Abstract
Background: SARS-CoV-2, the unique coronavirus that causes COVID-19, has wreaked damage around the globe, with victims displaying a wide range of difficulties that have encouraged medical professionals to look for innovative technical solutions and therapeutic approaches. Artificial intelligence-based methods have contributed a significant part in tackling complicated issues, and some institutions have been quick to embrace and tailor these solutions in response to the COVID-19 pandemic's obstacles. Here, in this review article, we have covered a few DL techniques for COVID-19 detection and diagnosis, as well as ML techniques for COVID-19 identification, severity classification, vaccine and drug development, mortality rate prediction, contact tracing, risk assessment, and public distancing. This review illustrates the overall impact of AI/ML tools on tackling and managing the outbreak.
Purpose: The focus of this research was to undertake a thorough evaluation of the literature on the part of Artificial Intelligence (AI) as a complete and efficient solution in the battle against the COVID-19 epidemic in the domains of detection and diagnostics of disease, mortality prediction and vaccine as well as drug development.
Methods: A comprehensive exploration of PubMed, Web of Science, and Science Direct was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations to find all possibly suitable papers conducted and made publicly available between December 1, 2019, and August 2023. COVID-19, along with AI-specific words, was used to create the query syntax.
Results: During the period covered by the search strategy, 961 articles were published and released online. Out of these, a total of 135 papers were chosen for additional investigation. Mortality rate prediction, early detection and diagnosis, vaccine as well as drug development, and lastly, incorporation of AI for supervising and controlling the COVID-19 pandemic were the four main topics focused entirely on AI applications used to tackle the COVID-19 crisis. Out of 135, 60 research papers focused on the detection and diagnosis of the COVID-19 pandemic. Next, 19 of the 135 studies applied a machine-learning approach for mortality rate prediction. Another 22 research publications emphasized the vaccine as well as drug development. Finally, the remaining studies were concentrated on controlling the COVID-19 pandemic by applying AI AI-based approach to it.
Conclusion: We compiled papers from the available COVID-19 literature that used AI-based methodologies to impart insights into various COVID-19 topics in this comprehensive study. Our results suggest crucial characteristics, data types, and COVID-19 tools that can aid in medical and translational research facilitation.
Graphical Abstract
[http://dx.doi.org/10.1136/bmj.m800] [PMID: 32144127]
[http://dx.doi.org/10.7861/futurehosp.6-2-94] [PMID: 31363513]
[http://dx.doi.org/10.1136/jclinpath-2020-206854] [PMID: 32620678]
[http://dx.doi.org/10.1016/j.procs.2019.01.151]
[http://dx.doi.org/10.1371/journal.pone.0235187] [PMID: 32589673]
[http://dx.doi.org/10.1007/s13246-020-00865-4] [PMID: 32524445]
[http://dx.doi.org/10.1016/j.dld.2022.04.025] [PMID: 35610166]
[http://dx.doi.org/10.1186/s12911-022-02022-1] [PMID: 36324135]
[http://dx.doi.org/10.1155/2022/6093613] [PMID: 35444694]
[http://dx.doi.org/10.1117/12.2521405]
[http://dx.doi.org/10.2196/24018] [PMID: 33027032]
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[http://dx.doi.org/10.1016/j.jiph.2022.01.011] [PMID: 35078755]
[http://dx.doi.org/10.1007/s10916-020-01582-x] [PMID: 32451808]
[http://dx.doi.org/10.14245/ns.1938396.198] [PMID: 31905454]
[http://dx.doi.org/10.1016/j.cmpb.2020.105608] [PMID: 32599338]
[http://dx.doi.org/10.1038/s41591-020-0931-3] [PMID: 32427924]
[http://dx.doi.org/10.1016/j.cmpb.2020.105532] [PMID: 32446037]
[http://dx.doi.org/10.1109/ACCESS.2020.2994762] [PMID: 34192100]
[http://dx.doi.org/10.1016/j.asoc.2020.106859] [PMID: 33162872]
[http://dx.doi.org/10.3390/e22050517] [PMID: 33286289]
[http://dx.doi.org/10.1007/s13246-020-00888-x] [PMID: 32588200]
[http://dx.doi.org/10.1097/RTI.0000000000000532] [PMID: 32427650]
[http://dx.doi.org/10.1016/j.ejrad.2020.109041] [PMID: 32408222]
[http://dx.doi.org/10.1016/j.cmpb.2020.105581] [PMID: 32534344]
[http://dx.doi.org/10.1016/j.compbiomed.2020.103805] [PMID: 32568679]
[http://dx.doi.org/10.1016/j.mehy.2020.109761] [PMID: 32344309]
[http://dx.doi.org/10.1007/s00264-020-04609-7] [PMID: 32462314]
[http://dx.doi.org/10.2196/19569] [PMID: 32568730]
[http://dx.doi.org/10.1007/s12559-020-09751-3] [PMID: 32837591]
[http://dx.doi.org/10.1080/07391102.2020.1788642] [PMID: 32619398]
[http://dx.doi.org/10.21037/atm.2020.03.132] [PMID: 32395494]
[http://dx.doi.org/10.1080/07391102.2020.1767212] [PMID: 32397844]
[http://dx.doi.org/10.1016/j.compbiomed.2020.103792] [PMID: 32568675]
[http://dx.doi.org/10.3390/sym12040651]
[http://dx.doi.org/10.9781/ijimai.2020.04.003]
[http://dx.doi.org/10.1007/s00330-020-07044-9] [PMID: 32617690]
[http://dx.doi.org/10.1183/13993003.00775-2020] [PMID: 32444412]
[http://dx.doi.org/10.1016/j.imu.2020.100360] [PMID: 32501424]
[http://dx.doi.org/10.1016/j.chaos.2020.109944] [PMID: 32536759]
[http://dx.doi.org/10.1016/j.compbiomed.2020.103795] [PMID: 32568676]
[http://dx.doi.org/10.1148/radiol.2020200905] [PMID: 32191588]
[http://dx.doi.org/10.1016/j.diii.2020.11.008] [PMID: 33281082]
[http://dx.doi.org/10.1007/s00259-020-04929-1] [PMID: 32567006]
[http://dx.doi.org/10.1016/j.mlwa.2021.100138] [PMID: 34939042]
[http://dx.doi.org/10.1007/s10044-021-00970-4]
[http://dx.doi.org/10.1016/j.media.2020.101794] [PMID: 32781377]
[http://dx.doi.org/10.3390/app10165683]
[http://dx.doi.org/10.1007/s10489-020-01902-1] [PMID: 34764553]
[http://dx.doi.org/10.1371/journal.pone.0255886] [PMID: 34388187]
[http://dx.doi.org/10.1371/journal.pone.0252573] [PMID: 34101762]
[http://dx.doi.org/10.1080/07853890.2020.1868564] [PMID: 33410720]
[http://dx.doi.org/10.1145/3414274.3414496]
[http://dx.doi.org/10.7759/cureus.9448] [PMID: 32864270]
[http://dx.doi.org/10.1016/j.imu.2020.100378] [PMID: 32839734]
[http://dx.doi.org/10.3389/fdgth.2021.564906] [PMID: 34713079]
[http://dx.doi.org/10.1145/3394486.3412865]
[http://dx.doi.org/10.1145/3381014] [PMID: 35846237]
[http://dx.doi.org/10.1016/j.compbiomed.2022.105405] [PMID: 35318171]
[http://dx.doi.org/10.21437/Interspeech.2019-1796]
[http://dx.doi.org/10.1080/23311916.2021.1958666]
[http://dx.doi.org/10.1007/s11760-023-02537-8] [PMID: 37362229]
[PMID: 35126765]
[http://dx.doi.org/10.1016/j.compbiomed.2021.104572] [PMID: 34182331]
[http://dx.doi.org/10.1016/j.patcog.2021.108289] [PMID: 34483372]
[http://dx.doi.org/10.1038/s41598-023-45104-4] [PMID: 37880351]
[http://dx.doi.org/10.1109/TIM.2020.2977793]
[http://dx.doi.org/10.1007/978-1-0716-1884-4_6] [PMID: 34914045]
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[http://dx.doi.org/10.1093/bib/bbab320] [PMID: 34410360]
[http://dx.doi.org/10.3390/ijms23063261] [PMID: 35328682]
[http://dx.doi.org/10.1016/j.patter.2021.100396] [PMID: 34778851]
[http://dx.doi.org/10.1007/s12539-020-00376-6] [PMID: 32488835]
[http://dx.doi.org/10.1155/2021/6668985] [PMID: 34326978]
[http://dx.doi.org/10.1073/pnas.2105070118] [PMID: 34526388]
[http://dx.doi.org/10.1016/j.csbj.2021.05.037] [PMID: 34055238]
[http://dx.doi.org/10.3934/mbe.2021039] [PMID: 33525116]
[http://dx.doi.org/10.2196/20259] [PMID: 32735549]
[http://dx.doi.org/10.1186/s12911-020-01316-6] [PMID: 33213435]
[http://dx.doi.org/10.2196/25442] [PMID: 33301414]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106080] [PMID: 32634603]
[http://dx.doi.org/10.1038/s41379-020-00700-x] [PMID: 33067522]
[http://dx.doi.org/10.3389/fpubh.2020.587937] [PMID: 33102426]
[http://dx.doi.org/10.1002/emp2.12205] [PMID: 32838390]
[http://dx.doi.org/10.1038/s41551-020-00633-5] [PMID: 33208927]
[http://dx.doi.org/10.1371/journal.pone.0249285] [PMID: 33793600]
[http://dx.doi.org/10.1038/s41467-020-18684-2] [PMID: 33024092]
[http://dx.doi.org/10.1371/journal.pone.0243262] [PMID: 33296405]
[http://dx.doi.org/10.1038/s41598-020-75767-2] [PMID: 33127965]
[http://dx.doi.org/10.2196/24207] [PMID: 33400679]
[http://dx.doi.org/10.1093/ije/dyaa171] [PMID: 32997743]
[http://dx.doi.org/10.1136/bmjhci-2020-100235] [PMID: 33962987]
[http://dx.doi.org/10.1093/jamia/ocaa153] [PMID: 32584990]
[http://dx.doi.org/10.1007/s42979-020-00290-0] [PMID: 33063052]
[http://dx.doi.org/10.3390/bdcc7020108]
[http://dx.doi.org/10.3389/frai.2022.1034732] [PMID: 36530356]
[http://dx.doi.org/10.3390/informatics8040072]
[http://dx.doi.org/10.1177/1747016120943622]
[http://dx.doi.org/10.1016/j.pmcj.2021.101439] [PMID: 36569467]
[http://dx.doi.org/10.1016/j.dsx.2020.05.035] [PMID: 32526627]
[http://dx.doi.org/10.3390/ijerph17062032] [PMID: 32204411]
[http://dx.doi.org/10.3390/su12062427]
[http://dx.doi.org/10.1183/13993003.01234-2020] [PMID: 32430433]
[http://dx.doi.org/10.32604/cmc.2020.010691]
[http://dx.doi.org/10.1016/j.cell.2020.04.045] [PMID: 32416069]
[http://dx.doi.org/10.3390/diagnostics10040198] [PMID: 32244841]
[http://dx.doi.org/10.1017/ice.2020.61] [PMID: 32122430]
[http://dx.doi.org/10.3390/s21134608] [PMID: 34283141]
[http://dx.doi.org/10.1016/j.scs.2020.102571] [PMID: 33163330]
[http://dx.doi.org/10.1007/s00354-022-00202-1] [PMID: 36620356]
[http://dx.doi.org/10.3390/s20185236] [PMID: 32937867]
[http://dx.doi.org/10.2196/20493] [PMID: 32540840]
[http://dx.doi.org/10.3233/JIFS-221174]
[http://dx.doi.org/10.1016/j.dsx.2020.04.012] [PMID: 32305024]
[http://dx.doi.org/10.3390/healthcare8030200] [PMID: 32645911]
[http://dx.doi.org/10.1109/TBDATA.2020.3032839] [PMID: 37981992]
[http://dx.doi.org/10.2166/hydro.2020.098]