Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

A Concise Review of Carbon Dots and their Pharmaceutical and Biomedical Applications

Author(s): Ashish Kumar Parashar*, Krishna Kumar Verma, Rajeev Kumar and Vandana Arora

Volume 17, Issue 3, 2023

Published on: 17 October, 2023

Page: [183 - 192] Pages: 10

DOI: 10.2174/0126673878237423230919070049

Price: $65

Abstract

For the last two decades, carbon dots, a revolutionary type of carbon nanomaterial with less than 10 nm diameter, have attracted considerable research interest. CDs exhibit various physicochemical properties and favorable characteristics, including excellent water solubility, unique optical properties, low cost, eco-friendliness, an abundance of reactive surface groups, and high stability. As a result, the synthesis of CDs and their applications in pharmaceutical and related disciplines have received increasing interest. Since CDs are biocompatible and biodegradable with low toxicity, they are a promising healthcare tool. CDs are extensively employed for numerous applications to date, including theranostics, bioimaging, drug delivery, biosensing, gene delivery, cancer therapy, electrochemical biosensing, and inflammatory treatment. This comprehensive review aims to explore various synthesis methods of carbon dots, including top-down and bottom-up approaches, as well as highlight the characterization techniques employed to assess their physicochemical and biological properties. Additionally, the review delves into carbon dots' pharmaceutical and biomedical applications, showcasing their potential in drug delivery, bioimaging, diagnostics, and therapeutics.

Graphical Abstract

[1]
Liu J, Li R, Yang B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 2020; 6(12): 2179-95.
[http://dx.doi.org/10.1021/acscentsci.0c01306] [PMID: 33376780]
[2]
Azam N, Najabat Ali M, Javaid Khan T. Carbon quantum dots for biomedical applications: Review and analysis. Front Mater 2021; 8: 700403.
[http://dx.doi.org/10.3389/fmats.2021.700403]
[3]
Kang Z, Liu Y. Catalytic applications of carbon dots.In: Carbon Nanoparticles and Nanostructures. Cham: Springer 2016; pp. 257-98.
[4]
Jiang K, Wang Y, Li Z, Lin H. Afterglow of carbon dots: Mechanism, strategy and applications. Mater Chem Front 2020; 4(2): 386-99.
[http://dx.doi.org/10.1039/C9QM00578A]
[5]
Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv Mater 2019; 31(21): 1808283.
[http://dx.doi.org/10.1002/adma.201808283] [PMID: 30828898]
[6]
Shi F, Liu Q. Recent advances on the application of graphene quantum dots in energy storage. Recent Pat Nanotechnol 2021; 15(4): 298-309.
[http://dx.doi.org/10.2174/1872210515666210120115159] [PMID: 33494687]
[7]
Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 2019; 21(3): 449-71.
[http://dx.doi.org/10.1039/C8GC02736F]
[8]
Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 2011; 47(3): 932-4.
[http://dx.doi.org/10.1039/C0CC03552A] [PMID: 21079826]
[9]
Mansuriya BD, Altintas Z. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care-an updated review (2018-2021). Nanomaterials 2021; 11(10): 2525.
[http://dx.doi.org/10.3390/nano11102525] [PMID: 34684966]
[10]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[11]
Peng Z, Han X, Li S, et al. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 2017; 343: 256-77.
[http://dx.doi.org/10.1016/j.ccr.2017.06.001]
[12]
Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020; 132(110834): 110834.
[http://dx.doi.org/10.1016/j.biopha.2020.110834] [PMID: 33035830]
[13]
Baker SN, Baker GA. Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed 2010; 49(38): 6726-44.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[14]
Hsu CC, Larue R, Kwong CC, Wilkowski D. Laser-induced thermal source for cold atoms. Sci Rep 2022; 12(1): 868.
[http://dx.doi.org/10.1038/s41598-021-04697-4] [PMID: 35042899]
[15]
Anwar S, Ding H, Xu M, et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl Bio Mater 2019; 2(6): 2317-38.
[http://dx.doi.org/10.1021/acsabm.9b00112] [PMID: 35030725]
[16]
Park SY, Lee HU, Park ES, et al. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 2014; 6(5): 3365-70.
[http://dx.doi.org/10.1021/am500159p] [PMID: 24512145]
[17]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater 2009; 21(13): 2803-9.
[http://dx.doi.org/10.1021/cm900709w]
[18]
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, et al. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564: 308-17.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.055] [PMID: 31015004]
[19]
Jayanthi M, Megarajan S, Subramaniyan SB, Kamlekar RK, Veerappan A. A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. J Mol Liq 2019; 278: 175-82.
[http://dx.doi.org/10.1016/j.molliq.2019.01.070]
[20]
Choi Y, Thongsai N, Chae A, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem 2017; 47: 329-35.
[http://dx.doi.org/10.1016/j.jiec.2016.12.002]
[21]
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Advances 2016; 6(16): 12893-912.
[http://dx.doi.org/10.1039/C5RA22841G]
[22]
Hu Q, Gong X, Liu L, Choi MMF. Characterization and analytical separation of fluorescent carbon nanodots. J Nanomater 2017; 2017: 1-23.
[http://dx.doi.org/10.1155/2017/1804178]
[23]
Zhu Q, Zhou R, Liu J, Sun J, Wang Q. Recent progress on the characterization of cellulose nanomaterials by nanoscale infrared spectroscopy. Nanomaterials 2021; 11(5): 1353.
[http://dx.doi.org/10.3390/nano11051353] [PMID: 34065487]
[24]
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018; 10(27): 12871-934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[25]
Hu Q, Meng X, Chan W. An investigation on the chemical structure of nitrogen and sulfur codoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2016; 408(19): 5347-57.
[http://dx.doi.org/10.1007/s00216-016-9631-8] [PMID: 27225175]
[26]
Kazemifard N, Ensafi AA, Rezaei B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chem 2020; 310(125812): 125812.
[http://dx.doi.org/10.1016/j.foodchem.2019.125812] [PMID: 31734008]
[27]
Demirci S, McNally AB, Ayyala RS, Lawson LB, Sahiner N. Synthesis and characterization of nitrogen-doped carbon dots as fluorescent nanoprobes with antimicrobial properties and skin permeability. J Drug Deliv Sci Technol 2020; 59(101889): 101889.
[http://dx.doi.org/10.1016/j.jddst.2020.101889]
[28]
Yang Y, Wu D, Han S, Hu P, Liu R. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem Commun 2013; 49(43): 4920-2.
[http://dx.doi.org/10.1039/c3cc38815h] [PMID: 23598552]
[29]
Lin L, Zhang S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 2012; 48(82): 10177-9.
[http://dx.doi.org/10.1039/c2cc35559k] [PMID: 22932850]
[30]
Sridharan R, Monisha B, Kumar PS, Gayathri KV. Carbon nanomaterials and its applications in pharmaceuticals: A brief review. Chemosphere 2022; 294(133731): 133731.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133731] [PMID: 35090848]
[31]
Li L, Dong T. Correction: Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J Mater Chem C Mater Opt Electron Devices 2019; 7(10): 3105-5.
[http://dx.doi.org/10.1039/C8TC90242A]
[32]
Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res 2015; 8(2): 355-81.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[33]
Talib AB, Mohammed MH. Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system. Mater Today Proc 2023; 80: 2327-33.
[http://dx.doi.org/10.1016/j.matpr.2021.06.341]
[34]
Zu F, Yan F, Bai Z, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim Acta 2017; 184(7): 1899-914.
[http://dx.doi.org/10.1007/s00604-017-2318-9]
[35]
Duan P, Zhi B, Coburn L, Haynes CL, Schmidt-Rohr K. A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solid‐state nuclear magnetic resonance. Magn Reson Chem 2020; 58(11): 1130-8.
[http://dx.doi.org/10.1002/mrc.4985] [PMID: 31880813]
[36]
De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances 2013; 3(22): 8286.
[http://dx.doi.org/10.1039/c3ra00088e]
[37]
Wen X, Yu P, Toh YR, Ma X, Tang J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem Commun 2014; 50(36): 4703-6.
[http://dx.doi.org/10.1039/C4CC01213E] [PMID: 24675809]
[38]
Zhao L, Di F, Wang D, et al. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale 2013; 5(7): 2655-8.
[http://dx.doi.org/10.1039/c3nr00358b] [PMID: 23456202]
[39]
Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 2009; 131(13): 4564-5.
[http://dx.doi.org/10.1021/ja809073f] [PMID: 19296587]
[40]
Dunpall R, Revaprasadu N. An in vitro and in vivo bio-interaction responses and biosafety evaluation of novel Au-ZnTe core-shell nanoparticles. Toxicol Res 2016; 5(4): 1078-89.
[http://dx.doi.org/10.1039/C6TX00054A] [PMID: 30090413]
[41]
Zhang S, Pei X, Xue Y, Xiong J, Wang J. Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison. Chin Chem Lett 2020; 31(6): 1654-9.
[http://dx.doi.org/10.1016/j.cclet.2019.09.018]
[42]
Su W, Wu H, Xu H, et al. Carbon dots: A booming material for biomedical applications. Mater Chem Front 2020; 4(3): 821-36.
[http://dx.doi.org/10.1039/C9QM00658C]
[43]
Bhattacharya S, Sarkar R, Nandi S, Porgador A, Jelinek R. Detection of reactive oxygen species by a carbon-dot-ascorbic acid hydrogel. Anal Chem 2017; 89(1): 830-6.
[http://dx.doi.org/10.1021/acs.analchem.6b03749] [PMID: 27991760]
[44]
Wei W, Xu C, Ren J, Xu B, Qu X. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem Commun 2012; 48(9): 1284-6.
[http://dx.doi.org/10.1039/C2CC16481G] [PMID: 22179588]
[45]
Kour R, Arya S, Young SJ, Gupta V, Bandhoria P, Khosla A. Review-recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 2020; 167(3): 037555.
[http://dx.doi.org/10.1149/1945-7111/ab6bc4]
[46]
Wu X, Sun S, Wang Y, et al. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens Bioelectron 2017; 90: 501-7.
[http://dx.doi.org/10.1016/j.bios.2016.10.060] [PMID: 27825883]
[47]
Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Adv Pharm Bull 2018; 8(1): 149-55.
[http://dx.doi.org/10.15171/apb.2018.018] [PMID: 29670850]
[48]
Mathew SA, Praveena P, Dhanavel S, Manikandan R, Senthilkumar S, Stephen A. Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases. RSC Advances 2020; 10(41): 24386-96.
[http://dx.doi.org/10.1039/D0RA04599C] [PMID: 35516176]
[49]
Wu YF, Wu HC, Kuan CH, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 2016; 6(1): 21170.
[http://dx.doi.org/10.1038/srep21170] [PMID: 26880047]
[50]
Zhang M, Wang W, Cui Y, et al. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem Eng J 2018; 338: 526-38.
[http://dx.doi.org/10.1016/j.cej.2018.01.081]
[51]
Permatasari FA, Fukazawa H, Ogi T, Iskandar F, Okuyama K. Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy. ACS Appl Nano Mater 2018; 1(5): 2368-75.
[http://dx.doi.org/10.1021/acsanm.8b00497]
[52]
Balou S, Shandilya P, Priye A. Carbon dots for photothermal applications. Front Chem 2022; 10: 1023602.
[http://dx.doi.org/10.3389/fchem.2022.1023602] [PMID: 36311416]
[53]
Fowley C, McHale AP, McCaughan B, Fraix A, Sortino S, Callan JF. Carbon quantum dot–NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors. Chem Commun 2015; 51(1): 81-4.
[http://dx.doi.org/10.1039/C4CC07827F] [PMID: 25388953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy