Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Prevention of Contrast-induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention

Author(s): Raymond Pranata* and Dendi Puji Wahyudi

Volume 20, Issue 1, 2024

Published on: 24 October, 2023

Article ID: e241023222628 Pages: 7

DOI: 10.2174/011573403X260319231016075216

Price: $65

Abstract

Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury has varying definitions, but in general, increased serum creatinine level by ≥ 0.3 mg/dL (26.5 μmol/L) or 1.5x of baseline value or urine output <0.5 mL/kg/h within 1-7 days after contrast media (CM) administration can be considered as CIN. CIN is one of the most common complications and is associated with increased mortality in patients undergoing percutaneous coronary intervention (PCI). Thus, risk stratification for CIN should be made and preventive strategies should be employed in which the intensity of the approach must be tailored to patient’s risk profile. In all patients, adequate hydration is required, nephrotoxic medications should be discontinued, and pre-procedural high-intensity statin is recommended. In patients with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2, IV hydration should be started 12 hours preprocedure up until 12-24 hours after the procedure. Remote ischemic preconditioning may be performed pre-procedurally. Radial first approach for vascular access is recommended. During the procedure, low or iso-osmolar CM should be used and its volume should be limited to eGFR x 3.7. In patients at high risk for CIN, additional contrast-sparing strategies may be applied, such as using a contrast reduction system, 5 Fr catheter with no sideholes, CM dilution, limiting test injection, confirming placement using guidewire, use of stent enhancing imaging technology, using metallic/software roadmap to guide PCI, use of IVUS or dextran-based OCT, and coronary aspiration. A more advanced hydration technique based on central venous pressure, left ventricular end-diastolic pressure, or using furosemide-matched hydration, might be considered.

Graphical Abstract

[1]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11(2): R31.
[http://dx.doi.org/10.1186/cc5713] [PMID: 17331245]
[2]
Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67(6): 2089-100.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00365.x] [PMID: 15882252]
[3]
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8(4): R204-12.
[http://dx.doi.org/10.1186/cc2872] [PMID: 15312219]
[4]
van der Molen AJ, Reimer P, Dekkers IA, et al. Post-contrast acute kidney injury – Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors. Eur Radiol 2018; 28(7): 2845-55.
[http://dx.doi.org/10.1007/s00330-017-5246-5] [PMID: 29426991]
[5]
Tsai TT, Patel UD, Chang TI, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv 2014; 7(1): 1-9.
[http://dx.doi.org/10.1016/j.jcin.2013.06.016] [PMID: 24456715]
[6]
Valle JA, McCoy LA, Maddox TM, et al. Longitudinal risk of adverse events in patients with acute kidney injury after percutaneous coronary intervention. Circ Cardiovasc Interv 2017; 10(4): e004439.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.004439] [PMID: 28404621]
[7]
Menting TP, Sterenborg TB, de Waal Y, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: A randomized controlled trial. Eur J Vasc Endovasc Surg 2015; 50(4): 527-32.
[http://dx.doi.org/10.1016/j.ejvs.2015.04.002] [PMID: 26015372]
[8]
Sendeski MM. Pathophysiology of renal tissue damage by iodinated contrast media. Clin Exp Pharmacol Physiol 2011; 38(5): 292-9.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05503.x] [PMID: 21348890]
[9]
Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium–induced nephropathy. Kidney Int 2005; 68(1): 14-22.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00377.x] [PMID: 15954892]
[10]
Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med 2019; 380(22): 2146-55.
[http://dx.doi.org/10.1056/NEJMra1805256] [PMID: 31141635]
[11]
Yin W, Yi Y, Guan X, et al. Preprocedural prediction model for contrast-induced nephropathy patients. J Am Heart Assoc 2017; 6(2): e004498.
[http://dx.doi.org/10.1161/JAHA.116.004498] [PMID: 28159819]
[12]
Mehran R, Nikolsky E. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk. Kidney Int 2006; 69(100): S11-5.
[http://dx.doi.org/10.1038/sj.ki.5000368] [PMID: 16612394]
[13]
Nikolsky E, Mehran R, Lasic Z, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int 2005; 67(2): 706-13.
[http://dx.doi.org/10.1111/j.1523-1755.2005.67131.x] [PMID: 15673320]
[14]
Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. J Am Coll Cardiol 2004; 44(7): 1393-9.
[http://dx.doi.org/10.1016/j.jacc.2004.06.068] [PMID: 15464318]
[15]
Sgura FA, Bertelli L, Monopoli D, et al. Mehran contrast-induced nephropathy risk score predicts short- and long-term clinical outcomes in patients with ST-elevation-myocardial infarction. Circ Cardiovasc Interv 2010; 3(5): 491-8.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.955310] [PMID: 20923986]
[16]
Naidu SS, Aronow HD, Box LC, et al. SCAI expert consensus statement: 2016 best practices in the cardiac catheterization laboratory: (Endorsed by the cardiological society of India, and sociedad Latino Americana de Cardiologia intervencionista; Affirmation of value by the Canadian Associatio. Catheter Cardiovasc Interv 2016; 88(3): 407-23.
[http://dx.doi.org/10.1002/ccd.26551] [PMID: 27137680]
[17]
Pandya B, Chalhoub JM, Parikh V, et al. Contrast media use in patients with chronic kidney disease undergoing coronary angiography: A systematic review and meta-analysis of randomized trials. Int J Cardiol 2017; 228: 137-44.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.170] [PMID: 27863354]
[18]
Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019; 40(2): 87-165.
[http://dx.doi.org/10.1093/eurheartj/ehy394] [PMID: 30165437]
[19]
Laskey WK, Jenkins C, Selzer F, et al. Volume-to-creatinine clearance ratio: A pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 2007; 50(7): 584-90.
[http://dx.doi.org/10.1016/j.jacc.2007.03.058] [PMID: 17692741]
[20]
Lawton JS, Tamis-Holland JE, Bangalore S. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: A report of the American College of Cardiology/American heart association joint committee on clinical practice guidelines. Circulation 2022; 145(3)
[http://dx.doi.org/10.1161/CIR.0000000000001038]
[21]
Leoncini M, Toso A, Maioli M, Tropeano F, Villani S, Bellandi F. Early high-dose rosuvastatin for contrast-induced nephropathy prevention in acute coronary syndrome: Results from the PRATO-ACS Study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced acute kidney injury and myocardial damage in patients with acute coronary syndrome). J Am Coll Cardiol 2014; 63(1): 71-9.
[http://dx.doi.org/10.1016/j.jacc.2013.04.105] [PMID: 24076283]
[22]
Han Y, Zhu G, Han L, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol 2014; 63(1): 62-70.
[http://dx.doi.org/10.1016/j.jacc.2013.09.017] [PMID: 24076297]
[23]
Berwanger O. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: Main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation 2011; 124(11): 1250-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.038943] [PMID: 21859972]
[24]
Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N Engl J Med 2018; 378(7): 603-14.
[http://dx.doi.org/10.1056/NEJMoa1710933] [PMID: 29130810]
[25]
Pranata R, Vania R, Alkatiri AA, Firman D, Lukito AA. Nicorandil reduces the incidence of contrast-induced nephropathy in patients undergoing coronary angiography/intervention – systematic review and meta-analysis of randomized controlled trials including GRADE qualification. Cardiovasc Revasc Med 2020; 21(9): 1121-7.
[http://dx.doi.org/10.1016/j.carrev.2020.01.010] [PMID: 31959562]
[26]
Martha JW, Pranata R, Wibowo A, Irvan I, Afrianti R, Akbar MR. The effect of trimetazidine on contrast-induced nephropathy in patients undergoing coronary angiography and/or percutaneous coronary intervention - A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 2021; 25(7): 3045-53.
[http://dx.doi.org/10.26355/eurrev_202104_25558] [PMID: 33877668]
[27]
McCullough PA, Choi JP, Feghali GA, et al. Contrast-Induced Acute Kidney Injury. J Am Coll Cardiol 2016; 68(13): 1465-73.
[http://dx.doi.org/10.1016/j.jacc.2016.05.099] [PMID: 27659469]
[28]
Rear R, Bell RM, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016; 102(8): 638-48.
[http://dx.doi.org/10.1136/heartjnl-2014-306962] [PMID: 26857214]
[29]
Qian G, Fu Z, Guo J, Cao F, Chen Y. Prevention of contrast-induced nephropathy by central venous pressure–guided fluid administration in chronic kidney disease and congestive heart failure patients. JACC Cardiovasc Interv 2016; 9(1): 89-96.
[http://dx.doi.org/10.1016/j.jcin.2015.09.026] [PMID: 26685074]
[30]
Briguori C, Visconti G, Focaccio A, et al. Renal insufficiency after contrast media administration trial II (REMEDIAL II): Renal guard system in high-risk patients for contrast-induced acute kidney injury. Circulation 2011; 124(11): 1260-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.030759] [PMID: 21844075]
[31]
Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: Underlying mechanisms and clinical effects. Am J Physiol Renal Physiol 2018; 314(3): F319-28.
[http://dx.doi.org/10.1152/ajprenal.00130.2017] [PMID: 28566501]
[32]
Hu J, Wang Y, Zhao S, et al. Remote ischemic preconditioning ameliorates acute kidney injury due to contrast exposure in rats through augmented O-GlcNAcylation. Oxid Med Cell Longev 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/4895913] [PMID: 30186544]
[33]
Pranata R, Tondas AE, Vania R, Toruan MPL, Lukito AA, Siswanto BB. Remote ischemic preconditioning reduces the incidence of contrastâ€induced nephropathy in patients undergoing coronary angiography/intervention: Systematic review and metaâ€analysis of randomized controlled trials. Catheter Cardiovasc Interv 2020; 96(6): 1200-12.
[http://dx.doi.org/10.1002/ccd.28709] [PMID: 31912996]
[34]
Andò G, Cortese B, Russo F, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management. J Am Coll Cardiol 2017; 69(21): 2592-603.
[http://dx.doi.org/10.1016/j.jacc.2017.02.070] [PMID: 28528767]
[35]
Leistner DM, Schlender LS, Steiner J, et al. A randomised comparison of monoplane versus biplane fluoroscopy in patients undergoing percutaneous coronary intervention: The RAMBO trial. EuroIntervention 2020; 16(8): 672-9.
[http://dx.doi.org/10.4244/EIJ-D-20-00217] [PMID: 32392169]
[36]
Desch S, Fuernau G, Pöss J, et al. Impact of a novel contrast reduction system on contrast savings in coronary angiography – The DyeVert randomised controlled trial. Int J Cardiol 2018; 257: 50-3.
[http://dx.doi.org/10.1016/j.ijcard.2017.12.107] [PMID: 29373136]
[37]
Gurm HS, Mavromatis K, Bertolet B, et al. Minimizing radiographic contrast administration during coronary angiography using a novel contrast reduction system: A multicenter observational study of the DyeVertâ„¢ plus contrast reduction system. Catheter Cardiovasc Interv 2019; 93(7): 1228-35.
[http://dx.doi.org/10.1002/ccd.27935] [PMID: 30393942]
[38]
Almendarez M, Gurm HS, Mariani J Jr, et al. Procedural strategies to reduce the incidence of contrast-induced acute kidney injury during percutaneous coronary intervention. JACC Cardiovasc Interv 2019; 12(19): 1877-88.
[http://dx.doi.org/10.1016/j.jcin.2019.04.055] [PMID: 31521648]
[39]
Mariani J Jr, Guedes C, Soares P, et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: The MOZART (Minimizing cOntrast utiliZation With IVUS Guidance in coRonary angioplasTy) randomized controlled trial. JACC Cardiovasc Interv 2014; 7(11): 1287-93.
[http://dx.doi.org/10.1016/j.jcin.2014.05.024] [PMID: 25326742]
[40]
Frick K, Michael TT, Alomar M, et al. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Catheter Cardiovasc Interv 2014; 84(5): 727-31.
[http://dx.doi.org/10.1002/ccd.25092] [PMID: 23804461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy