Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Pyrene Appendant Triazole-based Chemosensors for Sensing Applications

Author(s): Tarkeshwar Maddeshiya, Manoj K. Jaiswal, Arpna Tamrakar, Gargi Mishra, Chhama Awasthi and Mrituanjay D. Pandey*

Volume 21, Issue 4, 2024

Published on: 04 August, 2023

Page: [421 - 435] Pages: 15

DOI: 10.2174/1570179420666230621124119

Price: $65

Abstract

Over the last two decades, the design and development of fluorescent chemosensors for the targeted detection of Heavy Transition-metal (HTM) ions, anions, and biological analytes, have drawn much interest. Since the introduction of click chemistry in 2001, triazole moieties have become an increasingly prominent theme in chemosensors. Triazoles generated via click reactions are crucial for sensing various ions and biological analytes. Recently, the number of studies in the field of pyrene appendant triazole moieties has risen dramatically, with more sophisticated and reliable triazole-containing chemosensors for various analytes of interest described. This tutorial review provides a general overview of pyrene appendant-triazole-based chemosensors that can detect a variety of metal cations, anions, and neutral analytes by using modular click-derived triazoles.

Graphical Abstract

[1]
Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev., 2014, 114(8)
[http://dx.doi.org/10.1021/cr400546e] [PMID: 24588137]
[2]
Que, E.L.; Chang, C.J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 2010, 39(1), 51-60.
[http://dx.doi.org/10.1039/B914348N] [PMID: 20023836]
[3]
Chhatwal, M.; Kumar, A.; Singh, V.; Gupta, R.D.; Awasthi, S.K. Addressing of multiple-metal ions on a single platform. Coord. Chem. Rev., 2015, 292, 30-55.
[http://dx.doi.org/10.1016/j.ccr.2015.02.009]
[4]
Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev., 2012, 41(8), 3210-3244.
[http://dx.doi.org/10.1039/C1CS15245A] [PMID: 22184584]
[5]
Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev., 2000, 205(1), 3-40.
[http://dx.doi.org/10.1016/S0010-8545(00)00246-0]
[6]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:112004:AID-ANIE20043.0.CO;2-5] [PMID: 11433435]
[7]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[8]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[9]
Farrer, N.J.; Griffith, D.M. Exploiting azide–alkyne click chemistry in the synthesis, tracking and targeting of platinum anticancer complexes. Curr. Opin. Chem. Biol., 2020, 55, 59-68.
[http://dx.doi.org/10.1016/j.cbpa.2019.12.001] [PMID: 31945705]
[10]
Xiong, H.; Seela, F.; Cross-linked, D.N.A. Cross-linked DNA: Site-selective “click” ligation in duplexes with bis-azides and stability changes caused by internal cross-links. Bioconjug. Chem., 2012, 23(6), 1230-1243.
[http://dx.doi.org/10.1021/bc300074k] [PMID: 22554072]
[11]
Xiong, H.; Seela, F. Stepwise “click” chemistry for the template independent construction of a broad variety of cross-linked oligonucleotides: Influence of linker length, position, and linking number on DNA duplex stability. J. Org. Chem., 2011, 76(14), 5584-5597.
[http://dx.doi.org/10.1021/jo2004988] [PMID: 21591729]
[12]
Qing, G.; Xiong, H.; Seela, F.; Sun, T. Spatially controlled DNA nanopatterns by “click” chemistry using oligonucleotides with different anchoring sites. J. Am. Chem. Soc., 2010, 132(43), 15228-15232.
[http://dx.doi.org/10.1021/ja105246b] [PMID: 20936845]
[13]
Xiong, H.; Leonard, P.; Seela, F. Construction and assembly of branched Y-shaped DNA: “click” chemistry performed on dendronized 8-aza-7-deazaguanine oligonucleotides. Bioconjug. Chem., 2012, 23(4), 856-870.
[http://dx.doi.org/10.1021/bc300013k] [PMID: 22443223]
[14]
Yu, Y.; Xu, Q.; He, S.; Xiong, H.; Zhang, Q.; Xu, W.; Ricotta, V.; Bai, L.; Zhang, Q.; Yu, Z.; Ding, J.; Xiao, H.; Zhou, D. Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev., 2019, 387, 154-179.
[http://dx.doi.org/10.1016/j.ccr.2019.01.020]
[15]
Döhler, D.; Michael, P.; Binder, W.H. CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res., 2017, 50(10), 2610-2620.
[http://dx.doi.org/10.1021/acs.accounts.7b00371] [PMID: 28891636]
[16]
Zhang, W.; Zhang, S.; Guo, Q.; Lu, X.; Liu, Y.; Mao, J.; Wesdemiotis, C.; Li, T.; Li, Y.; Cheng, S.Z.D. Multilevel manipulation of supramolecular structures of giant molecules via macromolecular composition and sequence. ACS Macro Lett., 2018, 7(6), 635-640.
[http://dx.doi.org/10.1021/acsmacrolett.8b00275] [PMID: 35632969]
[17]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release, 2018, 273, 160-179.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.023] [PMID: 29382547]
[18]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[19]
Jug, K.; Chiodo, S.; Calaminici, P.; Avramopoulos, A.; Papadopoulos, M.G. Electronic and vibrational polarizabilities and hyperpolarizabilities of azoles: A comparative study of the structure- polarization relationship. J. Phys. Chem. A, 2003, 107(20), 4172-4183.
[http://dx.doi.org/10.1021/jp022403m]
[20]
Adam, W.; Grimison, A. Sigma-polarization in 5-membered heterocyclic ring systems. Theor. Chim. Acta, 1967, 7(4), 342-351.
[http://dx.doi.org/10.1007/BF00537511]
[21]
Jin, L.; Tolentino, D.R.; Melaimi, M.; Bertrand, G. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction”. Sci. Adv., 2015, 1(5), e1500304.
[http://dx.doi.org/10.1126/sciadv.1500304] [PMID: 26601202]
[22]
Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev., 2010, 39(4), 1262-1271.
[http://dx.doi.org/10.1039/b818033b] [PMID: 20349532]
[23]
Bryant, J.J.; Bunz, U.H.F. Click to bind: Metal sensors. Chem. Asian J., 2013, 8(7), 1354-1367.
[http://dx.doi.org/10.1002/asia.201300260] [PMID: 23616387]
[24]
Finn, M.G.; Fokin, V.V. Click chemistry: Function follows form. Chem. Soc. Rev., 2010, 39(4), 1231-1232.
[http://dx.doi.org/10.1039/c003740k] [PMID: 20309482]
[25]
Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev., 2000, 205(1), 59-83.
[http://dx.doi.org/10.1016/S0010-8545(00)00242-3]
[26]
Scattergood, P.A.; Sinopoli, A.; Elliott, P.I.P. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord. Chem. Rev., 2017, 350, 136-154.
[http://dx.doi.org/10.1016/j.ccr.2017.06.017]
[27]
Chandrasekhar, V.; Pandey, M.D. Fluorescence sensing of Cu2+ and Hg2+ by a dipyrene ligand involving an excimer-switch off mechanism. Tetrahedron Lett., 2011, 52(16), 1938-1941.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.051]
[28]
Pandey, M.D.; Mishra, A.K.; Chandrasekhar, V.; Verma, S. Silver-guided excimer emission in an adenine-pyrene conjugate: Fluorescence lifetime and crystal studies. Inorg. Chem., 2010, 49(5), 2020-2022.
[http://dx.doi.org/10.1021/ic9022008] [PMID: 20112956]
[29]
Mouli, M.S.S.V.; Tamrakar, A.; Pandey, M.D.; Mishra, A.K. The nucleobase assisted pyrene functionalization of gold nanoparticles. New J. Chem., 2021, 45(21), 9478-9482.
[http://dx.doi.org/10.1039/D1NJ00556A]
[30]
Faggi, E.; Serra-Vinardell, J.; Pandey, M.D.; Casas, J.; Fabriàs, G.; Luis, S.V.; Alfonso, I. Pseudopeptidic fluorescent on-off pH sensor based on pyrene excimer emission: Imaging of acidic cellular organelles. Sens. Actuators B Chem., 2016, 234, 633-640.
[http://dx.doi.org/10.1016/j.snb.2016.05.037]
[31]
(a) Kaur, M.; Kaur, P.; Dhuna, V.; Singh, S.; Singh, K. A ferrocene–pyrene based ‘turn-on’ chemodosimeter for Cr 3+ – application in bioimaging. Dalton Trans., 2014, 43(15), 5707-5712.
[http://dx.doi.org/10.1039/C3DT53536C] [PMID: 24553910];
(b) Wani, M.A.; Pandey, M.D.; Pandey, R.; Maurya, S.K.; Goswami, D. A dual-signaling ferrocene-pyrene dyad: triple-mode recognition of the Cu(II) ions in aqueous medium. J. Fluoresc., 2017, 27(6), 2279-2286.
[http://dx.doi.org/10.1007/s10895-017-2169-0] [PMID: 28840438]
[32]
Udhayakumari, D. Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sens. Actuators B Chem., 2018, 259, 1022-1057.
[http://dx.doi.org/10.1016/j.snb.2017.12.006]
[33]
Ni, X.L.; Wang, S.; Zeng, X.; Tao, Z.; Yamato, T. Pyrene-linked triazole-modified homooxacalix[3]arene: a unique C3 symmetry ratiometric fluorescent chemosensor for Pb2+. Org. Lett., 2011, 13(4), 552-555.
[http://dx.doi.org/10.1021/ol102914t] [PMID: 21194233]
[34]
Wang, F.; Nandhakumar, R.; Moon, J.H.; Kim, K.M.; Lee, J.Y.; Yoon, J. Ratiometric fluorescent chemosensor for silver ion at physiological pH. Inorg. Chem., 2011, 50(6), 2240-2245.
[http://dx.doi.org/10.1021/ic1018967] [PMID: 21291199]
[35]
Wang, L.; Yu, M.; Liu, Z.; Zhao, W.; Li, Z.; Ni, Z.; Li, C.; Wei, L. A visible light excitable “on–off” and “green–red” fluorescent chemodosimeter for Ni2+/Pb2+. New J. Chem., 2012, 36(11), 2176-2179.
[http://dx.doi.org/10.1039/c2nj40597k]
[36]
Ghosh, K.; Sarkar, A.R.; Chattopadhyay, A.P. Anthracene-labeled 1,2,3-Triazole-linked bispyridinium amide for selective sensing of H2PO4- by fluorescence and gel formation. Eur. J. Org. Chem., 2012, 2012(7), 1311-1317.
[http://dx.doi.org/10.1002/ejoc.201101240]
[37]
Saleem, M.; Rafiq, M.; Hanif, M. Organic material based fluorescent sensor for Hg 2+: A brief review on recent development. Reviews in Fluorescence, 2016, 2017, 275-317.
[PMID: 27646651]
[38]
Wang, K.; Kong, Q.; Chen, X.; Yoon, J.; Swamy, K.M.K.; Wang, F. A bifunctional rhodamine derivative as chemosensor for recognizing Cu2+ and Hg2+ ions via different spectra. Chin. Chem. Lett., 2020, 31(5), 1087-1090.
[http://dx.doi.org/10.1016/j.cclet.2019.11.013]
[39]
Watkinson, M. Click triazoles as chemosensors.Click Triazoles; Springer, 2012, pp. 109-136.
[http://dx.doi.org/10.1007/7081_2011_69]
[40]
Varazo, K.; Xie, F.; Gulledge, D.; Wang, Q. Synthesis of triazolyl anthracene as a selective fluorescent chemosensor for the Cu(II) ion. Tetrahedron Lett., 2008, 49(36), 5293-5296.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.092]
[41]
Zhang, Y.; Fang, Y.; Xu, N.Z.; Zhang, M.Q.; Wu, G.Z.; Yao, C. A colorimetric and ratiometric fluorescent chemosensor based on furan-pyrene for selective and sensitive sensing Al3+. Chin. Chem. Lett., 2016, 27(11), 1673-1678.
[http://dx.doi.org/10.1016/j.cclet.2016.04.011]
[42]
Wu, Y.S.; Li, C.Y.; Li, Y.F.; Tang, J.L.; Liu, D. A ratiometric fluorescent chemosensor for Cr3+ based on monomer–excimer conversion of a pyrene compound. Sens. Actuators B Chem., 2014, 203, 712-718.
[http://dx.doi.org/10.1016/j.snb.2014.07.046]
[43]
(a) Dolai, B.; Nayim, S.; Hossain, M.; Pahari, P.; Kumar Atta, A. A triazole linked C-glycosyl pyrene fluorescent sensor for selective detection of Au3+ in aqueous solution and its application in bioimaging. Sens. Actuators B Chem., 2019, 279, 476-482.
[http://dx.doi.org/10.1016/j.snb.2018.09.105];
(b) Dey, B.; Pahari, P.; Sahoo, S.K.; Kumar Atta, A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J. Photochem. Photobiol. Chem., 2023, 440, 114647.
[http://dx.doi.org/10.1016/j.jphotochem.2023.114647]
[44]
Hazarika, S.I.; Mahata, G.; Pahari, P.; Pramanik, N.; Atta, A.K. A simple triazole-linked bispyrenyl-based xylofuranose derivative for selective and sensitive fluorometric detection of Cu2+. Inorg. Chim. Acta, 2020, 507, 119582.
[http://dx.doi.org/10.1016/j.ica.2020.119582]
[45]
Odaci, D.; Gacal, B.N.; Gacal, B.; Timur, S.; Yagci, Y. Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromolecules, 2009, 10(10), 2928-2934.
[http://dx.doi.org/10.1021/bm900755y] [PMID: 19678675]
[46]
He, X.; Xie, J.; Chen, G.; Chen, K. Pyrene excimer-based bis-triazolyl pyranoglycoligands as specific mercury sensors. Chin. J. Chem., 2012, 30(12), 2874-2878.
[http://dx.doi.org/10.1002/cjoc.201200978]
[47]
Wu, C.; Ikejiri, Y.; Zhao, J.L.; Jiang, X.K.; Ni, X.L.; Zeng, X.; Redshaw, C.; Yamato, T. A pyrene-functionalized triazole-linked hexahomotrioxacalix[3]arene as a fluorescent chemosensor for Zn2+ ions. Sens. Actuators B Chem., 2016, 228, 480-485.
[http://dx.doi.org/10.1016/j.snb.2016.01.051]
[48]
Chen, Y.J.; Chen, M.Y.; Lee, K.T.; Shen, L.C.; Hung, H.C.; Niu, H.C.; Chung, W.S. 1, 3-alternate calix[4]arene functionalized with pyrazole and triazole ligands as a highly selective fluorescent sensor for Hg2+ and Ag+ ions. Front Chem., 2020, 8, 593261.
[http://dx.doi.org/10.3389/fchem.2020.593261] [PMID: 33282834]
[49]
Park, S.Y.; Yoon, J.H.; Hong, C.S.; Souane, R.; Kim, J.S.; Matthews, S.E.; Vicens, J. A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd2+ and Zn2+. J. Org. Chem., 2008, 73(21), 8212-8218.
[http://dx.doi.org/10.1021/jo8012918] [PMID: 18817447]
[50]
Kim, J.S.; Park, S.Y.; Kim, S.H.; Thuery, P.; Souane, R.; Matthews, S.E.; Vicens, J. A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for iodide ion. Bull. Korean Chem. Soc., 2010, 31(3), 624-629.
[http://dx.doi.org/10.5012/bkcs.2010.31.03.624]
[51]
Wu, C.; Zhao, J.L.; Jiang, X.K.; Ni, X.L.; Zeng, X.; Redshaw, C.; Yamato, T. Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Anal. Chim. Acta, 2016, 936, 216-221.
[http://dx.doi.org/10.1016/j.aca.2016.06.045] [PMID: 27566358]
[52]
Ling, I.; Hashim, R.; Sabah, K.J. Sugar thiacrown-ether appended calix[4]arene as a selective chemosensor for Fe 2+ and Fe 3+ ions. RSC Advances, 2015, 5(107), 88038-88044.
[http://dx.doi.org/10.1039/C5RA15448K]
[53]
Ingale, S.A.; Seela, F. A ratiometric fluorescent on-off Zn2+ chemosensor based on a tripropargylamine pyrene azide click adduct. J. Org. Chem., 2012, 77(20), 9352-9356.
[http://dx.doi.org/10.1021/jo3014319] [PMID: 23030804]
[54]
Hung, H.C.; Cheng, C.W.; Ho, I.T.; Chung, W.S. Dual-mode recognition of transition metal ions by bis-triazoles chained pyrenes. Tetrahedron Lett., 2009, 50(3), 302-305.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.147]
[55]
Hung, H.C.; Cheng, C.W.; Wang, Y.Y.; Chen, Y.J.; Chung, W.S. Highly selective fluorescent sensors for Hg2+ and Ag+ based on bistriazole-coupled polyoxyethylenes in MeOH solution. Phys. Chem. Chem. Phys., 2016, 18, 14094-14103.
[56]
Manandhar, E.; Broome, J.H.; Myrick, J.; Lagrone, W.; Cragg, P.J.; Wallace, K.J. A pyrene-based fluorescent sensor for Zn2+ ions: A molecular ‘butterfly’. Chem. Commun., 2011, 47(31), 8796-8798.
[http://dx.doi.org/10.1039/c1cc13286e] [PMID: 21735014]
[57]
Romero, T.; Caballero, A.; Tárraga, A.; Molina, P. A click-generated triazole tethered ferrocene-pyrene dyad for dual-mode recognition of the pyrophosphate anion. Org. Lett., 2009, 11(15), 3466-3469.
[http://dx.doi.org/10.1021/ol901308z] [PMID: 19572750]
[58]
Cho, J.; Kim, I.; Moon, J.H.; Singh, H.; Jung, H.S.; Kim, J.S.; Lee, J.Y.; Kim, S. Triazolium-promoted highly selective fluorescence “turn-on” detection of fluoride ions. Dyes Pigments, 2016, 132, 248-254.
[http://dx.doi.org/10.1016/j.dyepig.2016.05.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy