Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Timing of Surgery for Asymptomatic Primary Mitral Regurgitation: Possible Value of Early, Serial Measurements of Left Ventricular Sphericity

Author(s): Alfred Stanley and Constantine Athanasuleas*

Volume 20, Issue 2, 2024

Published on: 13 February, 2024

Article ID: e130224226941 Pages: 9

DOI: 10.2174/011573403X277223240206062319

Price: $65

Abstract

Asymptomatic primary mitral regurgitation due to myxomatous degeneration of the mitral valve leaflets may remain so for long periods, even as left ventricular function progresses to a decompensated stage. During the early compensated stage, the ventricle’s initial response to the volume overload is an asymmetric increase in the diastolic short axis dimension, accomplished by a diastolic shift of the interventricular septum into the right ventricular cavity, creating a more spherical left ventricular diastolic shape, increasing diastolic filling and stroke volume. Early valve repair is recommended to reduce postoperative left ventricular dysfunction. Early serial measurements of left ventricular sphericity index [LV-Si]. during the compensated stage of mitral regurgitation might identify subtle changes in left ventricular shape and assist in determining the optimal earliest timing for surgical intervention.

Graphical Abstract

[1]
Enriquez-Sarano M, Akins CW, Vahanian A. Mitral regurgitation. Lancet 2009; 373(9672): 1382-94.
[http://dx.doi.org/10.1016/S0140-6736(09)60692-9] [PMID: 19356795]
[2]
Apostolidou E, Maslow AD, Poppas A. Primary mitral valve regurgitation: Update and review. Glob Cardiol Sci Pract 2017; 2017(1): e201703.
[PMID: 31139637]
[3]
Enriquez-Sarano M, Schaff HV, Orszulak TA, Tajik AJ, Bailey KR, Frye RL. Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation 1995; 91(4): 1022-8.
[http://dx.doi.org/10.1161/01.CIR.91.4.1022] [PMID: 7850937]
[4]
Mick SL, Keshavamurthy S, Gillinov AM. Mitral valve repair versus replacement. Ann Cardiothorac Surg 2015; 4(3): 230-7.
[PMID: 26309824]
[5]
Gibson DG, Brown DJ. Continuous assessment of left ventricular shape in man. Heart 1975; 37(9): 904-10.
[http://dx.doi.org/10.1136/hrt.37.9.904] [PMID: 1238094]
[6]
Ross J Jr. Adaptations of the left ventricle to chronic volume overload. Circ Res 1974; 35(2): II-, 64-70.
[PMID: 4276490]
[7]
Hill JA, Olson EN. Cardiac plasticity. N Engl J Med 2008; 358(13): 1370-80.
[http://dx.doi.org/10.1056/NEJMra072139] [PMID: 18367740]
[8]
Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet 2006; 367(9507): 356-67.
[http://dx.doi.org/10.1016/S0140-6736(06)68074-4] [PMID: 16443044]
[9]
Pitoulis FG, Terracciano CM. Heart plasticity in response to pressure- and volume-overload: A review of findings in compensated and decompensated phenotypes. Front Physiol 2020; 11: 92.
[http://dx.doi.org/10.3389/fphys.2020.00092] [PMID: 32116796]
[10]
El Sabbagh A, Reddy YNV, Nishimura RA. Mitral valve regurgitation in the contemporary era. JACC Cardiovasc Imaging 2018; 11(4): 628-43.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.009] [PMID: 29622181]
[11]
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28(8): 1737-46.
[http://dx.doi.org/10.1006/jmcc.1996.0163] [PMID: 8877783]
[12]
Porrello ER, Widdop RE, Delbridge LMD. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological ‘catch-up’ growth of the heart? Clin Exp Pharmacol Physiol 2008; 35(11): 1358-64.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05036.x] [PMID: 18759854]
[13]
Dorn GW II. The fuzzy logic of physiological cardiac hypertrophy. Hypertension 2007; 49(5): 962-70.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.079426] [PMID: 17389260]
[14]
Gaasch WH, Meyer TE. Left ventricular response to mitral regurgitation: Implications for management. Circulation 2008; 118(22): 2298-303.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.755942] [PMID: 19029478]
[15]
Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975; 56(1): 56-64.
[http://dx.doi.org/10.1172/JCI108079] [PMID: 124746]
[16]
Grossman W, Paulus WJ. Myocardial stress and hypertrophy: A complex interface between biophysics and cardiac remodeling. J Clin Invest 2013; 123(9): 3701-3.
[http://dx.doi.org/10.1172/JCI69830] [PMID: 23999445]
[17]
Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000; 102(4): 470-9.
[http://dx.doi.org/10.1161/01.CIR.102.4.470] [PMID: 10908222]
[18]
Carabello BA. Concentric versus eccentric remodeling. J Card Fail 2002; 8(6): S258-63.
[http://dx.doi.org/10.1054/jcaf.2002.129250] [PMID: 12555129]
[19]
Carabello BA, Zile MR, Tanaka R, Cooper G IV. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol 1992; 263(4 Pt 2): H1137-44.
[PMID: 1415762]
[20]
Corin WJ, Monrad ES, Murakami T, Nonogi H, Hess OM, Krayenbuehl HP. The relationship of afterload to ejection performance in chronic mitral regurgitation. Circulation 1987; 76(1): 59-67.
[http://dx.doi.org/10.1161/01.CIR.76.1.59] [PMID: 3594776]
[21]
de Simone G. Concentric or eccentric hypertrophy: How clinically relevant is the difference? Hypertension 2004; 43(4): 714-5.
[http://dx.doi.org/10.1161/01.HYP.0000121363.08252.a7] [PMID: 14981062]
[22]
Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 2002; 8(6): S264-8.
[http://dx.doi.org/10.1054/jcaf.2002.129280] [PMID: 12555130]
[23]
Griffin BP. Timing of surgical intervention in chronic mitral regurgitation: Is vigilance enough? Circulation 2006; 113(18): 2169-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621649] [PMID: 16684872]
[24]
Ren JF, Kotler MN, Depace NL, et al. Two-Dimensional echocardiographic determination of left atrial emptying volume: A noninvasive index in quantifying the degree of nonrheumatic mitral regurgitation. J Am Coll Cardiol 1983; 2(4): 729-36.
[http://dx.doi.org/10.1016/S0735-1097(83)80313-1] [PMID: 6886234]
[25]
Braunwald E, Awe WC. The syndrome of severe mitral regurgitation with normal left atrial pressure. Circulation 1963; 27(1): 29-35.
[http://dx.doi.org/10.1161/01.CIR.27.1.29] [PMID: 14015085]
[26]
Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005; 352(9): 875-83.
[http://dx.doi.org/10.1056/NEJMoa041451] [PMID: 15745978]
[27]
Rosenhek R, Rader F, Klaar U, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation 2006; 113(18): 2238-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.599175] [PMID: 16651470]
[28]
Selzer A, Katayama F. Mitral regurgitation: Clinical patterns, pathophysiology and natural history. Medicine 1972; 51(5): 337-66.
[http://dx.doi.org/10.1097/00005792-197209000-00001] [PMID: 5054953]
[29]
Tribouilloy CM, Enriquez-Sarano M, Schaff HV, et al. Impact of preoperative symptoms on survival after surgical correction of organic mitral regurgitation: Rationale for optimizing surgical indications. Circulation 1999; 99(3): 400-5.
[http://dx.doi.org/10.1161/01.CIR.99.3.400] [PMID: 9918527]
[30]
Enriquez-Sarano M. Timing of mitral valve surgery. Br Heart J 2002; 87(1): 79-85.
[http://dx.doi.org/10.1136/heart.87.1.79] [PMID: 11751675]
[31]
Delahaye JP, Gare JP, Viguier E, Delahaye F, De Gevigney G, Milon H. Natural history of severe mitral regurgitation. Eur Heart J 1991; 12 (Suppl. B): 5-9.
[http://dx.doi.org/10.1093/eurheartj/12.suppl_B.5]
[32]
Rosen SE, Borer JS, Hochreiter C, et al. Natural history of the asymptomatic/minimally symptomatic patient with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance. Am J Cardiol 1994; 74(4): 374-80.
[http://dx.doi.org/10.1016/0002-9149(94)90406-5] [PMID: 8059701]
[33]
Avierinos JF, Gersh BJ, Melton LJ III, et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation 2002; 106(11): 1355-61.
[http://dx.doi.org/10.1161/01.CIR.0000028933.34260.09] [PMID: 12221052]
[34]
Enriquez-Sarano M, Seward JB, Bailey KR, Tajik AJ. Effective regurgitant orifice area: A noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 1994; 23(2): 443-51.
[http://dx.doi.org/10.1016/0735-1097(94)90432-4] [PMID: 8294699]
[35]
Ling LH, Enriquez-Sarano M, Seward JB, et al. Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 1996; 335(19): 1417-23.
[http://dx.doi.org/10.1056/NEJM199611073351902] [PMID: 8875918]
[36]
Lee R, Haluska B, Leung DY, Case C, Mundy J, Marwick TH. Functional and prognostic implications of left ventricular contractile reserve in patients with asymptomatic severe mitral regurgitation. Heart 2005; 91(11): 1407-12.
[http://dx.doi.org/10.1136/hrt.2004.047613] [PMID: 16230438]
[37]
Messika-Zeitoun D, Johnson BD, Nkomo V, et al. Cardiopulmonary exercise testing determination of functional capacity in mitral regurgitation: Physiologic and outcome implications. J Am Coll Cardiol 2006; 47(12): 2521-7.
[http://dx.doi.org/10.1016/j.jacc.2006.02.043] [PMID: 16781383]
[38]
Maffessanti F, Caiani EG, Tamborini G, et al. Serial changes in left ventricular shape following early mitral valve repair. Am J Cardiol 2010; 106(6): 836-42.
[http://dx.doi.org/10.1016/j.amjcard.2010.04.044] [PMID: 20816125]
[39]
Ott DA. Repairing the mitral valve. Circulation 1995; 91(4): 1264-5.
[http://dx.doi.org/10.1161/01.CIR.91.4.1264] [PMID: 7850968]
[40]
Lazam S, Vanoverschelde JL, Tribouilloy C, et al. Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation. Circulation 2017; 135(5): 410-22.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023340] [PMID: 27899396]
[41]
Kim HM, Cho GY, Hwang IC, et al. Myocardial strain in prediction of outcomes after surgery for severe mitral regurgitation. JACC Cardiovasc Imaging 2018; 11(9): 1235-44.
[http://dx.doi.org/10.1016/j.jcmg.2018.03.016] [PMID: 29778855]
[42]
Pastore MC, Mandoli GE, Dokollari A, et al. Speckle tracking echocardiography in primary mitral regurgitation: Should we reconsider the time for intervention? Heart Fail Rev 2022; 27(4): 1247-60.
[http://dx.doi.org/10.1007/s10741-021-10100-1] [PMID: 33829389]
[43]
Witkowski TG, Thomas JD, Debonnaire PJMR, et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur Heart J Cardiovasc Imaging 2013; 14(1): 69-76.
[http://dx.doi.org/10.1093/ehjci/jes155] [PMID: 22848021]
[44]
Kislitsina ON, Thomas JD, Crawford E, et al. Predictors of left ventricular dysfunction after surgery for degenerative mitral regurgitation. Ann Thorac Surg 2020; 109(3): 669-77.
[http://dx.doi.org/10.1016/j.athoracsur.2019.10.044] [PMID: 31830438]
[45]
Bijvoet GP, Teske AJ, Chamuleau SAJ, Hart EA, Jansen R, Schaap J. Global longitudinal strain to predict left ventricular dysfunction in asymptomatic patients with severe mitral valve regurgitation: Literature review. Neth Heart J 2020; 28(2): 63-72.
[http://dx.doi.org/10.1007/s12471-019-01318-8] [PMID: 31410717]
[46]
Canessa M, Thamman R, Americo C, Soca G, Dayan V. Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: A meta-analysis. Semin Thorac Cardiovasc Surg 2021; 33(2): 337-42.
[http://dx.doi.org/10.1053/j.semtcvs.2020.09.024] [PMID: 32971244]
[47]
Kim MS, Kim YJ, Kim HK, et al. Evaluation of left ventricular short- and long-axis function in severe mitral regurgitation using 2-dimensional strain echocardiography. Am Heart J 2009; 157(2): 345-51.
[http://dx.doi.org/10.1016/j.ahj.2008.10.004] [PMID: 19185644]
[48]
Maciver DH. The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. Exp Clin Cardiol 2012; 17(1): 5-11.
[PMID: 23204893]
[49]
Marwick TH. Measurement of strain and strain rate by echocardiography: Ready for prime time? J Am Coll Cardiol 2006; 47(7): 1313-27.
[http://dx.doi.org/10.1016/j.jacc.2005.11.063] [PMID: 16580516]
[50]
Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 2021; 143(5): e72-e227.
[PMID: 33332150]
[51]
Grayburn PA, Weissman NJ, Zamorano JL. Quantitation of mitral regurgitation. Circulation 2012; 126(16): 2005-17.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.121590] [PMID: 23071176]
[52]
Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation. J Am Soc Echocardiogr 2017; 30(4): 303-71.
[http://dx.doi.org/10.1016/j.echo.2017.01.007] [PMID: 28314623]
[53]
Apostolakis EE, Baikoussis NG. Methods of estimation of mitral valve regurgitation for the cardiac surgeon. J Cardiothorac Surg 2009; 4(1): 34.
[http://dx.doi.org/10.1186/1749-8090-4-34] [PMID: 19604402]
[54]
Biner S, Rafique A, Rafii F, et al. Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. JACC Cardiovasc Imaging 2010; 3(3): 235-43.
[http://dx.doi.org/10.1016/j.jcmg.2009.09.029] [PMID: 20223419]
[55]
Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 2008; 52(9): 767-78.
[http://dx.doi.org/10.1016/j.jacc.2008.05.028] [PMID: 18718427]
[56]
Roberts BJ, Grayburn PA. Color flow imaging of the vena contracta in mitral regurgitation: Technical considerations. J Am Soc Echocardiogr 2003; 16(9): 1002-6.
[http://dx.doi.org/10.1016/S0894-7317(03)00509-1] [PMID: 12931115]
[57]
Hagendorff A, Knebel F, Helfen A, et al. Echocardiographic assessment of mitral regurgitation: Discussion of practical and methodologic aspects of severity quantification to improve diagnostic conclusiveness. Clin Res Cardiol 2021; 110(11): 1704-33.
[http://dx.doi.org/10.1007/s00392-021-01841-y] [PMID: 33839933]
[58]
Hagendorff A, Stöbe S. Plausible functional diagnostics by rational echocardiography in the assessment of valvular heart disease - Role of quantitative echocardiography in the assessment of mitral regurgitation. Front Cardiovasc Med 2022; 9: 819915.
[http://dx.doi.org/10.3389/fcvm.2022.819915] [PMID: 35433886]
[59]
Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ, Krohn MJ, Mays JM. Quantitative Doppler assessment of valvular regurgitation. Circulation 1993; 87(3): 841-8.
[http://dx.doi.org/10.1161/01.CIR.87.3.841] [PMID: 8443904]
[60]
Zoghbi W, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and doppler echocardiography. J Am Soc Echocardiogr 2003; 16(7): 777-802.
[http://dx.doi.org/10.1016/S0894-7317(03)00335-3] [PMID: 12835667]
[61]
Zhou X, Vannan MA, Lancellotti P. Quantitative three-dimensional color flow echocardiography of chronic mitral regurgitation: New methods, new perspectives, new challenges. J Am Soc Echocardiogr 2016; 29(10): 935-7.
[http://dx.doi.org/10.1016/j.echo.2016.08.004] [PMID: 27712804]
[62]
Tsai FC, Chen YL, Yen KC, et al. Gene expression changes of humans with primary mitral regurgitation and reduced left ventricular ejection fraction. Int J Mol Sci 2021; 22(7): 3454.
[http://dx.doi.org/10.3390/ijms22073454] [PMID: 33810615]
[63]
Bonow RO, Adams DH. The time has come to define centers of excellence in mitral valve repair. J Am Coll Cardiol 2016; 67(5): 499-501.
[http://dx.doi.org/10.1016/j.jacc.2015.12.007] [PMID: 26846947]
[64]
Le Tourneau T, Deswarte G, Lamblin N, et al. Right ventricular systolic function in organic mitral regurgitation: Impact of biventricular impairment. Circulation 2013; 127(15): 1597-608.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000999] [PMID: 23487435]
[65]
Weber KT, Janicki JS, Shroff S, Fishman AP. Contractile mechanics and interaction of the right and left ventricles. Am J Cardiol 1981; 47(3): 686-95.
[http://dx.doi.org/10.1016/0002-9149(81)90556-7] [PMID: 7008570]
[66]
Žvirblytė R, Merkytė I, Tamulėnaitė E, et al. Right ventricle mechanics and function during stress in patients with asymptomatic primary moderate to severe mitral regurgitation and preserved left ventricular ejection fraction. Medicina 2020; 56(6): 303.
[http://dx.doi.org/10.3390/medicina56060303] [PMID: 32575723]
[67]
Young AA, Orr R, Smaill BH, Dell’Italia LJ. Three-dimensional changes in left and right ventricular geometry in chronic mitral regurgitation. Am J Physiol 1996; 271(6 Pt 2): H2689-700.
[PMID: 8997332]
[68]
Tischler MD, Niggel J, Borowski DT, Lewinter MM. Relation between left ventricular shape and exercise capacity in patients with left ventricular dysfunction. J Am Coll Cardiol 1993; 22(3): 751-7.
[http://dx.doi.org/10.1016/0735-1097(93)90187-6] [PMID: 8354809]
[69]
Tomlinson CW. Left ventricular geometry and function in experimental heart failure. Can J Cardiol 1987; 3(6): 305-10.
[PMID: 3427530]
[70]
Kono T, Sabbah HN, Rosman H, Alam M, Jafri S, Goldstein S. Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol 1992; 20(7): 1594-8.
[http://dx.doi.org/10.1016/0735-1097(92)90455-V] [PMID: 1452934]
[71]
Sabbah HN, Kono T, Rosman H, Jafri S, Stein PD, Goldstein S. Left ventricular shape: A factor in the etiology of functional mitral regurgitation in heart failure. Am Heart J 1992; 123(4): 961-6.
[http://dx.doi.org/10.1016/0002-8703(92)90703-X] [PMID: 1532283]
[72]
Monaghan MJ. Role of real time 3D echocardiography in evaluating the left ventricle. Heart 2006; 92(1): 131-6.
[http://dx.doi.org/10.1136/hrt.2004.058388] [PMID: 16365369]
[73]
Schiros CG, Dell’Italia LJ, Gladden JD, et al. Magnetic resonance imaging with 3-dimensional analysis of left ventricular remodeling in isolated mitral regurgitation: Implications beyond dimensions. Circulation 2012; 125(19): 2334-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.073239] [PMID: 22496130]
[74]
Ambale-Venkatesh B, Yoneyama K, Sharma RK, et al. Left ventricular shape predicts different types of cardiovascular events in the general population. Heart 2017; 103(7): 499-507.
[http://dx.doi.org/10.1136/heartjnl-2016-310052] [PMID: 27694110]
[75]
Mannaerts H, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J 2004; 25(8): 680-7.
[http://dx.doi.org/10.1016/j.ehj.2004.02.030] [PMID: 15084373]
[76]
McCullough PA, Hanzel GS. B-type natriuretic peptide and echocardiography in the surveillance of severe mitral regurgitation prior to valve surgery. J Am Coll Cardiol 2009; 54(12): 1107-9.
[http://dx.doi.org/10.1016/j.jacc.2009.05.049] [PMID: 19744621]
[77]
Pizarro R, Bazzino OO, Oberti PF, et al. Prospective validation of the prognostic usefulness of brain natriuretic peptide in asymptomatic patients with chronic severe mitral regurgitation. J Am Coll Cardiol 2009; 54(12): 1099-106.
[http://dx.doi.org/10.1016/j.jacc.2009.06.013] [PMID: 19744620]
[78]
Doust J, Lehman R, Glasziou P. The role of BNP testing in heart failure. Am Fam Physician 2006; 74(11): 1893-8.
[PMID: 17168346]
[79]
Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: Systematic review. BMJ 2005; 330(7492): 625.
[http://dx.doi.org/10.1136/bmj.330.7492.625] [PMID: 15774989]
[80]
Klaar U, Gabriel H, Bergler-Klein J, et al. Prognostic value of serial B‐type natriuretic peptide measurement in asymptomatic organic mitral regurgitation. Eur J Heart Fail 2011; 13(2): 163-9.
[http://dx.doi.org/10.1093/eurjhf/hfq189] [PMID: 21051463]
[81]
Muraru D, Badano LP, Peluso D, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr 2013; 26(6): 618-28.
[http://dx.doi.org/10.1016/j.echo.2013.03.014] [PMID: 23611056]
[82]
Khanna S, Bhat A, Chen HH, Tan JWA, Gan GCH, Tan TC. Left ventricular sphericity index is a reproducible bedside echocardiographic measure of geometric change between acute phase Takotsubo’s syndrome and acute anterior myocardial infarction. Int J Cardiol Heart Vasc 2020; 29: 100547.
[http://dx.doi.org/10.1016/j.ijcha.2020.100547] [PMID: 32514426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy