Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Graphical Abstract
[http://dx.doi.org/10.1021/acs.chemrev.1c00631] [PMID: 34910451];
(b) Brambila, C.; Boyd, P.; Keegan, A.; Sharma, P.; Vetter, C.; Ponnusamy, E.; Patwardhan, S.V. A comparison of environmental impact of various silicas using a green chemistry evaluator. ACS Sustain. Chem.& Eng., 2022, 10(16), 5288-5298.
[http://dx.doi.org/10.1021/acssuschemeng.2c00519] [PMID: 35493693]
[http://dx.doi.org/10.11648/j.ijrse.20170603.12];
(b) Ahluwalia, V.K.; Kidwai, M. Basic principles of green chemistry in new trends in green chemistry; Springer: Dordrecht, 2004.
[http://dx.doi.org/10.1007/978-1-4020-3175-5]
[http://dx.doi.org/10.1021/acs.oprd.1c00352]
[http://dx.doi.org/10.1007/s42452-020-2019-6]
[http://dx.doi.org/10.1021/acs.oprd.2c00020]
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[http://dx.doi.org/10.1021/acs.orglett.2c01010] [PMID: 35446571];
(b) Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284];
(c) Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
(b) Mani, G.S.; Donthiboina, K.; Shaik, S.P.; Shankaraiah, N.; Kamal, A. Iodine-mediated C-N and N-N bond formation: A facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free condition. RSC Advances, 2019, 9, 27021-27031.
[http://dx.doi.org/10.1039/C9RA06005G] [PMID: 35528599]
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[http://dx.doi.org/10.1021/jm990373e] [PMID: 10715160];
(b) Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; Clercq, E.D.; Perno, C.F.; Karlsson, A.; Balzarini, J.; Camarasa, M.J. 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-Dribofuranosyl]- 3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole 2′',2′'- dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem., 1994, 37(24), 4185-4194.
[http://dx.doi.org/10.1021/jm00050a015] [PMID: 7527463];
(c) Löber, S.; Rodriguez-Loaiza, P.; Gmeiner, P. Click linker: Efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. Org. Lett., 2003, 5(10), 1753-1755.
[http://dx.doi.org/10.1021/ol034520l] [PMID: 12735769]
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[http://dx.doi.org/10.1016/j.ejmech.2014.10.024] [PMID: 25440881]
[http://dx.doi.org/10.1016/j.carres.2015.09.003] [PMID: 26432609]
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[http://dx.doi.org/10.1016/j.ejmech.2011.05.050] [PMID: 21676506];
(b) Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K. Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[http://dx.doi.org/10.1038/nrc1781] [PMID: 16372017]
[http://dx.doi.org/10.1039/C6NJ03865D]
[http://dx.doi.org/10.1002/anie.200454078] [PMID: 15274216]
(b) Dondoni, A. Triazole: the keystone in glycosylated molecular architectures constructed by a click rection. Chem. Asian J., 2007, 2(6), 700-708.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.030] [PMID: 28011424]
[PMID: 32641940];
(b) Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[http://dx.doi.org/10.1021/acsomega.1c03948] [PMID: 34661013]
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[http://dx.doi.org/10.3390/molecules25153540] [PMID: 32748887];
(b) Krzywik, J.; Mozga, W.; Aminpour, M.; Janczak, J.; Maj, E.; Wietrzyk, J.; Tuszyński, J.A; Huczyń ski, A. Synthesis, antiproliferative activity and molecular docking studies of novel doubly modified colchicine amides and sulfonamides as anticancer agents. Molecules, 2020, 25(8), 1789-1820.
[http://dx.doi.org/10.3390/molecules25081789] [PMID: 32748887]
(b) Zheng, X.; Jiang, H.; Xie, J.; Yin, Z.; Zhang, H. Highly efficient and green synthesis of flavanones and tetrahydroquinolones. Synth. Commun., 2013, 43(7), 1023-1029.
[http://dx.doi.org/10.1080/00397911.2011.621096]
[http://dx.doi.org/10.1248/bpb.26.108] [PMID: 12520185]
[PMID: 24843190]
[http://dx.doi.org/10.1016/j.foodres.2005.05.001]
[http://dx.doi.org/10.1055/s-2004-815484] [PMID: 14994185]
[http://dx.doi.org/10.1016/j.bmcl.2006.12.029] [PMID: 17189684]
[http://dx.doi.org/10.1007/s11418-009-0349-1] [PMID: 19603253]
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791];
(b) Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem., 2017, 10(4), 509-514.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.019]
[http://dx.doi.org/10.1021/acsomega.8b00334] [PMID: 31458889]
[http://dx.doi.org/10.1016/j.fct.2005.06.012] [PMID: 16095792]
[http://dx.doi.org/10.1039/C3PY01194A]
[http://dx.doi.org/10.1016/j.scp.2021.100408]
[http://dx.doi.org/10.1021/acsomega.1c03736] [PMID: 34604670]
[http://dx.doi.org/10.1016/j.bone.2011.04.022] [PMID: 21555003]
[http://dx.doi.org/10.1016/j.ctrv.2008.02.004] [PMID: 18423992];
(b) Matsumoto, S.; Kimura, S.; Segawa, H.; Kuroda, J.; Yuasa, T.; Sato, K.; Nogawa, M.; Tanaka, F.; Maekawa, T.; Wada, H. Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer, 2005, 47(1), 31-39.
[http://dx.doi.org/10.1016/j.lungcan.2004.06.003] [PMID: 15603852];
(c) Lee, M.V.; Fong, E.M.; Singer, F.R.; Guenette, R.S. Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res., 2001, 61(6), 2602-2608.
[PMID: 11289137];
(d) Shipman, C.M.; Rogers, M.J.; Apperley, J.F.; Russell, R.G.G.; Croucher, P.I. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br. J. Haematol., 1997, 98(3), 665-672.
[http://dx.doi.org/10.1046/j.1365-2141.1997.2713086.x] [PMID: 9332325];
(e) Ural, A.U.; Yilmaz, M.I.; Avcu, F.; Pekel, A.; Zerman, M.; Nevruz, O.; Sengul, A.; Yalcin, A. The bisphosphonate zoledronic acid induces cytotoxicity in human myeloma cell lines with enhancing effects of dexamethasone and thalidomide. Int. J. Hematol., 2003, 78(5), 443-449.
[http://dx.doi.org/10.1007/BF02983818] [PMID: 14704038]
[http://dx.doi.org/10.1016/j.jbo.2013.12.001] [PMID: 26909294]
[PMID: 11160603];
(b) Rondeau, J.M.; Bitsch, F.; Bourgier, E.; Geiser, M.; Hemmig, R.; Kroemer, M.; Lehmann, S.; Ramage, P.; Rieffel, S.; Strauss, A.; Green, J.R.; Jahnke, W. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem, 2006, 1(2), 267-273.
[http://dx.doi.org/10.1002/cmdc.200500059] [PMID: 16892359];
(c) Kavanagh, K.L.; Guo, K.; Dunford, J.E.; Wu, X.; Knapp, S.; Ebetino, F.H.; Rogers, M.J.; Russell, R.G.G.; Oppermann, U. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7829-7834.
[http://dx.doi.org/10.1073/pnas.0601643103] [PMID: 16684881]
[http://dx.doi.org/10.1074/jbc.M602603200] [PMID: 16698791]
[http://dx.doi.org/10.1021/jm7015733] [PMID: 18327899]
[http://dx.doi.org/10.1371/journal.pone.0004685] [PMID: 19262688];
(b) Monteil, M.; Migianu-Griffoni, E.; Sainte-Catherine, O.; Di Benedetto, M.; Lecouvey, M. Bisphosphonate prodrugs: Synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Eur. J. Med. Chem., 2014, 77, 56-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.054] [PMID: 24607589];
(c) Migianu-Griffoni, E.; Chebbi, I.; Kachbi, S.; Monteil, M.; Sainte-Catherine, O.; Chaubet, F.; Oudar, O.; Lecouvey, M. Synthesis and biological evaluation of new bisphosphonate-dextran conjugates targeting breast primary tumor. Bioconjug. Chem., 2014, 25(2), 224-230.
[http://dx.doi.org/10.1021/bc400317h] [PMID: 24400882]
[http://dx.doi.org/10.1016/j.ejmech.2021.113241] [PMID: 33571830]
[http://dx.doi.org/10.1080/10426507.2017.1417299]
[http://dx.doi.org/10.1007/978-1-61779-012-6_9] [PMID: 21318905]
[http://dx.doi.org/10.1016/j.arabjc.2014.06.001]
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.017] [PMID: 14729312]
[http://dx.doi.org/10.1016/j.molliq.2019.03.007]
[http://dx.doi.org/10.1039/C9NJ05685H]
[http://dx.doi.org/10.1016/j.ejmech.2010.04.002] [PMID: 20435389];
(b) Chen, H.; Zuo, S.; Wang, X.; Tang, X.; Zhao, M.; Lu, Y.; Chen, L.; Liu, J.; Liu, Y.; Liu, D.; Zhang, S.; Li, T. Synthesis of 4β-triazole-podophyllotoxin derivatives by azide–alkyne cycloaddition and biological evaluation as potential antitumor agents. Eur. J. Med. Chem., 2011, 46(9), 4709-4714.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.024] [PMID: 21821321]
(b) Al-Ghorbani, A.; Gouda, M. A.; Baashen, M.; Alharbi, O.; Almalki, F. A.; Ranganatha, L. V.; Polyakova, E.B.; Sabirzyanov, D.R.; Prozorova, N.A.; Foteeva, A.V. Physicochemical Properties and Methods of Analysis of Vildagliptin (Review). Pharm. Chem. J., 2022, 56(1), 110-117.
[http://dx.doi.org/10.1007/s11094.022.02606-1] [PMID: 35370321]
[http://dx.doi.org/10.1074/jbc.M113.499319] [PMID: 24338023]
[http://dx.doi.org/10.1039/C9OB00558G] [PMID: 31173031]
[http://dx.doi.org/10.1039/D0MD00162G] [PMID: 34095841]
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[http://dx.doi.org/10.1039/C8GC01516C]
[http://dx.doi.org/10.1128/CMR.1.1.109] [PMID: 3060240]
[http://dx.doi.org/10.1186/s13045-021-01080-8] [PMID: 33883013]
[http://dx.doi.org/10.1021/acs.jmedchem.9b01070] [PMID: 31725285]
[http://dx.doi.org/10.1002/anie.200900755]
[http://dx.doi.org/10.1016/j.bmcl.2017.12.007] [PMID: 29248298];
(b) Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[http://dx.doi.org/10.1021/ol101568d] [PMID: 20825167]
[http://dx.doi.org/10.1007/s11164-011-0348-1]
[http://dx.doi.org/10.1016/j.ejmech.2011.08.044] [PMID: 21925773]
[http://dx.doi.org/10.1172/JCI13271] [PMID: 11413152]
[http://dx.doi.org/10.1016/j.mrrev.2008.03.002] [PMID: 18485806]
[http://dx.doi.org/10.1182/blood-2011-07-365825] [PMID: 21972293];
(b) Holt, D.; Ma, X.; Kundu, N.; Fulton, A. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol. Immunother., 2011, 60(11), 1577-1586.
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[http://dx.doi.org/10.1016/j.bmcl.2010.04.065] [PMID: 20471829]
[PMID: 30707023]
[http://dx.doi.org/10.1021/acs.jmedchem.9b01269] [PMID: 31855426]
[http://dx.doi.org/10.1021/jo201434w] [PMID: 22077877]
[http://dx.doi.org/10.1146/annurev.biochem.71.102301.093055] [PMID: 12045106]
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729];
(b) Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306];
(c) Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[PMID: 10646850]
[http://dx.doi.org/10.1021/acs.jmedchem.8b01011] [PMID: 30075623]
[http://dx.doi.org/10.1021/acs.jmedchem.7b01012] [PMID: 29547272]
[http://dx.doi.org/10.1021/acs.jmedchem.7b00441] [PMID: 28471656]
[http://dx.doi.org/10.1038/nature22345] [PMID: 28554189];
(b) Jackson, S.M.; Manolaridis, I.; Kowal, J.; Zechner, M.; Taylor, N.M.I.; Bause, M.; Bauer, S.; Bartholomaeus, R.; Bernhardt, G.; Koenig, B.; Buschauer, A.; Stahlberg, H.; Altmann, K.H.; Locher, K.P. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol., 2018, 25(4), 333-340.
[http://dx.doi.org/10.1038/s41594-018-0049-1] [PMID: 29610494]
[http://dx.doi.org/10.1021/acs.jmedchem.9b00963] [PMID: 31465686]
[http://dx.doi.org/10.1002/jps.21851] [PMID: 19544374]
[http://dx.doi.org/10.1021/acs.jmedchem.8b00834] [PMID: 30351934]
[http://dx.doi.org/10.1093/bioinformatics/btx006] [PMID: 28073762]
[http://dx.doi.org/10.2174/1381612013397113] [PMID: 11562309];
(b) Graves, D.E.; Velea, L.M. Intercalating binding of small molecules to nucleic acids. Curr. Org. Chem., 2000, 4, 915-929.
[http://dx.doi.org/10.2174/1385272003375978];
(c) Goftar, M.K.; Kor, N.M.; Kor, Z.M. DNA intercalators and using them as anticancer drugs. Int. J. Adv. Biol. Biomed. Res., 2014, 2(3), 811-822.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.008] [PMID: 17445837]
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574];
(b) Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design, and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 195-209.
[http://dx.doi.org/10.2174/1871520617666170710182405] [PMID: 28699490]
(b) El-Adl, K.; Sakr, H.; Nasser, M.; Alswah, M.; Shoman, F.M.A. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch. Pharm., 2020, 353(9), 2000079.
[http://dx.doi.org/10.1002/ardp.202000079] [PMID: 32515896]
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[http://dx.doi.org/10.1039/D0NJ02990D]
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812];
(b) Wise, J. Covid-19: Remdesivir is recommended for authorisation by European Medicines Agency. BMJ, 2020, 369, m2610.
[http://dx.doi.org/10.1136/bmj.m2610] [PMID: 32601048]
[http://dx.doi.org/10.1039/D0OB02164D] [PMID: 33232421]
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[http://dx.doi.org/10.1002/ejoc.201301731]
[http://dx.doi.org/10.2174/1573407213666170609075351]
(b) Abid, M.; Shamsi, F.; Azam, A. Ruthenium complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Rev. Med. Chem., 2016, 10, 772-786.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[http://dx.doi.org/10.1038/sj.bjc.6602676] [PMID: 15956965];
(b) Ahmad, I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem., 2015, 102, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.010] [PMID: 26301554]
[http://dx.doi.org/10.1007/s11164-017-3078-1];
(b) Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[http://dx.doi.org/10.1007/s00280-017-3414-6] [PMID: 28815320]
(b) Ferrero, M.; Gotor, V. Synthesis and antiviral activities of novel purinyl-and pyrimidinylcarbanucleosides derived from indan. Chem. Rev., 2000, 100, 4319-4348.
[http://dx.doi.org/10.1021/cr000446y] [PMID: 11749350];
(c) Ichikawa, E.; Kato, K. Sugar-modified nucleosides in past 10 years, a review. Curr. Med. Chem., 2001, 8(4), 385-423.
[http://dx.doi.org/10.2174/0929867013373471] [PMID: 11172696];
(d) Pathak, T. Azidonucleosides: synthesis, reactions, and biological properties. Chem. Rev., 2002, 102(5), 1623-1668.
[http://dx.doi.org/10.1021/cr0104532] [PMID: 11996546];
(e) De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605];
(f) De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Microbiol., 2004, 2, 704-720.
[PMID: 15372081];
(g) Galmarini, C.; Popowycz, F.; Joseph, B. Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr. Med. Chem., 2008, 15(11), 1072-1082.
[http://dx.doi.org/10.2174/092986708784221449] [PMID: 18473803];
(h) Hocek, M.; Hocek, M.; Kocovský, P. C-nucleosides: Synthetic strategies and biological applications. Chem. Rev., 2009, 109(12), 6729-6764.
[http://dx.doi.org/10.1021/cr9002165] [PMID: 19761208]
[http://dx.doi.org/10.2174/092986706776055779] [PMID: 16515520];
(b) Chiacchio, U.; Padwa, A.; Romeo, G. A convergent stereoselective synthesis of quinolizidines and indolizidines: Chemoselective coupling of -hydroxymethyl-substituted allylic silanes with imine. Curr. Org. Chem., 2009, 13, 422-447.
[http://dx.doi.org/10.2174/138527209787582268];
(c) Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
[http://dx.doi.org/10.1016/j.tetasy.2005.11.004]
[http://dx.doi.org/10.1016/j.bmc.2012.03.047] [PMID: 22549138]
[http://dx.doi.org/10.1021/jm00164a016] [PMID: 1967649];
(b) Wang, P.; Hollecker, L.; Pankiewicz, K.W.; Patterson, S.E.; Whitaker, T.; McBrayer, T.R.; Tharnish, P.M.; Sidwell, R.W.; Stuyver, L.J.; Otto, M.J.; Schinazi, R.F.; Watanabe, K.A. Synthesis of N3, 5‘-Cyclo-4-(β- D -ribofuranosyl)- v ic -triazolo[4,5- b]pyridin-5-one, a novel compound with anti-hepatitis C virus activity. J. Med. Chem., 2004, 47(24), 6100-6103.
[http://dx.doi.org/10.1021/jm0401210] [PMID: 15537363]
[http://dx.doi.org/10.1177/095632020501600604] [PMID: 16331842]
[http://dx.doi.org/10.1002/ejoc.201402106]
[http://dx.doi.org/10.1002/anie.200905322] [PMID: 19921729];
(b) Spiteri, C.; Moses, J.E. Kupferkatalysierte Azid-Alkin-Cycloadditionen: regioselektive Synthese von 1,4,5-trisubstituierten 1,2,3-Triazolen. Angew. Chem., 2010, 122(1), 33-36.
[http://dx.doi.org/10.1002/ange.200905322]
[http://dx.doi.org/10.1016/j.neures.2011.12.008] [PMID: 22222252];
(b) Campisi, A.; Caccamo, D.; Li Volti, G.; Currò, M.; Parisi, G.; Avola, R.; Vanella, A.; Ientile, R. Glutamate-evoked redox state alterations are involved in tissue transglutaminase upregulation in primary astrocyte cultures. FEBS Lett., 2004, 578(1-2), 80-84.
[http://dx.doi.org/10.1016/j.febslet.2004.10.074] [PMID: 15581620]
[http://dx.doi.org/10.1186/1471-2407-10-602] [PMID: 21050441]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990301)38:5<643:AID-ANIE643>3.0.CO;2-G] [PMID: 29711552];
(b) Zhao, P.P.; Zhou, X.F.; Dai, J.J.; Xu, H.J. Catalyst-free reductive amination of aromatic aldehydes with ammonium formate and Hantzsch ester. Org. Biomol. Chem., 2014, 12(45), 9092-9096.
[http://dx.doi.org/10.1039/C4OB01590H] [PMID: 25295463]
[http://dx.doi.org/10.1016/j.bmcl.2018.09.011] [PMID: 30219525]
[http://dx.doi.org/10.3897/folmed.63.e52891] [PMID: 33932011]
[http://dx.doi.org/10.1002/ejoc.201901291]
[http://dx.doi.org/10.1039/C8OB00686E] [PMID: 29693098]
[http://dx.doi.org/10.1080/10406638.2021.2019804]
[http://dx.doi.org/10.1007/s10096-007-0375-4] [PMID: 17701431]
[http://dx.doi.org/10.1039/C5MD00224A]
[http://dx.doi.org/10.1002/jhet.4020]
[http://dx.doi.org/10.1007/s00044-016-1672-1]
[http://dx.doi.org/10.1021/jm00209a014] [PMID: 102794]
[http://dx.doi.org/10.1016/j.bmc.2019.07.005 ] [PMID: 31300317]
[http://dx.doi.org/10.1080/10406638.2021.2021256]
[http://dx.doi.org/10.1021/bi001810q] [PMID: 11329288]
[http://dx.doi.org/10.1038/s41467-018-03441-3] [PMID: 29549331]
[http://dx.doi.org/10.1021/acs.jmedchem.0c00512] [PMID: 32496056]
[http://dx.doi.org/10.1039/D0SC04187D ] [PMID: 34094410]
[http://dx.doi.org/10.1039/C9TC06054E]
[http://dx.doi.org/10.1021/jacs.0c03748] [PMID: 32551567]
[http://dx.doi.org/10.1016/j.tet.2020.131854];
(b) Rastogi, S.K.; Zhao, Z.; Barrett, S.L.; Shelton, S.D.; Zafferani, M.; Anderson, H.E.; Blumenthal, M.O.; Jones, L.R.; Wang, L.; Li, X.; Streu, C.N.; Du, L.; Brittain, W.J. Photoresponsive azo-combretastatin A-4 analogues. Eur. J. Med. Chem., 2018, 143, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.012] [PMID: 29172077]
[http://dx.doi.org/10.1515/pac-2014-0903]
[http://dx.doi.org/10.1021/jacs.1c08704] [PMID: 34476949]
[http://dx.doi.org/10.1515/nanoph-2018-0040]
[http://dx.doi.org/10.1002/chem.201805814] [PMID: 30614091]
[http://dx.doi.org/10.1038/s41570-019-0074-6]
[http://dx.doi.org/10.1021/acs.orglett.1c01230] [PMID: 34019429]
[http://dx.doi.org/10.1016/j.trechm.2020.03.007];
(b) Kaur, J.; Saxena, M.; Rishi, N. An overview of recent advances in biomedical applications of Click chemistry. Bioconjug. Chem., 2021, 32(8), 1455-1471.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00247] [PMID: 34319077]
[http://dx.doi.org/10.1021/acs.joc.1c02775] [PMID: 35148087]
[http://dx.doi.org/10.1002/marc.200800118]
[http://dx.doi.org/10.1021/cr60051a002];
(b) Breton, G.W.; Kropp, P.J.; Banert, K. Hydrazoic acid in encyclopedia of reagents for organic synthesis; Wiley, 2013, pp. 1-8.