Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition

Author(s): Flor M. Escandón-Mancilla, Nelly González-Rivas, Murali V. Basavanag Unnamatla, Marco A. García-Eleno, David Corona-Becerril, Bernardo A. Frontana-Uribe and Erick Cuevas-Yañez*

Volume 21, Issue 4, 2024

Published on: 28 December, 2022

Page: [359 - 379] Pages: 21

DOI: 10.2174/1570179420666220929152449

Price: $65

Abstract

Ketemines represent an interesting class of organic intermediates that has undergone a regrowth as a consequence of recent extensions of copper catalyzed azide alkyne cycloaddition (Cu- AAC) to other synthetic fields. This review summarizes the most recent generation methods of ketimines from CuAAC reaction, highlighting chemical properties focused on the synthesis of cyclic compounds, among others, affording a general outlook towards the development of new biologically active compounds.

Keywords: Ketenimine, alkyne, azide, copper catalyzed azide alkyne cycloaddition.

Graphical Abstract

[1]
Michael, J.P.; De Koning, C.B. Ketenimines and their P, As, Sb, and Bi Analogues; Elsevier: Amsterdam, Netherlands, 1995, pp. 555-610.
[http://dx.doi.org/10.1016/B0-08-044705-8/00281-8]
[2]
Jin, X.; Willeke, M.; Lucchesi, R.; Daniliuc, C.G.; Fröhlich, R.; Wibbeling, B.; Uhl, W.; Würthwein, E.U. Hydroalumination of ketenimines and subsequent reactions with heterocumulenes: Synthesis of unsaturated amide derivatives and 1,3-diimines. J. Org. Chem., 2015, 80(12), 6062-6075.
[http://dx.doi.org/10.1021/acs.joc.5b00466] [PMID: 26031425]
[3]
Alajarin, M.; Marin, L.M.; Vidal, A. Recent highlights in ketenimine chemistry. Eur. J. Org. Chem., 2012, 2012(29), 5637-5653.
[http://dx.doi.org/10.1002/ejoc.201200383]
[4]
Wang, Y.; Lu, P. Strategies for heterocyclic synthesis via cascade reactions based on ketenimines. Synlett, 2010, 2010(2), 165-173.
[http://dx.doi.org/10.1055/s-0029-1218558]
[5]
Lu, P.; Wang, Y. The thriving chemistry of ketenimines. Chem. Soc. Rev., 2012, 41(17), 5687-5705.
[http://dx.doi.org/10.1039/c2cs35159e] [PMID: 22833018]
[6]
Sung, K. Substituent effects on stability of ketenimines. J. Chem. Soc., Perkin Trans. 2, 1999, (6), 1169-1174.
[http://dx.doi.org/10.1039/a900288j]
[7]
Yoo, E.J.; Chang, S. Copper-catalyzed multicomponent reactions: Securing a catalytic route to ketenimine intermediates and their reactivities. Curr. Org. Synth., 2009, 13(18), 1766-1776.https://www.eurekaselect.com/article/15269
[8]
Kiran, K.Y.; Ranjith, K.G.; Sridhar, R.M. Cu-catalyzed conversion of propargyl acetates to E-α,β-unsaturated amides via ketenimine formation with sulfonyl azides. J. Org. Chem., 2014, 79(2), 823-828.
[http://dx.doi.org/10.1021/jo402570t] [PMID: 24344764]
[9]
Nallagangula, M.; Namitharan, K. Copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions: Simultaneous generation and trapping of copper-triazoles and ketenimines for the synthesis of triazolopyrimidines. Org. Lett., 2017, 19(13), 3536-3539.
[http://dx.doi.org/10.1021/acs.orglett.7b01500] [PMID: 28609631]
[10]
Anbarasan, P.; Yadagiri, D.; Rajasekar, S. Recent advances in transition-metal-catalyzed denitrogenative transformations of 1,2,3-triazoles and related compounds. Synthesis, 2014, 46(22), 3004-3023.
[http://dx.doi.org/10.1055/s-0034-1379303]
[11]
Yoo, E.J.; Ahlquist, M.; Kim, S.H.; Bae, I.; Fokin, V.V.; Sharpless, K.B.; Chang, S. Copper-catalyzed synthesis of N-sulfonyl-1,2,3-triazoles: Controlling selectivity. Angew. Chem. Int. Ed., 2007, 46(10), 1730-1733.
[http://dx.doi.org/10.1002/anie.200604241] [PMID: 17397087]
[12]
Yoo, E.J.; Ahlquist, M.; Bae, I.; Sharpless, K.B.; Fokin, V.V.; Chang, S. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: Dichotomy via a common pathway. J. Org. Chem., 2008, 73(14), 5520-5528.
[http://dx.doi.org/10.1021/jo800733p] [PMID: 18557650]
[13]
Wu, P.; Fokin, V.V. Catalytic azide–alkyne cycloaddition: Reactivity and applications. Aldrichim Acta, 2007, 40(1), 7-17.
[14]
Dodd, R.H.; Cariou, K. Ketenimines generated from ynamides: Versatile building blocks for nitrogen-containing scaffolds. Chemistry, 2018, 24(10), 2297-2304.
[http://dx.doi.org/10.1002/chem.201704689] [PMID: 29105172]
[15]
Arora, I.; Shaw, A.K. Ketenimine mediated synthesis of lactam iminosugars: Development of one-pot process via tandem hydrative amidation of amino-alkynes and intramolecular transamidation. Tetrahedron, 2016, 72(35), 5479-5487.
[http://dx.doi.org/10.1016/j.tet.2016.07.036]
[16]
Massaro, N.P.; Chatterji, A.; Sharma, I. Three-component approach to pyridine-stabilized ketenimines for the synthesis of diverse heterocycles. J. Org. Chem., 2019, 84(21), 13676-13685.
[http://dx.doi.org/10.1021/acs.joc.9b01906] [PMID: 31550889]
[17]
Shen, M.H.; Xu, K.; Sun, C.H.; Xu, H-D. Stereoselective construction of bridged trans -aza-Bicyclo[7/6,3/2,1]alkenyl imines through ring expansion aza-cope rearrangement. Org. Lett., 2015, 17(22), 5598-5601.
[http://dx.doi.org/10.1021/acs.orglett.5b02798] [PMID: 26529179]
[18]
Mandal, S.; Gauniyal, H.M.; Pramanik, K.; Mukhopadhyay, B. Glycosylated N-sulfonylamidines: Highly efficient copper-catalyzed multicomponent reaction with sugar alkynes, sulfonyl azides, and amines. J. Org. Chem., 2007, 72(25), 9753-9756.
[http://dx.doi.org/10.1021/jo701565m] [PMID: 17985923]
[19]
Zhao, Y.; Zhou, Z.; Chen, M.; Yang, W. Copper-catalyzed one-pot synthesis of N-sulfonyl amidines from sulfonyl hydrazine, terminal alkynes and sulfonyl azides. Molecules, 2021, 26(12), 3700.
[http://dx.doi.org/10.3390/molecules26123700] [PMID: 34204392]
[20]
Kim, S.H.; Park, S.H.; Choi, J.H.; Chang, S. Sulfonyl and phosphoryl azides: Going further beyond the click realm of alkyl and aryl azides. Chem. Asian J., 2011, 6(10), 2618-2634.
[http://dx.doi.org/10.1002/asia.201100340] [PMID: 21748856]
[21]
Bae, I.; Han, H.; Chang, S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J. Am. Chem. Soc., 2005, 127(7), 2038-2039.
[http://dx.doi.org/10.1021/ja0432968] [PMID: 15713069]
[22]
Yavari, I.; Ahmadian, S.; Ghazanfarpur, D.M.; Solgi, Y. Formation of N-sulfonylamidines by copper-catalyzed coupling of sulfonyl azides, terminal alkynes, and trialkylamines. Tetrahedron Lett., 2011, 52(6), 668-670.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.135]
[23]
Chauhan, D.P.; Varma, S.J.; Gudem, M.; Panigrahi, N.; Singh, K.; Hazra, A.; Talukdar, P. Intramolecular cascade rearrangements of enynamine derived ketenimines: Access to acyclic and cyclic amidines. Org. Biomol. Chem., 2017, 15(22), 4822-4830.
[http://dx.doi.org/10.1039/C7OB00499K] [PMID: 28530734]
[24]
Zhang, D.; Nakamura, I.; Terada, M. Copper-catalyzed cascade transformation of O-propargylic oximes with sulfonyl azides to α,β-unsaturated N-acylamidines. Org. Lett., 2014, 16(19), 5184-5187.
[http://dx.doi.org/10.1021/ol502541w] [PMID: 25226502]
[25]
Kim, J.; Lee, S.Y.; Lee, J.; Do, Y.; Chang, S. Synthetic utility of ammonium salts in a Cu-catalyzed three-component reaction as a facile coupling partner. J. Org. Chem., 2008, 73(23), 9454-9457.
[http://dx.doi.org/10.1021/jo802014g] [PMID: 18956843]
[26]
Yang, W.; Huang, D.; Zeng, X.; Luo, D.; Wang, X.; Hu, Y. N -Sulfonyl acetylketenimine as a highly reactive intermediate for the synthesis of N -sulfonyl amidines. Chem. Commun., 2018, 54(59), 8222-8225.
[http://dx.doi.org/10.1039/C8CC04699A] [PMID: 29987306]
[27]
Lee, I.H.; Kim, H.; Choi, T.L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J. Am. Chem. Soc., 2013, 135(10), 3760-3763.
[http://dx.doi.org/10.1021/ja312592e] [PMID: 23452168]
[28]
Wu, J.Y.; Liao, W.J.; Lin, X.Y.; Liang, C.F. A facile access to N -sulfonylthioimidates and their use for the transformation to 3,4-dihydroquinazolines. Org. Biomol. Chem., 2020, 18(43), 8881-8885.
[http://dx.doi.org/10.1039/D0OB01963A] [PMID: 33107883]
[29]
Wang, Z.; Ding, X.; Li, S.; Weng, Z. Copper-catalyzed three-component reaction for the synthesis of fluoroalkoxyl imidates. Tetrahedron, 2018, 74(46), 6631-6634.
[http://dx.doi.org/10.1016/j.tet.2018.09.056]
[30]
Ghorai, S.; Lee, D. Selectivity for alkynyl or allenyl imidamides and imidates in copper-catalyzed reactions of terminal 1,3-diynes and azides. Org. Lett., 2021, 23(3), 697-701.
[http://dx.doi.org/10.1021/acs.orglett.0c03861] [PMID: 33443441]
[31]
Chauhan, D.P.; Varma, S.J.; Vijeta, A.; Banerjee, P.; Talukdar, P. A 1,3-amino group migration route to form acrylamidines. Chem. Commun. (Camb.),, 2014, 50(3), 323-325.
[http://dx.doi.org/10.1039/C3CC47182A] [PMID: 24233059]
[32]
Husmann, R.; Na, Y.S.; Bolm, C.; Chang, S. Copper-catalyzed one-pot synthesis of α-functionalized imidates. Chem. Commun. , 2010, 46(30), 5494-5496.
[http://dx.doi.org/10.1039/c0cc00941e] [PMID: 20577668]
[33]
Song, W.; Lu, W.; Wang, J.; Lu, P.; Wang, Y. A facile route to γ-nitro imidates via four-component reaction of alkynes with sulfonyl azides, alcohols, and nitroolefins. J. Org. Chem., 2010, 75(10), 3481-3483.
[http://dx.doi.org/10.1021/jo100354h] [PMID: 20373817]
[34]
Yoo, E.J.; Park, S.H.; Lee, S.H.; Chang, S. A new entry of copper-catalyzed four-component reaction: Facile access to α-aryl β-hydroxy imidates. Org. Lett., 2009, 11(5), 1155-1158.
[http://dx.doi.org/10.1021/ol900023t] [PMID: 19209900]
[35]
Song, W.; Lei, M.; Shen, Y.; Cai, S.; Lu, W.; Lu, P.; Wang, Y. Copper-catalyzed four-component reaction of Baylis–Hillman adducts with alkynes, sulfonyl azides and alcohols. Adv. Synth. Catal., 2010, 352(14-15), 2432-2436.
[http://dx.doi.org/10.1002/adsc.201000400]
[36]
Kim, H.; Choi, T.L. Preparation of a library of poly(N-sulfonylimidates) by Cu-catalyzed multicomponent polymerization. ACS Macro Lett., 2014, 3(8), 791-794.
[http://dx.doi.org/10.1021/mz5003239] [PMID: 35590701]
[37]
Cho, S.H.; Yoo, E.J.; Bae, I.; Chang, S. Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. J. Am. Chem. Soc., 2005, 127(46), 16046-16047.
[http://dx.doi.org/10.1021/ja056399e] [PMID: 16287290]
[38]
Cho, S.H.; Hwang, S.J.; Chang, S. Copper-catalyzed three-component reaction of 1-alkynes, sulfonyl azides, and water: N-(4-acetamidophenylsulfonyl)-2-phenylacetamide. Org. Synth., 2008, 85, 131-137.
[http://dx.doi.org/10.15227/orgsyn.085.0131]
[39]
Cassidy, M.P.; Raushel, J.; Fokin, V.V. Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. Angew. Chem. Int. Ed., 2006, 45(19), 3154-3157.
[http://dx.doi.org/10.1002/anie.200503805] [PMID: 16570330]
[40]
Zhou, F.; Liu, X.; Zhang, N.; Liang, Y.; Zhang, R.; Xin, X.; Dong, D. Copper-catalyzed three-component reaction: Solvent-controlled regioselective synthesis of 4-amino- and 6-amino-2-iminopyridines. Org. Lett., 2013, 15(22), 5786-5789.
[http://dx.doi.org/10.1021/ol4028368] [PMID: 24171428]
[41]
Zhao, Y.; Zhou, Z.; Liu, L.; Chen, M.; Yang, W.; Chen, Q.; Gardiner, M.G.; Banwell, M.G. The Copper-catalyzed reaction of 2-(1-hydroxyprop-2-yn-1-yl)phenols with sulfonyl azides leading to C3-unsubstituted N-sulfonyl-2-iminocoumarins. J. Org. Chem., 2021, 86(13), 9155-9162.
[http://dx.doi.org/10.1021/acs.joc.1c00331] [PMID: 34137260]
[42]
Ramanathan, D.; Pitchumani, K. Copper(I)-catalyzed one-pot synthesis of highly functionalized pyrrolidines from sulfonyl azides, alkynes, and dimethyl 2-(phenylamino)maleate. Eur. J. Org. Chem., 2015, 2015(3), 463-467.
[http://dx.doi.org/10.1002/ejoc.201403285]
[43]
Cui, S.L.; Wang, J.; Wang, Y.G. Copper-catalyzed multicomponent reaction: Facile access to functionalized 5-arylidene-2-imino-3-pyrrolines. Org. Lett., 2007, 9(24), 5023-5025.
[http://dx.doi.org/10.1021/ol702241e] [PMID: 17979278]
[44]
Chen, Z.; Zheng, D.; Wu, J. A facile route to polysubstituted indoles via three-component reaction of 2-ethynylaniline, sulfonyl azide, and nitroolefin. Org. Lett., 2011, 13(5), 848-851.
[http://dx.doi.org/10.1021/ol102775s] [PMID: 21299243]
[45]
Sedaghat, A.; Nematpour, M.; Bayanati, M.; Tabatabai, S.A. Synthesis of functionalized quinoline derivatives via intramolecular C–H activation reactions of N-sulfonylamidines and isocyanides. Monatsh. Chem., 2020, 151(10), 1591-1596.
[http://dx.doi.org/10.1007/s00706-020-02684-5]
[46]
Yavari, I.; Nematpour, M. Tandem synthesis of highly functionalized pyrazole derivatives from terminal alkynes, sulfonyl azides, diethyl azadicarboxylate, and sodium arylsulfinates. Mol. Divers., 2012, 16(4), 651-657.
[http://dx.doi.org/10.1007/s11030-012-9393-y] [PMID: 22983883]
[47]
Chen, J.L.; Namirembe, S.; Lauchert, L.T.; Tsougranis, G.H.; Isaacs, A.K. Cu(I)-catalyzed synthesis of N- tosyl-4-iminoquinolizines. Tetrahedron Lett., 2015, 56(27), 4105-4108.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.030]
[48]
Kumar, G.R.; Kumar, Y.K.; Kant, R.; Reddy, M.S. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols. Beilstein J. Org. Chem., 2014, 10, 1255-1260.
[http://dx.doi.org/10.3762/bjoc.10.125] [PMID: 24991276]
[49]
Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. Copper-catalyzed three-component synthesis of 3-aminopyrazoles and 4-iminopyrimidines via β-alkynyl-N-sulfonyl ketenimine intermediates. Org. Lett., 2014, 16(18), 4814-4817.
[http://dx.doi.org/10.1021/ol502302w] [PMID: 25167465]
[50]
Li, S.; Zou, S.; Wu, J. An efficient approach for the construction of benzazepine and benzoxepine derivatives. Chem. Asian J., 2012, 7(12), 2882-2887.
[http://dx.doi.org/10.1002/asia.201200636] [PMID: 22997181]
[51]
Cheng, D.; Ling, F.; Zheng, C.; Ma, C. Tuning of copper-catalyzed multicomponent reactions toward 3-functionalized oxindoles. Org. Lett., 2016, 18(10), 2435-2438.
[http://dx.doi.org/10.1021/acs.orglett.6b00964] [PMID: 27149101]
[52]
Veeranna, K.D.; Das, K.K.; Baskaran, S. One-pot synthesis of cyclopropane-fused cyclic amidines: An oxidative carbanion cyclization. Angew. Chem. Int. Ed., 2017, 56(51), 16197-16201.
[http://dx.doi.org/10.1002/anie.201708138] [PMID: 29083519]
[53]
Alajarín, M.; Vidal, A.; Ortín, M.M. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles. Org. Biomol. Chem., 2003, 1(23), 4282-4292.
[http://dx.doi.org/10.1039/B310593H] [PMID: 14685332]
[54]
Cheng, Y.; Ma, Y.G.; Wang, X.R.; Mo, J.M. An unprecedented chemospecific and stereoselective tandem nucleophilic addition/cycloaddition reaction of nucleophilic carbenes with ketenimines. J. Org. Chem., 2009, 74(2), 850-855.
[http://dx.doi.org/10.1021/jo802289s] [PMID: 19032113]
[55]
Alajarín, M.; Vidal, A.; Orenes, R.A. New applications of the imine-ketenimine intramolecular [2+2] cycloaddition reaction: Highly stereocontrolled synthesis of azeto[1,2-a]pyrimidines. Eur. J. Org. Chem., 2002, 2002(24), 4222-4227.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:24<4222:AID-EJOC4222>3.0.CO;2-M]
[56]
Whiting, M.; Fokin, V.V. Copper-catalyzed reaction cascade: Direct conversion of alkynes into N-sulfonylazetidin-2-imines. Angew. Chem. Int. Ed., 2006, 45(19), 3157-3161.
[http://dx.doi.org/10.1002/anie.200503936] [PMID: 16570331]
[57]
Periyaraja, S.; Shanmugam, P.; Mandal, A.B. A Copper-catalyzed one-pot, three-component diastereoselective synthesis of 3-spiroazetidinimine-2-oxindoles and their synthetic transformation into fluorescent conjugated indolones. Eur. J. Org. Chem., 2014, 2014(5), 954-965.
[http://dx.doi.org/10.1002/ejoc.201301244]
[58]
Guo, S.; Dong, P.; Chen, Y.; Feng, X.; Liu, X. Chiral guanidine/copper catalyzed asymmetric azide-alkyne cycloaddition/[2+2] cascade reaction. Angew. Chem. Int. Ed., 2018, 57(51), 16852-16856.
[http://dx.doi.org/10.1002/anie.201810679] [PMID: 30354011]
[59]
Xing, Y.; Zhao, H.; Shang, Q.; Wang, J.; Lu, P.; Wang, Y. Parallel copper catalysis: Diastereoselective synthesis of polyfunctionalized azetidin-2-imines. Org. Lett., 2013, 15(11), 2668-2671.
[http://dx.doi.org/10.1021/ol4010323] [PMID: 23668246]
[60]
Bansode, P.; Jadhav, J.; Kurane, R.; Choudhari, P.; Bhatia, M.; Khanapure, S.; Salunkhe, R.; Rashinkar, G. Potentially antibreast cancer enamidines via azide–alkyne–amine coupling and their molecular docking studies. RSC Adv, 2016, 6(93), 90597-90606.
[http://dx.doi.org/10.1039/C6RA20583F]
[61]
Li, B.S.; Yang, B.M.; Wang, S.H.; Zhang, Y.Q.; Cao, X.P.; Tu, Y.Q. Copper(i)-catalyzed intramolecular [2 + 2] cycloaddition of 1,6-enyne-derived ketenimine: An efficient construction of strained and bridged 7-substituted-3-heterobicyclo[3.1.1]heptan-6-one. Chem. Sci., 2012, 3(6), 1975-1979.
[http://dx.doi.org/10.1039/c2sc20109g]
[62]
Alajarín, M.; Bonillo, B.; Ortín, M.M.; Orenes, R.A.; Vidal, A. Unprecedented intramolecular [3 + 2] cycloadditions of azido-ketenimines and azido-carbodiimides. Synthesis of indolo[1,2-a]quinazolines and tetrazolo[5,1-b]quinazolines. Org. Biomol. Chem., 2011, 9(19), 6741-6749.
[http://dx.doi.org/10.1039/c1ob05745f] [PMID: 21837338]
[63]
Wang, X.D.; Zhu, L.H.; Liu, P.; Wang, X.Y.; Yuan, H.Y.; Zhao, Y.L. Copper-catalyzed cascade cyclization reactions of diazo compounds with tert-butyl nitrite and alkynes: One-pot synthesis of isoxazoles. J. Org. Chem., 2019, 84(24), 16214-16221.
[http://dx.doi.org/10.1021/acs.joc.9b02760] [PMID: 31779304]
[64]
Li, S.; Luo, Y.; Wu, J. Three-component reaction of N′-(2-alkynylbenzylidene)hydrazide, alkyne, with sulfonyl azide via a multicatalytic process: A novel and concise approach to 2-amino-H-pyrazolo[5,1-a]isoquinolines. Org. Lett., 2011, 13(16), 4312-4315.
[http://dx.doi.org/10.1021/ol201653j] [PMID: 21790168]
[65]
Kim, S.; Kim, J.E.; Lee, J.; Lee, P.H. N-imidazolylation of sulfoximines from N-cyano sulfoximines, 1-alkynes, and N-sulfonyl azides. Adv. Synth. Catal., 2015, 357(16-17), 3707-3717.
[http://dx.doi.org/10.1002/adsc.201500636]
[66]
Namitharan, K.; Pitchumani, K. Copper(I)-catalyzed three component reaction of sulfonyl azide, alkyne, and nitrone cycloaddition/rearrangement cascades: A novel one-step synthesis of imidazolidin-4-ones. Org. Lett., 2011, 13(21), 5728-5731.
[http://dx.doi.org/10.1021/ol202164x] [PMID: 21992587]
[67]
Murugavel, G.; Punniyamurthy, T. Novel copper-catalyzed multicomponent cascade synthesis of iminocoumarin aryl methyl ethers. Org. Lett., 2013, 15(15), 3828-3831.
[http://dx.doi.org/10.1021/ol4014359] [PMID: 23875790]
[68]
Liao, P.; Bi, X.; Yi, X.; Barry, B-D. Synthesis of N-sulfonylazetidin-2-imines via the Copper(I) oxide catalyzed multicomponent reaction of alkynes, sulfonyl azides and diimines under solvent-free conditions. Synthesis, 2012, 44(9), 1323-1328.
[http://dx.doi.org/10.1055/s-0031-1289740]
[69]
Xu, X.; Cheng, D.; Li, J.; Guo, H.; Yan, J. Copper-catalyzed highly efficient multicomponent reactions: Synthesis of 2-(sulfonylimino)-4-(alkylimino)azetidine derivatives. Org. Lett., 2007, 9(8), 1585-1587.
[http://dx.doi.org/10.1021/ol070485x] [PMID: 17381100]
[70]
Shang, Y.; Liao, K.; He, X.; Hu, J. One-pot synthesis of disulfide-linked N-sulfonylazetidin-2-imines via a copper-catalyzed multicomponent cascade reaction. Tetrahedron, 2013, 69(47), 10134-10138.
[http://dx.doi.org/10.1016/j.tet.2013.09.033]
[71]
Namitharan, K.; Pitchumani, K. Cascade synthesis of bis-N-sulfonylcyclobutenes via Cu(i)/Lewis acid-catalyzed (3 + 2)/(2 + 2) cycloadditions: Observation of aggregation-induced emission enhancement from restricted C N photoisomerization. Org. Biomol. Chem., 2012, 10(15), 2937-2941.
[http://dx.doi.org/10.1039/c2ob25226k] [PMID: 22402824]
[72]
Ding, Z.C.; An, X.M.; Zeng, J.H.; Tang, Z.N.; Zhan, Z.P. Copper(I)-catalyzed synthesis of 4,5-dihydropyrazolo[1,5-a]pyrimidines via cascade transformation of N-propargylic sulfonylhydrazones with sulfonyl azides. Adv. Synth. Catal., 2017, 359(19), 3319-3324.
[http://dx.doi.org/10.1002/adsc.201700635]
[73]
Chen, Z.; Han, C.; Fan, C.; Liu, G.; Pu, S. Copper-catalyzed Diversity-Oriented Synthesis (DOS) of 4-amino-2H-chromen-2-imines: Application of kemp elimination toward O-heterocycles. ACS Omega, 2018, 3(7), 8160-8168.
[http://dx.doi.org/10.1021/acsomega.8b01179] [PMID: 31458953]
[74]
Liu, T.L.; Li, Q.H.; Wei, L.; Xiong, Y.; Wang, C.J. Copper(I)-catalyzed one-pot sequential [3+2]/[8+2] annulations for (Z)-selective construction of heterocyclic diazabicyclo[5.3.0]decatrienes. Adv. Synth. Catal., 2017, 359(11), 1854-1859.
[http://dx.doi.org/10.1002/adsc.201700044]
[75]
Sun, J.; Cheng, X.; Mansaray, J.K.; Fei, W.; Wan, J.; Yao, W. A copper-catalyzed three component reaction of aryl acetylene, sulfonyl azide and enaminone to form iminolactone via 6π electrocyclization. Chem. Commun., 2018, 54(99), 13953-13956.
[http://dx.doi.org/10.1039/C8CC06868B] [PMID: 30474656]
[76]
Li, Y.; Hong, D.; Zhu, Y.; Lu, P.; Wang, Y. One-pot synthesis of 5-sulfonamidopyrazole from terminal alkynes, sulfonyl azides and hydrozones. Tetrahedron, 2011, 67(42), 8086-8091.
[http://dx.doi.org/10.1016/j.tet.2011.08.067]
[77]
Sun, L.; Zhu, Y.; Lu, P.; Wang, Y. Cu-catalyzed 1,2-dihydroisoquinolines synthesis from o-ethynyl benzacetals and sulfonyl azides. Org. Lett., 2013, 15(22), 5894-5897.
[http://dx.doi.org/10.1021/ol402996x] [PMID: 24191743]
[78]
Nagaraj, M.; Boominathan, M.; Perumal, D.; Muthusubramanian, S.; Bhuvanesh, N. Copper(I)-catalyzed cascade sulfonimidate to sulfonamide rearrangement: Synthesis of imidazo[1,2-a][1,4]diazepin-7(6H)-one. J. Org. Chem., 2012, 77(14), 6319-6326.
[http://dx.doi.org/10.1021/jo300855f] [PMID: 22721359]
[79]
Cheng, G.; Cui, X. Efficient approach to 4-sulfonamidoquinolines via copper(I)-catalyzed cascade reaction of sulfonyl azides with alkynyl imines. Org. Lett., 2013, 15(7), 1480-1483.
[http://dx.doi.org/10.1021/ol400219n] [PMID: 23521106]
[80]
Yang, W.; Huang, D.; Zeng, X.; Zhang, J.; Wang, X.; Hu, Y. N-Sulfonyl acetylketenimine as a highly reactive intermediate for synthesis of N-Aroylsulfonamides. Tetrahedron, 2019, 75(3), 381-386.
[http://dx.doi.org/10.1016/j.tet.2018.12.005]
[81]
Su, R.; Yang, X.H.; Hu, M.; Wang, Q.A.; Li, J.H. Annulation Cascades of N -Allyl- N -((2-bromoaryl)ethynyl)amides Involving C–H Functionalization. Org. Lett., 2019, 21(8), 2786-2789.
[http://dx.doi.org/10.1021/acs.orglett.9b00740] [PMID: 30939026]
[82]
Wang, C.G.; Wu, R.; Li, T.P.; Jia, T.; Li, Y.; Fang, D.; Chen, X.; Gao, Y.; Ni, H.L.; Hu, P.; Wang, B.Q.; Cao, P. Copper(I)-catalyzed ketenimine formation/aza-claisen rearrangement cascade for stereoselective synthesis of α-allylic amidines. Org. Lett., 2020, 22(8), 3234-3238.
[http://dx.doi.org/10.1021/acs.orglett.0c01012] [PMID: 32233500]
[83]
Xu, H.D.; Jia, Z.H.; Xu, K.; Han, M.; Jiang, S.N.; Cao, J.; Wang, J.C.; Shen, M.H. Copper-catalyzed cyclization/aza-claisen rearrangement cascade initiated by ketenimine formation: An efficient stereocontrolled synthesis of α-allyl cyclic amidines. Angew. Chem. Int. Ed., 2014, 53(35), 9284-9288.
[http://dx.doi.org/10.1002/anie.201405331] [PMID: 24989824]
[84]
Jiang, Y.; Sun, R.; Wang, Q.; Tang, X.Y.; Shi, M. Cyclization of sulfide, ether or tertiary amine-tethered N-sulfonyl-1,2,3-triazoles: A facile synthetic protocol for 3-substituted isoquinolines or dihydroisoquinolines. Chem. Commun., 2015, 51(95), 16968-16971.
[http://dx.doi.org/10.1039/C5CC07511D] [PMID: 26442840]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy