled release diffusion mechanism. The ex-vivo drug re-lease studies of optimized formulation F1 (NLXTP) show 2.79 ± 0.76 (μg/ml) drug permeated for 8 hours with a flux value of 0.35 ± 0.55, and the percentage of drug retention was found to be 5.67%. The stability studies showed that patches were stable over 90 days in different atmospheric conditions.

Conclusion: The Lornoxicam-loaded Niosomal transdermal patch was found to be a promising nano-drug-delivery alternative that showed better entrapment and release with a permeation pro-file for the daily management of osteoarthritis.

[1]
Peach, C.A.; Carr, A.J.; Loughlin, J. Recent advances in the genetic investigation of osteoarthritis. Trends Mol. Med., 2005, 11(4), 186-191.
[http://dx.doi.org/10.1016/j.molmed.2005.02.005] [PMID: 15823757]
[2]
Sinusas, K. Osteoarthritis: Diagnosis and treatment. Am. Fam. Physician, 2012, 85(1), 49-56.
[PMID: 22230308]
[3]
Hunter, D.J.; McDougall, J.J.; Keefe, F.J. The symptoms of osteoarthritis and the genesis of pain. Rheum. Dis. Clin. North Am., 2008, 34(3), 623-643.
[http://dx.doi.org/10.1016/j.rdc.2008.05.004] [PMID: 18687276]
[4]
Wei, Y.; Bai, L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect. Tissue Res., 2016, 57(4), 245-261.
[http://dx.doi.org/10.1080/03008207.2016.1177036] [PMID: 27285430]
[5]
Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone, 2012, 51(2), 249-257.
[http://dx.doi.org/10.1016/j.bone.2012.02.012] [PMID: 22387238]
[6]
Sacitharan, P.K.; Vincent, T.L. Cellular ageing mechanisms in osteoarthritis. Mamm. Genome, 2016, 27(7-8), 421-429.
[http://dx.doi.org/10.1007/s00335-016-9641-z] [PMID: 27215642]
[7]
Daharwal, S.J. Development and validation of UV spectrophotometric method for simultaneous estimation of diazepam and propranolol in bulk drug and its formulations. Asian J Pharm Ana., 2013, 3(1), 20-23.
[8]
Abhishek, A.; Jones, A.; Doherty, M. Topical pharmacological treatments.Oxford Textbook of Osteoarthritis and Crystal Arthropathy; Oxford University Press: England, 2016.
[http://dx.doi.org/10.1093/med/9780199668847.003.0028]
[9]
Sacitharan, P.K. Ageing and osteoarthritis. Biochem cell Biol ageing part II. Clin. Sci. (Lond.), 2019, 123-159.
[10]
Bharathi, J.; Menaka, K.; Padmavathi, P. A Study to assess the effectiveness of Structured Teaching Programme on knowledge regarding self care management among knee Osteoarthritis Patients attending outpatient departments at selected hospitals, Thiruvannamalai. Asian J Nurs Edu Res, 2016, 6(2), 237.
[http://dx.doi.org/10.5958/2349-2996.2016.00045.8]
[11]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[12]
Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci., 2014, 205, 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[13]
Rasheed, N.; Mohammad, A.S.; Hafeez, H.; Farheen, S. Simultaneous formulation, evaluation and estimation of controlled release of NSAID drug. Asian J Pharmaceut Anal, 2017, 7(3), 176-184.
[http://dx.doi.org/10.5958/2231-5675.2017.00028.X]
[14]
Sahin, N.O. Niosomes as nanocarrier systems.Nanomaterials and Nanosystems for Biomedical Applications; Springer: Cham, 2007, pp. 67-81.
[15]
Selvakumar, K. A review on stability testing guidelines of pharmaceutical products. Asian J. Pharm. Clin. Res., 2020, 13(10), 3-9.
[16]
Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H.Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug‐delivery system. Adv. Mater., 2004, 16(21), 1959-1966.
[http://dx.doi.org/10.1002/adma.200400771]
[17]
Makeshwar, K.B.; Wasankar, S.R. Niosome: A novel drug delivery system. Asian J Pharm Res., 2013, 3(1), 16-20.
[18]
Sargazi, S.; Hosseinikhah, S.M.; Zargari, F.; Chauhana, N.P.S.; Hassanisaadi, M.; Amani, S. pH-responsive cisplatin-loaded niosomes: Synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. Nanofabrication, 2021, 6(1), 1-15.
[http://dx.doi.org/10.1515/nanofab-2020-0100]
[19]
Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm., 2007, 328(2), 130-141.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.002] [PMID: 16997517]
[20]
Shinu, P.; Nair, A.B.; Kumari, B.; Jacob, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Venugopala, K.N.; Attimarad, M.; Nagaraja, S. Recent advances and appropriate use of niosomes for the treatment of skin cancer. Indian J Pharmaceut Edu Res,, 2022, 56(4)
[http://dx.doi.org/10.5530/ijper.56.4.170]
[21]
Makadia, H.A.; Bhatt, A.Y.; Parmar, R.B.; Paun, J.S.; Tank, H.M. Self-nano emulsifying drug delivery system [SNEDDS]: Future aspects. Asian J Pharm Res., 2013, 3(1), 21-24.
[22]
Sagar, GH.; Arunagirinathan, MA.; Bellare, JR. Self-assembled surfactant nano-structures important in drug delivery: A review. Indian J. Exp. Biol., 2007, 45(2), 133-159.
[23]
Nasir, A.; Harikumar, S.L.; Amanpreet, K. Niosomes: An excellent tool for drug delivery. Int. J. Res. Pharm. Chem., 2012, 2(2), 479-487.
[24]
Bhavsar, D. Niosomes: Revolutionizing the field of targeted drug delivery system. SSRN, 2023.
[25]
Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351.
[http://dx.doi.org/10.1007/s12272-010-0301-7] [PMID: 20361297]
[26]
Prausnitz, M. Transdermal drug delivery. Nature. Biotechnol., 2008, 26(11), 1261-1268.
[27]
Zhang, D.; Li, S.; Fan, M.; Zhao, C. The novel compounds with biological activity derived from soil fungi in the past decade. Drug Des. Devel. Ther., 2022, 16, 3493-3555.
[http://dx.doi.org/10.2147/DDDT.S377921] [PMID: 36248243]
[28]
Ma, H.; Pan, Z.; Lai, B.; Zan, C.; Liu, H. Recent research advances in nano-based drug delivery systems for local anesthetics. Drug Des. Devel. Ther., 2023, 17, 2639-2655.
[http://dx.doi.org/10.2147/DDDT.S417051] [PMID: 37667787]
[29]
Kadam, A.S.; Ratnaparkhi, M.P.; Chaudhary, S.P. Transdermal drug delivery: An overview. Int J Res Dev Pharm Life Sci., 2014, 3(4), 1042-1053.
[30]
Saroha, K.; Yadav, B.; Sharma, B. Transdermal patch: A discrete dosage form. Int. J. Curr. Pharm. Res., 2011, 3(3), 98-108.
[31]
Dassanayake, M.K.; Khoo, T.J.; Chong, C.H.; Di Martino, P. Molecular docking and in-silico analysis of natural biomolecules against dengue, ebola, zika, SARS-CoV-2 variants of concern and monkeypox virus. Int. J. Mol. Sci., 2022, 23(19), 11131.
[http://dx.doi.org/10.3390/ijms231911131] [PMID: 36232431]
[32]
Hassan, N.A.; Alshamari, A.K.; Hassan, A.A.; Elharrif, M.G.; Alhajri, A.M.; Sattam, M.; Khattab, R.R. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology. Molecules, 2022, 27(15), 4839.
[http://dx.doi.org/10.3390/molecules27154839] [PMID: 35956796]
[33]
Hafeez, A.; Singh, J.; Maurya, A.; Rana, L.; Jain, U. Recent advances in Transdermal Drug Delivery System (TDDS): An overview. J Sci Innov Res, 2013, 2(3), 695-709.
[34]
Bala, P.; Jathar, S.; Kale, S.; Pal, K. Transdermal drug delivery system [TDDS]-a multifaceted approach for drug delivery. J. Pharm. Res., 2014, 8(12), 1805-1835.
[35]
Bakadia, B.M.; Lamboni, L.; Ahmed, A.A.Q.; Zheng, R.; Boni, B.O.O.; Shi, Z.; Song, S.; Souho, T.; Mukole, B.M.; Qi, F.; Yang, G. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation. Smart Mater Med., 2022, 4, 002.
[36]
Mondal, K.; Tripathy, P.K. Preparation of smart materials by additive manufacturing technologies: A review. Materials (Basel), 2021, 14(21), 6442.
[http://dx.doi.org/10.3390/ma14216442] [PMID: 34771968]
[37]
Chaurasia, G. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. Int. J. Pharm. Sci. Res., 2016, 7(6), 2313-2320.
[38]
Pavani, M. Formulation and evaluation of orodispersible tablets of taste masked nizatidine, Master of Pharmacy, The Tamilnadu Dr; M.G.R. Medical University: Chennai, 2012.
[39]
Sundhar Rajan, V. Formulation development and evaluation of colon targeted compression coated tablets of amitriptyline hydrochloride for irritable bowel syndrome., 2016. Available From: http://www.w3.org/1999/xlink"ext-link-type="uri" xlink:href= https://core.ac.uk/outputs/235664140/?source=1&algorithmId=15&similarToDoc=233973389&similarToDocKey=CORE&recSetID=8b266989-b386-4222-95fc-bdb9123da203&position=3&recommendation_type=same_repo&otherRecs=296274652%2C235670210%2C235664140%2C235661058%2C235653854
[40]
Vilegave, K.; Vidyasagar, G.; Chandankar, P. Preformulation studies of pharmaceutical new drug molecule and products: An Overview. Am. J. Pharm., 2013, 1(3), 1-20.
[41]
Kuryakov, V.N.; Ivanova, D.D. Determination of melting point of n-alkanes by means of light scattering technique. J. Phys. Conf. Ser., 2019, 1385(1), 012045.
[http://dx.doi.org/10.1088/1742-6596/1385/1/012045]
[42]
Noya, E.G.; Vega, C.; de Miguel, E. Determination of the melting point of hard spheres from direct coexistence simulation methods. J. Chem. Phys., 2008, 128(15), 154507.
[http://dx.doi.org/10.1063/1.2901172] [PMID: 18433235]
[43]
Zingone, G.; Rubessa, F. Preformulation study of the inclusion complex warfarin-β-cyclodextrin. Int. J. Pharm., 2005, 291(1-2), 3-10.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.013] [PMID: 15707726]
[44]
Siavosh-Haghighi, A.; Thompson, D.L. Melting point determination from solid−liquid coexistence initiated by surface melting. J. Phys. Chem. C, 2007, 111(22), 7980-7985.
[http://dx.doi.org/10.1021/jp070242m]
[45]
Crovini, L.; Marcarino, P.; Milazzo, G. Apparatus for accurate determination of melting and freezing points. Anal. Chem., 1981, 53(4), 681-686.
[http://dx.doi.org/10.1021/ac00227a024]
[46]
Sheetal, M. A simple ultraviolet spectrophotometric method for the estimation of docetaxel in bulk drug and formulation. Asian J Pharm Anal., 2013, 3(2), 48-52.
[47]
Pramod, K.; Ansari, S.H.; Ali, J. UV spectrophotometric method for the quantification of eugenol during in vitro release studies. Asian J Pharm Ana., 2013, 3(3), 86-89.
[48]
Singh, B.; Saini, G.; Sharma, D.N.N.; Roy, S.D.; Gautam, N. Estimation of lornoxicam in tablet dosage form by uv spectrophotometric method. Int. J. Pharm. Sci. Res., 2011, 2(1), 102-106.
[49]
Kharwade, M.; Achyuta, G.; Subrahmanyam, C.V.S.; Sathesh Babu, P.R. Solubility behavior of lornoxicam in binary solvents of pharmaceutical interest. J. Solution Chem., 2012, 41(8), 1364-1374.
[http://dx.doi.org/10.1007/s10953-012-9876-6]
[50]
Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures. J. Mol. Liq., 2015, 209, 280-283.
[http://dx.doi.org/10.1016/j.molliq.2015.05.035]
[51]
Sapoundjiev, D.; Lorenz, H.; Seidel-Morgenstern, A. Determination of solubility data by means of calorimetry. Thermochim. Acta, 2005, 436(1-2), 1-9.
[http://dx.doi.org/10.1016/j.tca.2005.06.031]
[52]
Li, F.; Song, S.; Guo, Y.; Zhao, Q.; Zhang, X.; Pan, W.; Yang, X. Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam. Drug Deliv., 2015, 22(4), 487-498.
[http://dx.doi.org/10.3109/10717544.2014.885615] [PMID: 24524289]
[53]
Alshehri, S.; Shakeel, F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures. J. Mol. Liq., 2020, 307, 112970.
[http://dx.doi.org/10.1016/j.molliq.2020.112970]
[54]
Ahmed, M.O.; Al-Badr, A.A. Lornoxicam.Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, 2011, pp. 205-239.
[55]
Kontturi, K.; Murtomäki, L. Electrochemical determination of partition coefficients of drugs. J. Pharm. Sci., 1992, 81(10), 970-975.
[http://dx.doi.org/10.1002/jps.2600811003] [PMID: 1432622]
[56]
Al-Suwayeh, SA.; Taha, EI.; Al-Qahtani, FM.; Ahmed, MO.; Badran, MM. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. Sci World J, 2014, 2014, 127495.
[http://dx.doi.org/10.1155/2014/127495]
[57]
Kalra, Y.P. Determination of pH of soils by different methods: Collaborative study. J. AOAC Int., 1995, 78(2), 310-324.
[http://dx.doi.org/10.1093/jaoac/78.2.310]
[58]
Jassim, Z.E.; Mohammed, M.F.; Sadeq, Z.A. Formulation and evaluation of fast dissolving film of lornoxicam. Asian J. Pharm. Clin. Res., 2018, 11(9), 217-223.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i9.27098]
[59]
Young, O.A.; West, J.; Hart, A.L.; van Otterdijk, F.F.H. A method for early determination of meat ultimate pH. Meat Sci., 2004, 66(2), 493-498.
[http://dx.doi.org/10.1016/S0309-1740(03)00140-2] [PMID: 22064153]
[60]
Thabet, Y.; Elsabahy, M.; Eissa, N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods, 2022, 199, 9-15.
[http://dx.doi.org/10.1016/j.ymeth.2021.05.004] [PMID: 34000392]
[61]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[62]
Jayaprakash, S.; Halith, S.M.; Firthouse, P.M. Yasmin; Nagarajan, M. Preparation and evaluation of celecoxib transdermal patches. Pak. J. Pharm. Sci., 2010, 23(3), 279-283.
[PMID: 20566440]
[63]
Dhiman, S.; Singh, T.G.; Rehni, A.K. Transdermal patches: A recent approach to new drug delivery system. Int. J. Pharm. Pharm. Sci., 2011, 3(5), 26-34.
[64]
Sankar, V.; Johnson, D.B.; Sivan, V.; Ravich, V.; Raghuraman, S.; Velrajan, G. Design and evaluation of nifedipine transdermal patches. Indian J. Pharm. Sci., 2003, 65(5), 510.
[65]
Pattnaik, S.; Swain, K.; Mallick, S.; Lin, Z. Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int. J. Pharm., 2011, 406(1-2), 106-110.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.009] [PMID: 21237257]
[66]
Madishetti, S.K.; Palem, C.R.; Gannu, R.; Thatipamula, R.P.; Panakanti, P.K.; Yamsani, M.R. Development of domperidone bilayered matrix type transdermal patches: Physicochemical, in vitro and ex vivo characterization. Daru, 2010, 18(3), 221-229.
[PMID: 22615620]
[67]
Mittal, A.; Sara, U.S.; Ali, A.; Mohammed, A. Design, development, physicochemical, in vitro and in vivo evaluation of monolithic matrix type transdermal patches containing nitrendipine. Pharm. Dev. Technol., 2009, 14(4), 422-434.
[http://dx.doi.org/10.1080/10837450902748388] [PMID: 19630699]
[68]
Sharma, P.K.; Panda, A.; Pradhan, A.; Zhang, J.; Thakkar, R.; Whang, C.H.; Repka, M.A.; Murthy, S.N. Solid-state stability issues of drugs in transdermal patch formulations. AAPS PharmSciTech, 2018, 19(1), 27-35.
[http://dx.doi.org/10.1208/s12249-017-0865-3] [PMID: 28895101]
[69]
Ware, A.L.; Pekamwar, S.S. Development and validation of bioanalytical uv-spectrophotometric method for determination of candesartan and development and validation of uv-spectrophotometric method for determination of candesartan in bulk drug and formulation. Asian J Pharm Anal, 2021, 11(2), 00015.
[70]
Daharwal, S.J.; Jangade, R.K.; Thakur, V.D.; Sahu, B.P. Compatibility study of Ambroxol HCl drug-excipients by using IR spectroscopy. Asian J Pharm Anal., 2013, 3(3), 98-101.
[71]
Ghotkar, M.N.; Jamdar, R.M.; Mahajan, R.R.; Chougule, A.S.; Dhavane, S.M.; Ingole, P.N. In-vitro evaluation of different marketed brands of rabiprazol tablets using quality control tests., 2020, 5(3), 10.
[72]
Salve, P.S. Development and in vitro evaluation colon targeted drug delivery system using natural gums. Magnesium, 2011, 61(41), 21.
[73]
Singh, J.V.; Singh, S.J.; Kumar, S.A.; Mehra, G.R.; Anil, S.; Kumar, J.R. Design, formulation and in vitro drug release from transdermal patches containing Nebivolol hydrochloride as model drug. Asian J Pharm Res., 2012, 2(4), 136-141.
[74]
Ah, Y.C.; Choi, J.K.; Choi, Y.K.; Ki, H.M.; Bae, J.H. A novel transdermal patch incorporating meloxicam: In vitro and in vivo characterization. Int. J. Pharm., 2010, 385(1-2), 12-19.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.013] [PMID: 19833177]
[75]
Dathathri, E.; Lal, S.; Mittal, M.; Thakur, G.; De, S. Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery. Appl. Nanosci., 2020, 10(2), 371-377.
[http://dx.doi.org/10.1007/s13204-019-01190-3]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy