Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile

Author(s): Andrey D. Dolbnya, Igor A. Popov and Stanislav I. Pekov*

Volume 24, Issue 8, 2024

Published on: 31 January, 2024

Page: [722 - 736] Pages: 15

DOI: 10.2174/0115680266290367240130054142

Price: $65

Abstract

Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients.

Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.

Graphical Abstract

[1]
Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol., 2018, 15(2), 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[2]
Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens-Part B: biological agents. Lancet Oncol., 2009, 10(4), 321-322.
[http://dx.doi.org/10.1016/S1470-2045(09)70096-8] [PMID: 19350698]
[3]
Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S.; Gores, G.J. Cholangiocarcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 65.
[http://dx.doi.org/10.1038/s41572-021-00300-2] [PMID: 34504109]
[4]
Wang, L.J.; He, C.C.; Sui, X.; Cai, M.J.; Zhou, C.Y.; Ma, J.L.; Wu, L.; Wang, H.; Han, S.X.; Zhu, Q. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN. Oncotarget, 2015, 6(8), 5932-5946.
[http://dx.doi.org/10.18632/oncotarget.3465] [PMID: 25803229]
[5]
Mansfield, S.D.; Barakat, O.; Charnley, R.M.; Jaques, B.C.; O’Suilleabhain, C.B.; Atherton, P.J.; Manas, D. Management of hilar cholangiocarcinoma in the North of England: Pathology, treatment, and outcome. World J. Gastroenterol., 2005, 11(48), 7625-7630.
[http://dx.doi.org/10.3748/wjg.v11.i48.7625] [PMID: 16437689]
[6]
Polistina, F.A.; Guglielmi, R.; Baiocchi, C.; Francescon, P.; Scalchi, P.; Febbraro, A.; Costantin, G.; Ambrosino, G. Chemoradiation treatment with gemcitabine plus stereotactic body radiotherapy for unresectable, non-metastatic, locally advanced hilar cholangiocarcinoma. Results of a five year experience. Radiother. Oncol., 2011, 99(2), 120-123.
[http://dx.doi.org/10.1016/j.radonc.2011.05.016] [PMID: 21621289]
[7]
Goral, V. Cholangiocarcinoma: New Insights. APJCP, 2017, 18(6), 1469-1473.
[PMID: 28669153]
[8]
Garin, AM; Bazin, IS Morbidity, mortality, long-term outcomes and sequelae of the treatment of cancer patients in different countries of the world. Russ. J. Oncol., 2016, 21((1-2)), 11-7.
[http://dx.doi.org/10.18821/1028-9984-2015-21-1-11-17]
[9]
Fedorova, O.S.; Fedotova, M.M.; Zvonareva, O.I.; Mazeina, S.V.; Kovshirina, Y.V.; Sokolova, T.S.; Golovach, E.A.; Kovshirina, A.E.; Konovalova, U.V.; Kolomeets, I.L.; Gutor, S.S.; Petrov, V.A.; Hattendorf, J.; Ogorodova, L.M.; Odermatt, P. Opisthorchis felineus infection, risks, and morbidity in rural Western Siberia, Russian Federation. PLoS Negl. Trop. Dis., 2020, 14(6), e0008421.
[http://dx.doi.org/10.1371/journal.pntd.0008421] [PMID: 32598389]
[10]
Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr; Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol., 2019, 14(1), 83-103.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012818] [PMID: 30125150]
[11]
Sripa, B.; Bethony, J.M.; Sithithaworn, P.; Kaewkes, S.; Mairiang, E.; Loukas, A.; Mulvenna, J.; Laha, T.; Hotez, P.J.; Brindley, P.J. Opisthorchiasis and opisthorchis-associated cholangiocarcinoma in thailand and laos. Acta Trop., 2011, 120(Suppl 1), S158-S168.
[http://dx.doi.org/10.1016/j.actatropica.2010.07.006] [PMID: 20655862]
[12]
Buisson, Y. Control of Opisthorchis viverrini infection for cholangiocarcinoma prevention. Bull. Soc. Pathol. Exot., 2017, 110(1), 61-67.
[http://dx.doi.org/10.1007/s13149-017-0544-8] [PMID: 28105582]
[13]
Mosconi, S.; Beretta, G.D.; Labianca, R.; Zampino, M.G.; Gatta, G.; Heinemann, V. Cholangiocarcinoma. Crit. Rev. Oncol. Hematol., 2009, 69(3), 259-270.
[http://dx.doi.org/10.1016/j.critrevonc.2008.09.008] [PMID: 18977670]
[14]
Heimbach, JK; Rosen, CB; Nagorney, DM Transplantation for hilar cholangiocarcinoma. In: Surgical Management of Hepatobiliary and Pancreatic Disorders; CRC Press, 2010.
[15]
Eckel, F.; Schmid, R.M. Chemotherapy in advanced biliary tract carcinoma: A pooled analysis of clinical trials. Br. J. Cancer, 2007, 96(6), 896-902.
[http://dx.doi.org/10.1038/sj.bjc.6603648] [PMID: 17325704]
[16]
Jha, R.K.; Noor, H.; Jian-Bo, Z.; Lin, W.; Jha, R.K. Advances in diagnosis and treatment of hilar cholangiocarcinoma – A review. Med. Sci. Monit., 2013, 19, 648-656.
[http://dx.doi.org/10.12659/MSM.889379] [PMID: 23921971]
[17]
Pavicevic, S.; Reichelt, S.; Uluk, D.; Lurje, I.; Engelmann, C.; Modest, D.P.; Pelzer, U.; Krenzien, F.; Raschzok, N.; Benzing, C.; Sauer, I.M.; Stintzing, S.; Tacke, F.; Schöning, W.; Schmelzle, M.; Pratschke, J.; Lurje, G. Prognostic and predictive molecular markers in cholangiocarcinoma. Cancers, 2022, 14(4), 1026.
[http://dx.doi.org/10.3390/cancers14041026] [PMID: 35205774]
[18]
Satriano, L.; Lewinska, M.; Rodrigues, P.M.; Banales, J.M.; Andersen, J.B. Metabolic rearrangements in primary liver cancers: Cause and consequences. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 748-766.
[http://dx.doi.org/10.1038/s41575-019-0217-8] [PMID: 31666728]
[19]
Intuyod, K.; Armartmuntree, N.; Jusakul, A.; Sakonsinsiri, C.; Thanan, R.; Pinlaor, S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev. Mol. Diagn., 2019, 19(11), 997-1005.
[http://dx.doi.org/10.1080/14737159.2019.1673162] [PMID: 31566016]
[20]
Lee, T.; Teng, T.Z.J.; Shelat, V.G. Carbohydrate antigen 19-9 - tumor marker: Past, present, and future. World J. Gastrointest. Surg., 2020, 12(12), 468-490.
[http://dx.doi.org/10.4240/wjgs.v12.i12.468] [PMID: 33437400]
[21]
Ogino, S.; Nishihara, R.; VanderWeele, T.J.; Wang, M.; Nishi, A.; Lochhead, P.; Qian, Z.R.; Zhang, X.; Wu, K.; Nan, H.; Yoshida, K.; Milner, D.A., Jr; Chan, A.T.; Field, A.E.; Camargo, C.A., Jr; Williams, M.A.; Giovannucci, E.L. The role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology, 2016, 27(4), 602-611.
[http://dx.doi.org/10.1097/EDE.0000000000000471] [PMID: 26928707]
[22]
Bertino, G; Ardiri, A; Malaguarnera, M; Malaguarnera, G; Bertino, N; Calvagno, GS Hepatocellualar carcinoma serum markers. In: Seminars in oncology; WB Saunders, 2012.
[http://dx.doi.org/10.1053/j.seminoncol.2012.05.001]
[23]
Levy, C.; Lymp, J.; Angulo, P.; Gores, G.J.; Larusso, N.; Lindor, K.D. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig. Dis. Sci., 2005, 50(9), 1734-1740.
[http://dx.doi.org/10.1007/s10620-005-2927-8] [PMID: 16133981]
[24]
Ramage, J.K.; Donaghy, A.; Farrant, J.M.; Iorns, R.; Williams, R. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology, 1995, 108(3), 865-869.
[http://dx.doi.org/10.1016/0016-5085(95)90462-X] [PMID: 7875490]
[25]
Bolm, L.; Petrova, E.; Weitz, J.; Rückert, F.; Wittel, U.A.; Makowiec, F.; Lapshyn, H.; Bronsert, P.; Rau, B.M.; Khatkov, I.E. ; Bausch, D.; Keck, T.; Wellner, U.F.; Distler, M. Prognostic relevance of preoperative bilirubin-adjusted serum carbohydrate antigen 19-9 in a multicenter subset analysis of 179 patients with distal cholangiocarcinoma. HPB, 2019, 21(11), 1513-1519.
[http://dx.doi.org/10.1016/j.hpb.2019.03.363] [PMID: 30956162]
[26]
Cai, W.K.; Lin, J.J.; He, G.H.; Wang, H.; Lu, J.H.; Yang, G.S. Preoperative serum CA19-9 levels is an independent prognostic factor in patients with resected hilar cholangiocarcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(11), 7890-7898.
[PMID: 25550829]
[27]
Lee, B.S.; Lee, S.H.; Son, J.H.; Jang, D.K.; Chung, K.H.; Paik, W.H.; Ryu, J.K.; Kim, Y.T. Prognostic value of CA 19-9 kinetics during gemcitabine-based chemotherapy in patients with advanced cholangiocarcinoma. J. Gastroenterol. Hepatol., 2016, 31(2), 493-500.
[http://dx.doi.org/10.1111/jgh.13059] [PMID: 26220764]
[28]
Liang, B.; Zhong, L.; He, Q.; Wang, S.; Pan, Z.; Wang, T.; Zhao, Y. Diagnostic accuracy of serum CA19-9 in patients with cholangiocarcinoma: A systematic review and meta-analysis. Med. Sci. Monit., 2015, 21, 3555-3563.
[http://dx.doi.org/10.12659/MSM.895040] [PMID: 26576628]
[29]
Zheng, C.X.; Zhan, W.H.; Zhao, J.Z.; Zheng, D.; Wang, D.P.; He, Y.L.; Zheng, Z.Q. The prognostic value of preoperative serum levels of CEA, CA19-9 and CA72-4 in patients with colorectal cancer. World J. Gastroenterol., 2001, 7(3), 431-434.
[http://dx.doi.org/10.3748/wjg.v7.i3.431] [PMID: 11819806]
[30]
Juntermanns, B.; Radunz, S.; Heuer, M.; Hertel, S.; Reis, H.; Neuhaus, J.P.; Vernadakis, S.; Trarbach, T.; Paul, A.; Kaiser, G.M. Tumor markers as a diagnostic key for hilar Cholangiocarcinoma. Eur. J. Med. Res., 2010, 15(8), 357-361.
[http://dx.doi.org/10.1186/2047-783X-15-8-357] [PMID: 20947473]
[31]
Fang, T.; Wang, H.; Wang, Y.; Lin, X.; Cui, Y.; Wang, Z. Clinical significance of preoperative serum CEA, CA125, and CA19-9 levels in predicting the resectability of cholangiocarcinoma. Dis. Markers, 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/6016931] [PMID: 30863466]
[32]
Li, Y.; Li, D.J.; Chen, J.; Liu, W.; Li, J.W.; Jiang, P.; Zhao, X.; Guo, F.; Li, X.W.; Wang, S.G. Application of joint detection of AFP, CA19-9, CA125 and CEA in identification and diagnosis of cholangiocarcinoma. Asian Pac. J. Cancer Prev., 2015, 16(8), 3451-3455.
[http://dx.doi.org/10.7314/APJCP.2015.16.8.3451] [PMID: 25921161]
[33]
Qiu, Y.; He, J.; Chen, X.; Huang, P.; Hu, K.; Yan, H. The diagnostic value of five serum tumor markers for patients with cholangiocarcinoma. Clin. Chim. Acta, 2018, 480, 186-192.
[http://dx.doi.org/10.1016/j.cca.2018.02.008] [PMID: 29438681]
[34]
Nakanuma, Y.; Sasaki, M. Expression of blood group-related antigens in the intrahepatic biliary tree and hepatocytes in normal livers and various hepatobiliary diseases. Hepatology, 1989, 10(2), 174-178.
[http://dx.doi.org/10.1002/hep.1840100209] [PMID: 2744729]
[35]
Kanai, T.; Hirohashi, S.; Upton, M.P.; Ino, Y.; Shimosato, Y. Expression of Lewis blood group antigens in cancerous and non-cancerous liver. Jpn. J. Cancer Res., 1987, 78(9), 968-976.
[PMID: 2822639]
[36]
Li, F.H.; Chen, X.Q.; Luo, H.Y.; Li, Y.H.; Wang, F.; Qiu, M.Z.; Teng, K.Y.; Li, Z.H.; Xu, R.H. [Prognosis of 84 intrahepatic cholangiocarcinoma patients]. Chin. J. Cancer, 2009, 28(5), 528-532.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2016.05.08] [PMID: 19624884]
[37]
Miwa, S.; Miyagawa, S.; Kobayashi, A.; Akahane, Y.; Nakata, T.; Mihara, M.; Kusama, K.; Soeda, J.; Ogawa, S. Predictive factors for intrahepatic cholangiocarcinoma recurrence in the liver following surgery. J. Gastroenterol., 2006, 41(9), 893-900.
[http://dx.doi.org/10.1007/s00535-006-1877-z] [PMID: 17048054]
[38]
Moll, R.; Franke, W.W.; Schiller, D.L.; Geiger, B.; Krepler, R. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell, 1982, 31(1), 11-24.
[http://dx.doi.org/10.1016/0092-8674(82)90400-7] [PMID: 6186379]
[39]
Moll, R.; Schiller, D.L.; Franke, W.W. Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J. Cell Biol., 1990, 111(2), 567-580.
[http://dx.doi.org/10.1083/jcb.111.2.567] [PMID: 1696264]
[40]
Pujol, J-L.; Molinier, O.; Ebert, W.; Daurès, J-P.; Barlesi, F.; Buccheri, G.; Paesmans, M.; Quoix, E.; Moro-Sibilot, D.; Szturmowicz, M.; Bréchot, J-M.; Muley, T.; Grenier, J. CYFRA 21-1 is a prognostic determinant in non-small-cell lung cancer: Results of a meta-analysis in 2063 patients. Br. J. Cancer, 2004, 90(11), 2097-2105.
[http://dx.doi.org/10.1038/sj.bjc.6601851] [PMID: 15150567]
[41]
Doweck, I.; Barak, M.; Uri, N.; Greenberg, E. The prognostic value of the tumour marker Cyfra 21-1 in carcinoma of head and neck and its role in early detection of recurrent disease. Br. J. Cancer, 2000, 83(12), 1696-1701.
[http://dx.doi.org/10.1054/bjoc.2000.1502] [PMID: 11104568]
[42]
Nakata, B.; Takashima, T.; Ogawa, Y.; Ishikawa, T.; Hirakawa, K. Serum CYFRA 21-1 (cytokeratin-19 fragments) is a useful tumour marker for detecting disease relapse and assessing treatment efficacy in breast cancer. Br. J. Cancer, 2004, 91(5), 873-878.
[http://dx.doi.org/10.1038/sj.bjc.6602074] [PMID: 15280913]
[43]
Huang, L.; Chen, W.; Liang, P.; Hu, W.; Zhang, K.; Shen, S.; Chen, J.; Zhang, Z.; Chen, B.; Han, Y.; Meng, F.; DeMorrow, S.; Yin, X.; Lai, J.; Liang, L. Serum CYFRA 21-1 in biliary tract cancers: A reliable biomarker for gallbladder carcinoma and intrahepatic cholangiocarcinoma. Dig. Dis. Sci., 2015, 60(5), 1273-1283.
[http://dx.doi.org/10.1007/s10620-014-3472-0] [PMID: 25487191]
[44]
Itatsu, K.; Zen, Y.; Ohira, S.; Ishikawa, A.; Sato, Y.; Harada, K.; Ikeda, H.; Sasaki, M.; Nimura, Y.; Nakanuma, Y. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Liver Int., 2007, 27(9), 1174-1184.
[http://dx.doi.org/10.1111/j.1478-3231.2007.01577.x] [PMID: 17919228]
[45]
Van Eyken, P.; Desmet, V.J. Cytokeratins and the liver. Liver, 1993, 13(3), 113-122.
[http://dx.doi.org/10.1111/j.1600-0676.1993.tb00617.x] [PMID: 7687733]
[46]
McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today, 2000, 6(4), 149-156.
[http://dx.doi.org/10.1016/S1357-4310(00)01686-5] [PMID: 10740253]
[47]
Folgueras, A.R.; Pendás, A.M.; Sánchez, L.M.; López-Otín, C. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int. J. Dev. Biol., 2004, 48(5-6), 411-424.
[http://dx.doi.org/10.1387/ijdb.041811af] [PMID: 15349816]
[48]
Acar, A.; Onan, A.; Coskun, U.; Uner, A.; Bagriacik, U.; Atalay, F.; Unsal, D.K.; Guner, H. Clinical significance of serum MMP-2 and MMP-7 in patients with ovarian cancer. Med. Oncol., 2008, 25(3), 279-283.
[http://dx.doi.org/10.1007/s12032-007-9031-1] [PMID: 18071928]
[49]
Sarkissian, G.; Fergelot, P.; Lamy, P.J.; Patard, J.J.; Culine, S.; Jouin, P.; Rioux-Leclercq, N.; Darbouret, B. Identification of pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis. Clin. Chem., 2008, 54(3), 574-581.
[http://dx.doi.org/10.1373/clinchem.2007.090837] [PMID: 18202161]
[50]
Leelawat, K.; Narong, S.; Wannaprasert, J.; Ratanashu-ek, T. Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J. Gastroenterol., 2010, 16(37), 4697-4703.
[http://dx.doi.org/10.3748/wjg.v16.i37.4697] [PMID: 20872971]
[51]
Yang, M.; Ramachandran, A.; Yan, H.M.; Woolbright, B.L.; Copple, B.L.; Fickert, P.; Trauner, M.; Jaeschke, H. Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicol. Lett., 2014, 224(2), 186-195.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.030] [PMID: 24188933]
[52]
Kourepini, E.; Aggelakopoulou, M.; Alissafi, T.; Paschalidis, N.; Simoes, D.C.M.; Panoutsakopoulou, V. Osteopontin expression by CD103 dendritic cells drives intestinal inflammation. Proc. Natl. Acad. Sci., 2014, 111(9), E856-E865.
[http://dx.doi.org/10.1073/pnas.1316447111] [PMID: 24550510]
[53]
Marcondes, M.C.G.; Ojakian, R.; Bortell, N.; Flynn, C.; Conti, B.; Fox, H.S. Osteopontin expression in the brain triggers localized inflammation and cell death when immune cells are activated by pertussis toxin. Mediators Inflamm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/358218] [PMID: 25525298]
[54]
Di Bartolomeo, M.; Pietrantonio, F.; Pellegrinelli, A.; Martinetti, A.; Mariani, L.; Daidone, M.G.; Bajetta, E.; Pelosi, G.; de Braud, F.; Floriani, I.; Miceli, R. Osteopontin, E-cadherin, and β-catenin expression as prognostic biomarkers in patients with radically resected gastric cancer. Gastric Cancer, 2016, 19(2), 412-420.
[http://dx.doi.org/10.1007/s10120-015-0495-y] [PMID: 25862567]
[55]
Agrawal, D.; Chen, T.; Irby, R.; Quackenbush, J.; Chambers, A.F.; Szabo, M.; Cantor, A.; Coppola, D.; Yeatman, T.J. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J. Natl. Cancer Inst., 2002, 94(7), 513-521.
[http://dx.doi.org/10.1093/jnci/94.7.513] [PMID: 11929952]
[56]
Rychlíková, J.; Vecka, M.; Jáchymová, M.; Macášek, J.; Hrabák, P.; Zeman, M.; Vávrová, L.; Řoupal, J.; Krechler, T.; ák, A. Osteopontin as a discriminating marker for pancreatic cancer and chronic pancreatitis. Cancer Biomark., 2016, 17(1), 55-65.
[http://dx.doi.org/10.3233/CBM-160617] [PMID: 27314293]
[57]
Poruk, K.E.; Firpo, M.A.; Scaife, C.L.; Adler, D.G.; Emerson, L.L.; Boucher, K.M.; Mulvihill, S.J. Serum osteopontin and TIMP-1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas, 2013, 42(2), 193.
[http://dx.doi.org/10.1097/MPA.0b013e31825e354d] [PMID: 23407481]
[58]
Shang, S.; Plymoth, A.; Ge, S.; Feng, Z.; Rosen, H.R.; Sangrajrang, S.; Hainaut, P.; Marrero, J.A.; Beretta, L. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology, 2012, 55(2), 483-490.
[http://dx.doi.org/10.1002/hep.24703] [PMID: 21953299]
[59]
Loosen, S.H.; Roderburg, C.; Kauertz, K.L.; Pombeiro, I.; Leyh, C.; Benz, F.; Vucur, M.; Longerich, T.; Koch, A.; Braunschweig, T.; Ulmer, T.F.; Heidenhain, C.; Tacke, F.; Binnebösel, M.; Schmeding, M.; Trautwein, C.; Neumann, U.P.; Luedde, T. Elevated levels of circulating osteopontin are associated with a poor survival after resection of cholangiocarcinoma. J. Hepatol., 2017, 67(4), 749-757.
[http://dx.doi.org/10.1016/j.jhep.2017.06.020] [PMID: 28668580]
[60]
Zhou, K.Q.; Liu, W.F.; Yang, L.X.; Sun, Y.F.; Hu, J.; Chen, F.Y.; Zhou, C.; Zhang, X.Y.; Peng, Y.F.; Yu, L.; Zhou, J.; Fan, J.; Wang, Z. Circulating osteopontin per tumor volume as a prognostic biomarker for resectable intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr., 2019, 8(6), 582-596.
[http://dx.doi.org/10.21037/hbsn.2019.03.14] [PMID: 31929985]
[61]
Bañales Asurmendi, JM; Iñarrairaegui, M; Arbelaiz Cossio, A; Milkiewicz, P; Muntané, J; Muñoz Bellvis, L; La Casta, A; Gonzaz, LM; Arretxe Oliden, E; Alonso, C; Martínez Arranz, I Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis. Hepatolog, 2019, 70(2), 547-562.
[62]
Kei, A. Prognostic impact of peritumoral IL-17-positive cells and IL-17 axis in patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol., 2015, S1524-S1531.
[63]
Loosen, S.H.; Breuer, A.; Tacke, F.; Kather, J.N.; Gorgulho, J.; Alizai, P.H.; Bednarsch, J.; Roeth, A.A.; Lurje, G.; Schmitz, S.M.; Brozat, J.F.; Paffenholz, P.; Vucur, M.; Ritz, T.; Koch, A.; Trautwein, C.; Ulmer, T.F.; Roderburg, C.; Longerich, T.; Neumann, U.P.; Luedde, T. Circulating levels of soluble urokinase plasminogen activator receptor predict outcome after resection of biliary tract cancer. JHEP Reports, 2020, 2(2), 100080.
[http://dx.doi.org/10.1016/j.jhepr.2020.100080] [PMID: 32140677]
[64]
Thummarati, P.; Wijitburaphat, S.; Prasopthum, A.; Menakongka, A.; Sripa, B.; Tohtong, R.; Suthiphongchai, T. High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J. Gastroenterol., 2012, 18(3), 244-250.
[http://dx.doi.org/10.3748/wjg.v18.i3.244] [PMID: 22294827]
[65]
Grunnet, M.; Christensen, I.J.; Lassen, U.; Jensen, L.H.; Lydolph, M.; Lund, I.K.; Thurison, T.; Høyer-Hansen, G.; Mau-Sørensen, M. Prognostic significance of circulating intact and cleaved forms of urokinase plasminogen activator receptor in inoperable chemotherapy treated cholangiocarcinoma patients. Clin. Biochem., 2014, 47(7-8), 599-604.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.01.030] [PMID: 24530340]
[66]
Lang, S.A.; Bednarsch, J.; Joechle, K.; Amygdalos, I.; Czigany, Z.; Heij, L.; Ulmer, T.F.; Neumann, U.P. Prognostic biomarkers for cholangiocarcinoma (CCA): State of the art. Expert Rev. Gastroenterol. Hepatol., 2021, 15(5), 497-510.
[http://dx.doi.org/10.1080/17474124.2021.1912591] [PMID: 33970740]
[67]
Severino, V.; Dumonceau, J.M.; Delhaye, M.; Moll, S.; Annessi-Ramseyer, I.; Robin, X.; Frossard, J.L.; Farina, A. Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology, 2017, 153(2), 495-504.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.04.043] [PMID: 28479376]
[68]
Rodrigues, P.M.; Vogel, A.; Arrese, M.; Balderramo, D.C.; Valle, J.W.; Banales, J.M. Next-generation biomarkers for cholangiocarcinoma. Cancers, 2021, 13(13), 3222.
[http://dx.doi.org/10.3390/cancers13133222] [PMID: 34203269]
[69]
Brandi, G.; Farioli, A.; Astolfi, A.; Biasco, G.; Tavolari, S. Genetic heterogeneity in cholangiocarcinoma: A major challenge for targeted therapies. Oncotarget, 2015, 6(17), 14744-14753.
[http://dx.doi.org/10.18632/oncotarget.4539] [PMID: 26142706]
[70]
Macias, R.I.R.; Kornek, M.; Rodrigues, P.M.; Paiva, N.A.; Castro, R.E.; Urban, S.; Pereira, S.P.; Cadamuro, M.; Rupp, C.; Loosen, S.H.; Luedde, T.; Banales, J.M. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int., 2019, 39(S1), 108-122.
[http://dx.doi.org/10.1111/liv.14090] [PMID: 30843325]
[71]
Andersen, J.B.; Spee, B.; Blechacz, B.R.; Avital, I.; Komuta, M.; Barbour, A.; Conner, E.A.; Gillen, M.C.; Roskams, T.; Roberts, L.R.; Factor, V.M.; Thorgeirsson, S.S. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology, 2012, 142(4), 1021-1031.e15.
[http://dx.doi.org/10.1053/j.gastro.2011.12.005] [PMID: 22178589]
[72]
Ghidini, M.; Cascione, L.; Carotenuto, P.; Lampis, A.; Trevisani, F.; Previdi, M.C.; Hahne, J.C.; Said-Huntingford, I.; Raj, M.; Zerbi, A.; Mescoli, C.; Cillo, U.; Rugge, M.; Roncalli, M.; Torzilli, G.; Rimassa, L.; Santoro, A.; Valeri, N.; Fassan, M.; Braconi, C. Characterisation of the immune-related transcriptome in resected biliary tract cancers. Eur. J. Cancer, 2017, 86, 158-165.
[http://dx.doi.org/10.1016/j.ejca.2017.09.005] [PMID: 28988016]
[73]
Huang, D.W.; Huang, M.; Lin, X.S.; Huang, Q. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. OncoTargets Ther., 2017, 10, 3817-3825.
[http://dx.doi.org/10.2147/OTT.S141476] [PMID: 28814880]
[74]
Saengboonmee, C.; Sawanyawisuth, K.; Chamgramol, Y.; Wongkham, S. Prognostic biomarkers for cholangiocarcinoma and their clinical implications. Expert Rev. Anticancer Ther., 2018, 18(6), 579-592.
[http://dx.doi.org/10.1080/14737140.2018.1467760] [PMID: 29676221]
[75]
Sulpice, L; Rayar, M; Turlin, B; Boucher, E; Bellaud, P; Desille, M; Meunier, B; Clément, B; Boudjema, K; Coulouarn, C Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma. J. Surg. Res., 2014, 192(1), 117-23.
[76]
Sun, Q.; Zhao, C.; Xia, L.; He, Z.; Lu, Z.; Liu, C.; Jia, M.; Wang, J.; Niu, J. High expression of matrix metalloproteinase-9 indicates poor prognosis in human hilar cholangiocarcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(9), 6157-6164.
[PMID: 25337264]
[77]
Tongtawee, T.; Kaewpitoon, S.J.; Loyd, R.; Chanvitan, S.; Leelawat, K.; Praditpol, N.; Jujinda, S.; Kaewpitoon, N. High expression of matrix metalloproteinase-11 indicates poor prognosis in human cholangiocarcinoma. Asian Pac. J. Cancer Prev., 2015, 16(9), 3697-3701.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3697] [PMID: 25987024]
[78]
Boonla, C.; Sripa, B.; Thuwajit, P.; Cha-On, U.; Puapairoj, A.; Miwa, M.; Wongkham, S. MUC1 and MUC5AC mucin expression in liver fluke-associated intrahepatic cholangiocarcinoma. World J. Gastroenterol., 2005, 11(32), 4939-4946.
[http://dx.doi.org/10.3748/wjg.v11.i32.4939] [PMID: 16124042]
[79]
Abe, T.; Amano, H.; Shimamoto, F.; Hattori, M.; Kuroda, S.; Kobayashi, T.; Tashiro, H.; Ohdan, H. Prognostic evaluation of mucin-5AC expression in intrahepatic cholangiocarcinoma, mass-forming type, following hepatectomy. Eur. J. Surg. Oncol., 2015, 41(11), 1515-1521.
[http://dx.doi.org/10.1016/j.ejso.2015.07.006] [PMID: 26210654]
[80]
Javitt, N.B. Bile acid synthesis from cholesterol: Regulatory and auxiliary pathways. FASEB J., 1994, 8(15), 1308-1311.
[http://dx.doi.org/10.1096/fasebj.8.15.8001744] [PMID: 8001744]
[81]
Wang, Y.; Lu, J.; Wen, N.; Nie, G.; Peng, D.; Xiong, X.; Cheng, N.; Li, B. The role of diet and nutrition related indicators in biliary diseases: An umbrella review of systematic review and meta-analysis. Nutr. Metab., 2022, 19(1), 51.
[http://dx.doi.org/10.1186/s12986-022-00677-1] [PMID: 35907868]
[82]
Cameron, R.G.; Imaida, K.; Tsuda, H.; Ito, N. Promotive effects of steroids and bile acids on hepatocarcinogenesis initiated by diethylnitrosamine. Cancer Res., 1982, 42(6), 2426-2428.
[PMID: 7074620]
[83]
Oyama, K.; Shiota, G.; Ito, H.; Murawaki, Y.; Kawasaki, H. Reduction of hepatocarcinogenesis by ursodeoxycholic acid in rats. Carcinogenesis, 2002, 23(5), 885-892.
[http://dx.doi.org/10.1093/carcin/23.5.885] [PMID: 12016164]
[84]
Komichi, D.; Tazuma, S.; Nishioka, T.; Hyogo, H.; Chayama, K. Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholangiocytes via oxidative DNA damage. Free Radic. Biol. Med., 2005, 39(11), 1418-1427.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.07.005] [PMID: 16274877]
[85]
Trauner, M.; Fickert, P.; Wagner, M. MDR3 (ABCB4) defects: A paradigm for the genetics of adult cholestatic syndromes. In: Seminars in liver disease; Thieme Medical Publishers, Inc, 2007.
[86]
Bernstein, H.; Bernstein, C.; Payne, C.M.; Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol., 2009, 15(27), 3329-3340.
[http://dx.doi.org/10.3748/wjg.15.3329] [PMID: 19610133]
[87]
Kinami, Y.; Ashida, Y.; Seto, K.; Takashima, S.; Kita, I. Influence of incomplete bile duct obstruction on the occurrence of cholangiocarcinoma induced by diisopropanolnitrosamine in hamsters. Oncology, 1990, 47(2), 170-176.
[http://dx.doi.org/10.1159/000226812] [PMID: 2156204]
[88]
Kinami, Y.; Ashida, Y.; Gotoda, H.; Seto, K.; Kojima, Y.; Takashima, S. Promoting effects of bile acid load on the occurrence of cholangiocarcinoma induced by diisopropanolnitrosamine in hamsters. Oncology, 1993, 50(1), 46-51.
[http://dx.doi.org/10.1159/000227146] [PMID: 8380633]
[89]
Funabiki, T.; Sugiue, K.; Matsubara, T.; Amano, H.; Ochiai, M. Bile acids and biliary carcinoma in pancreaticobiliary maljunction. Keio J. Med., 1991, 40(3), 118-122.
[http://dx.doi.org/10.2302/kjm.40.118] [PMID: 1753553]
[90]
Park, J.Y.; Park, B.K.; Ko, J.S.; Bang, S.; Song, S.Y.; Chung, J.B. Bile acid analysis in biliary tract cancer. Yonsei Med. J., 2006, 47(6), 817-825.
[http://dx.doi.org/10.3349/ymj.2006.47.6.817] [PMID: 17191311]
[91]
Albiin, N.; Smith, I.C.P.; Arnelo, U.; Lindberg, B.; Bergquist, A.; Dolenko, B.; Bryksina, N.; Bezabeh, T. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol., 2008, 49(8), 855-862.
[http://dx.doi.org/10.1080/02841850802220092] [PMID: 18608012]
[92]
Sharif, A.W.; Williams, H.R.T.; Lampejo, T.; Khan, S.A.; Bansi, D.S.; Westaby, D.; Thillainayagam, A.V.; Thomas, H.C.; Cox, I.J.; Taylor-Robinson, S.D. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy. HPB, 2010, 12(6), 396-402.
[http://dx.doi.org/10.1111/j.1477-2574.2010.00185.x] [PMID: 20662790]
[93]
Xu, X.; Cheng, S.; Ding, C.; Lv, Z.; Chen, D.; Wu, J.; Zheng, S. Identification of bile biomarkers of biliary tract cancer through a liquid chromatography/mass spectrometry-based metabolomic method. Mol. Med. Rep., 2015, 11(3), 2191-2198.
[http://dx.doi.org/10.3892/mmr.2014.2973] [PMID: 25405977]
[94]
van Helvoort, A.; Smith, A.J.; Sprong, H.; Fritzsche, I.; Schinkel, A.H.; Borst, P.; van Meer, G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell, 1996, 87(3), 507-517.
[http://dx.doi.org/10.1016/S0092-8674(00)81370-7] [PMID: 8898203]
[95]
Mauad, T.H.; van Nieuwkerk, C.M.; Dingemans, K.P.; Smit, J.J.; Schinkel, A.H.; Notenboom, R.G.; van den Bergh Weerman, M.A.; Verkruisen, R.P.; Groen, A.K.; Oude Elferink, R.P.; Van Der Valk, M.A. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol., 1994, 145(5), 1237-1245.
[PMID: 7977654]
[96]
Khan, S.A.; Thomas, H.C.; Davidson, B.R.; Taylor-Robinson, S.D. Cholangiocarcinoma. Lancet, 2005, 366(9493), 1303-1314.
[http://dx.doi.org/10.1016/S0140-6736(05)67530-7] [PMID: 16214602]
[97]
Lee, J.H.; Yu, S.E.; Kim, K.H.; Yu, M.H.; Jeong, I.H.; Cho, J.Y.; Park, S.J.; Lee, W.J.; Han, S.S.; Kim, T.H.; Hong, E.K.; Woo, S.M.; Yoo, B.C. Individualized metabolic profiling stratifies pancreatic and biliary tract cancer: A useful tool for innovative screening programs and predictive strategies in healthcare. EPMA J., 2018, 9(3), 287-297.
[http://dx.doi.org/10.1007/s13167-018-0147-5] [PMID: 30174764]
[98]
Song, W.S.; Park, H.M.; Ha, J.M.; Shin, S.G.; Park, H.G.; Kim, J.; Zhang, T.; Ahn, D.H.; Kim, S.M.; Yang, Y.H.; Jeong, J.H.; Theberge, A.B.; Kim, B.G.; Lee, J.K.; Kim, Y.G. Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma. Sci. Rep., 2018, 8(1), 11088.
[http://dx.doi.org/10.1038/s41598-018-29445-z] [PMID: 30038332]
[99]
Navaneethan, U; Gutierrez, NG; Venkatesh, PG; Jegadeesan, R; Zhang, R; Jang, S; Sanaka, MR; Vargo, JJ; Parsi, MA; Feldstein, AE; Stevens, T Lipidomic profiling of bile in distinguishing benign from malignant biliary strictures: A single-blinded pilot study. J. Am. Coll. Gastroenterol., 2014, 109(6), 895-902.
[100]
Alpini, G.; Invernizzi, P.; Gaudio, E.; Venter, J.; Kopriva, S.; Bernuzzi, F.; Onori, P.; Franchitto, A.; Coufal, M.; Frampton, G.; Alvaro, D.; Lee, S.P.; Marzioni, M.; Benedetti, A.; DeMorrow, S. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res., 2008, 68(22), 9184-9193.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2133] [PMID: 19010890]
[101]
Mayya, V.; Rezaul, K.; Cong, Y.S.; Han, D. Systematic comparison of a two-dimensional ion trap and a three-dimensional ion trap mass spectrometer in proteomics. Mol. Cell. Proteomics, 2005, 4(2), 214-223.
[http://dx.doi.org/10.1074/mcp.T400015-MCP200] [PMID: 15608339]
[102]
Koopmann, J.; Thuluvath, P.J.; Zahurak, M.L.; Kristiansen, T.Z.; Pandey, A.; Schulick, R.; Argani, P.; Hidalgo, M.; Iacobelli, S.; Goggins, M.; Maitra, A. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer, 2004, 101(7), 1609-1615.
[http://dx.doi.org/10.1002/cncr.20469] [PMID: 15378479]
[103]
Shen, J.; Wang, W.; Wu, J.; Feng, B.; Chen, W.; Wang, M.; Tang, J.; Wang, F.; Cheng, F.; Pu, L.; Tang, Q.; Wang, X.; Li, X. Comparative proteomic profiling of human bile reveals SSP411 as a novel biomarker of cholangiocarcinoma. PLoS One, 2012, 7(10), e47476.
[http://dx.doi.org/10.1371/journal.pone.0047476] [PMID: 23118872]
[104]
Laohaviroj, M.; Potriquet, J.; Jia, X.; Suttiprapa, S.; Chamgramol, Y.; Pairojkul, C.; Sithithaworn, P.; Mulvenna, J.; Sripa, B. A comparative proteomic analysis of bile for biomarkers of cholangiocarcinoma. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317705764] [PMID: 28618946]
[105]
Ikeda, C.; Haga, H.; Makino, N.; Inuzuka, T.; Kurimoto, A.; Ueda, T.; Matsuda, A.; Kakizaki, Y.; Ishizawa, T.; Kobayashi, T.; Sugahara, S.; Tsunoda, M.; Suda, K.; Ueno, Y. Utility of Claudin-3 in extracellular vesicles from human bile as biomarkers of cholangiocarcinoma. Sci. Rep., 2021, 11(1), 1195.
[http://dx.doi.org/10.1038/s41598-021-81023-y] [PMID: 33441949]
[106]
Sun, C.; Zhu, J.; Wu, B.; Chen, J.; Zhu, Z.; Cai, P.; Guo, W.; Gu, Z.; Wang, J.; Huang, S. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: A systematic review and meta-analysis. Cancer Manag. Res., 2018, 10, 2125-2139.
[http://dx.doi.org/10.2147/CMAR.S158155] [PMID: 30050323]
[107]
Zhou, J.; Liu, Z.; Yang, S.; Li, X. Identification of microRNAs as biomarkers for cholangiocarcinoma detection: A diagnostic meta-analysis. Clin. Res. Hepatol. Gastroenterol., 2017, 41(2), 156-162.
[http://dx.doi.org/10.1016/j.clinre.2016.10.007] [PMID: 27939910]
[108]
Liang, Z.; Liu, X.; Zhang, Q.; Wang, C.; Zhao, Y. Diagnostic value of microRNAs as biomarkers for cholangiocarcinoma. Dig. Liver Dis., 2016, 48(10), 1227-1232.
[http://dx.doi.org/10.1016/j.dld.2016.07.006] [PMID: 27476468]
[109]
Loosen, S.H.; Lurje, G.; Wiltberger, G.; Vucur, M.; Koch, A.; Kather, J.N.; Paffenholz, P.; Tacke, F.; Ulmer, F.T.; Trautwein, C.; Luedde, T.; Neumann, U.P.; Roderburg, C. Serum levels of miR-29, miR-122, miR-155 and miR-192 are elevated in patients with cholangiocarcinoma. PLoS One, 2019, 14(1), e0210944.
[http://dx.doi.org/10.1371/journal.pone.0210944] [PMID: 30653586]
[110]
Marin, J.J.G.; Lozano, E.; Briz, O.; Al-Abdulla, R.; Serrano, M.A.; Macias, R.I.R. Molecular bases of chemoresistance in cholangiocarcinoma. Curr. Drug Targets, 2017, 18(8), 889-900.
[http://dx.doi.org/10.2174/1389450116666150223121508] [PMID: 25706108]
[111]
Salem, P.E.S.; Ghazala, R.A.; El Gendi, A.M.; Emara, D.M.; Ahmed, N.M. The association between circulating MicroRNA-150 level and cholangiocarcinoma. J. Clin. Lab. Anal., 2020, 34(11), e23397.
[http://dx.doi.org/10.1002/jcla.23397] [PMID: 33161598]
[112]
Zhang, G.H.; Cong, A.R.; Xu, G.B.; Li, C.B.; Yang, R.F.; Xia, T.A. An enzymatic cycling method for the determination of serum total bile acids with recombinant 3α-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun., 2004, 326(1), 87-92.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.005] [PMID: 15567156]
[113]
Kobayashi, N.; Katsumata, H.; Uto, Y.; Goto, J.; Niwa, T.; Kobayashi, K.; Mizuuchi, Y. A monoclonal antibody-based enzyme-linked immunosorbent assay of glycolithocholic acid sulfate in human urine for liver function test. Steroids, 2002, 67(10), 827-833.
[http://dx.doi.org/10.1016/S0039-128X(02)00036-3] [PMID: 12231118]
[114]
Ijare, O.B.; Bezabeh, T.; Albiin, N.; Bergquist, A.; Arnelo, U.; Lindberg, B.; Smith, I.C.P. Simultaneous quantification of glycine- and taurine-conjugated bile acids, total bile acids, and choline-containing phospholipids in human bile using 1H NMR spectroscopy. J. Pharm. Biomed. Anal., 2010, 53(3), 667-673.
[http://dx.doi.org/10.1016/j.jpba.2010.05.028] [PMID: 20580511]
[115]
Onişor, C.; Poša, M.; Kevrešan, S.; Kuhajda, K.; Sârbu, C. Estimation of chromatographic lipophilicity of bile acids and their derivatives by reversed-phase thin layer chromatography. J. Sep. Sci., 2010, 33(20), 3110-3118.
[http://dx.doi.org/10.1002/jssc.200900879] [PMID: 20824659]
[116]
Sârbu, C.; Kuhajda, K.; Kevresan, S. Evaluation of the lipophilicity of bile acids and their derivatives by thin-layer chromatography and principal component analysis. J. Chromatogr. A, 2001, 917(1-2), 361-366.
[http://dx.doi.org/10.1016/S0021-9673(01)00726-9] [PMID: 11403489]
[117]
Matysik, S.; Schmitz, G. Application of gas chromatography-triple quadrupole mass spectrometry to the determination of sterol components in biological samples in consideration of the ionization mode. Biochimie, 2013, 95(3), 489-495.
[http://dx.doi.org/10.1016/j.biochi.2012.09.015] [PMID: 23041445]
[118]
Shi, Y.; Xiong, J.; Sun, D.; Liu, W.; Wei, F.; Ma, S.; Lin, R. Simultaneous quantification of the major bile acids in artificial calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control. J. Sep. Sci., 2015, 38(16), 2753-2762.
[http://dx.doi.org/10.1002/jssc.201500139] [PMID: 26016891]
[119]
Kakiyama, G.; Muto, A.; Takei, H.; Nittono, H.; Murai, T.; Kurosawa, T.; Hofmann, A.F.; Pandak, W.M.; Bajaj, J.S. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: Validation by GC-MS and LC-MS. J. Lipid Res., 2014, 55(5), 978-990.
[http://dx.doi.org/10.1194/jlr.D047506] [PMID: 24627129]
[120]
Danese, E.; Negrini, D.; Pucci, M.; De Nitto, S.; Ambrogi, D.; Donzelli, S.; Lievens, P.M.J.; Salvagno, G.L.; Lippi, G. Bile acids quantification by liquid chromatography–tandem mass spectrometry: Method validation, reference range, and interference study. Diagnostics, 2020, 10(7), 462.
[http://dx.doi.org/10.3390/diagnostics10070462] [PMID: 32645999]
[121]
John, C.; Werner, P.; Worthmann, A.; Wegner, K.; Tödter, K.; Scheja, L.; Rohn, S.; Heeren, J.; Fischer, M. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J. Chromatogr. A, 2014, 1371, 184-195.
[http://dx.doi.org/10.1016/j.chroma.2014.10.064] [PMID: 25456597]
[122]
Jäntti, S.E.; Kivilompolo, M.; Öhrnberg, L.; Pietiläinen, K.H.; Nygren, H.; Orešič, M.; Hyötyläinen, T. Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2014, 406(30), 7799-7815.
[http://dx.doi.org/10.1007/s00216-014-8230-9] [PMID: 25384335]
[123]
Zhao, X.; Liu, Z.; Sun, F.; Yao, L.; Yang, G.; Wang, K. Bile acid detection techniques and bile acid-related diseases. Front. Physiol., 2022, 13, 826740.
[http://dx.doi.org/10.3389/fphys.2022.826740] [PMID: 35370774]
[124]
Perwaiz, S.; Mignault, D.; Tuchweber, B.; Yousef, I.M. Rapid and improved method for the determination of bile acids in human feces using MS. Lipids, 2002, 37(11), 1093-1100.
[http://dx.doi.org/10.1007/s11745-002-1005-0] [PMID: 12558060]
[125]
Huang, J.; Bathena, S.P.R.; Csanaky, I.L.; Alnouti, Y. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J. Pharm. Biomed. Anal., 2011, 55(5), 1111-1119.
[http://dx.doi.org/10.1016/j.jpba.2011.03.035] [PMID: 21530128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy