Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Selective Electrochemical Sensing of Serotonin and Epinephrine at Glassy Carbon Electrode Modulated with Brilliant Green: A Voltammetric Study

Author(s): Rukaya Banu, B.E. Kumara Swamy* and Anup Pandith*

Volume 19, Issue 4, 2023

Published on: 31 May, 2023

Page: [339 - 347] Pages: 9

DOI: 10.2174/1573411019666230418093328

Price: $65

Abstract

In the present investigation, an electrochemical sensing approach based on the electropolymerization modulation of brilliant green on a glassy carbon electrode has been introduced for rapid and sensitive identification of serotonin (SE) and epinephrine (EP) by cyclic and differential pulse voltammetric procedures. Under adequate circumstances, the analytical variable like the pH of the supporting solution, was maintained between the range of 6.2-8.0. Furthermore, the electro-kinetic parameter was surveyed, and the electrode depicted the proportionality between the current intensities with the concentration of analytes with a low detection limit (0.74×10-6 M for SE and 0.58×10-6 M for EP). The modulated sensor portrayed the supreme electrocatalytic characteristics toward the simultaneous quantification of SE and EP in a sample mixture.

Graphical Abstract

[1]
Narayana, P.V.; Madhusudana Reddy, T.; Gopal, P.; Mohan Reddy, M.; Ramakrishna Naidu, G. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study. Mater. Sci. Eng. C, 2015, 56, 57-65.
[http://dx.doi.org/10.1016/j.msec.2015.06.011]
[2]
Yeo, J.; Chang, J. Voltammetric kinetic discrimination of two sequential proton-coupled electron transfers in serotonin oxidation: Electrochemical interrogation of a serotonin intermediate. Electrochim. Acta, 2022, 409, 139973.
[http://dx.doi.org/10.1016/j.electacta.2022.139973]
[3]
Singh, G.; Kushwaha, A.; Sharma, M. Highly sensitive and selective detection of serotonin and dopamine with stable oxidation potentials using novel Dy2MoO6 nanosheets. Mater. Chem. Phys., 2022, 279, 125782.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125782]
[4]
Rejithamol, R.; Krishnan, R.G.; Beena, S. Disposable pencil graphite electrode decorated with a thin film of electro-polymerized 2, 3, 4, 6, 7, 8, 9, 10-octahydropyrimido [1, 2-a] azepine for simultaneous voltammetric analysis of dopamine, serotonin and tryptophan. Mater. Chem. Phys., 2021, 258, 123857.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123857]
[5]
Banu, R.; Kumara Swamy, B.E.; Jayaprakash, G.K.; Sharma, S.C. Simultaneous resolution of serotonin and epinephrine at poly (Victoria blue B) amplified carbon paste electrode: A voltammetric study with density functional theory evidences. Inorg. Chem. Commun., 2022, 144, 109627.
[http://dx.doi.org/10.1016/j.inoche.2022.109627]
[6]
Orzari, L.O.; Freitas, R.C.D.; Andreotti, I.A.D.A.; Gatti, A.; Janegitz, B.C. A novel disposable self-adhesive inked paper device for electrochemical sensing of dopamine and serotonin neurotransmitters and biosensing of glucose. Biosens. Bioelectron., 2019, 138, 111310.
[http://dx.doi.org/10.1016/j.bios.2019.05.015] [PMID: 31103014]
[7]
Nayak, S.P.; Prathyusha, V.; Kumar, J.K.K. Eco-friendly surface modification of oxidized carbon nanotubes with curcumin for simultaneous electrochemical detection of dopamine and serotonin. Mater. Chem. Phys., 2022, 287, 126293.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126293]
[8]
Dong, Y.; Zhang, L. Coupling surfactants with 3D hollow raspberry-like Nis/carbon microsphere with S vacancies for enhanced sensitivity monitoring of serotonin and L-tryptophan. Sens. Acutarors. Biol. Chem., 2022, 368, 132140.
[9]
Fazl, F.; Gholivand, M.B. High performance electrochemical method for simultaneous determination dopamine, serotonin, and tryptophan by ZrO2–CuO co-doped CeO2 modified carbon paste electrode. Talanta, 2022, 239, 122982.
[http://dx.doi.org/10.1016/j.talanta.2021.122982] [PMID: 34871865]
[10]
Banu, R.; Kumara Swamy, B.E. Poly (Bromocresol purple) incorporated pencil graphite electrode for concurrent determination of serotonin and levodopa in presence of L-Tryptophan: A voltammetric study. Inorg. Chem. Commun., 2022, 141, 109495.
[http://dx.doi.org/10.1016/j.inoche.2022.109495]
[11]
Hassan, R. Clinical features and outcome of epinephrine-induced Takotsubo syndrome: Analysis of 33 published cases. Cardiovasc. Revasc. Med., 2022, 17, 450-455.
[http://dx.doi.org/10.1016/j.inoche.2022.109495]
[12]
Mahmoudi Moghaddam, H.; Beitollahi, H.; Tajik, S.; Soltani, H. Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis, 2015, 27(11), 2620-2628.
[http://dx.doi.org/10.1002/elan.201500166]
[13]
Taei, M.; Hasanpour, F.; Tavakkoli, N.; Bahrameian, M. Electrochemical characterization of poly(fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid. J. Mol. Liq., 2015, 211, 353-362.
[http://dx.doi.org/10.1016/j.molliq.2015.07.029]
[14]
Lavanya, N.; Fazio, E.; Neri, F.; Bonavita, A.; Leonardi, S.G.; Neri, G.; Sekar, C. Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem., 2015, 221, 1412-1422.
[http://dx.doi.org/10.1016/j.snb.2015.08.020]
[15]
Chandrashekar, B.N.; Kumara Swamy, B.E.; Gururaj, K.J.; Cheng, C. Simultaneous determination of epinephrine, ascorbic acid and folic acid using TX-100 modified carbon paste electrode: A cyclic voltammetric study. J. Mol. Liq., 2017, 231, 379-385.
[http://dx.doi.org/10.1016/j.molliq.2017.02.029]
[16]
Buleandra, M.; Popa, D.E.; David, I.G.; Ciucu, A.A. A simple and efficient cyclic square wave voltammetric method forsimultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchem. J., 2020, 2020, 105621.
[17]
Bacil, R.P.; Garcia, P.H.M.; Serrano, S.H.P. New insights on the electrochemical mechanism of epinephrine on glassy carbon electrode. J. Electroanal. Chem., 2022, 908, 116111.
[http://dx.doi.org/10.1016/j.jelechem.2022.116111]
[18]
Kumar, S.; Awasthi, A.; Sharma, M.D.; Singh, K. Functionalized multiwall carbon nanotubes-molybdenum disulphide nanocomposite based electrochemical ultrasensitive detection of neurotransmitter epinephrine. Mater. Chem. Phys., 2019, 290, 126656.
[19]
Hou, X.; Huang, W.; Tong, Y.; Tian, M. Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim. Acta, 2019, 186(11), 686.
[http://dx.doi.org/10.1007/s00604-019-3801-2] [PMID: 31595360]
[20]
Chung, H.; Tajiri, S.; Hyoguchi, M.; Koyanagi, R.; Shimura, A.; Takata, F.; Dohgu, S.; Matsui, T. Analysis of catecholamine and their metabolites in mice brain by liquid chromatography-mass spectrometry using sulfonated mixed-mode copolymer column. Anal. Sci., 2019, 35(4), 433-439.
[http://dx.doi.org/10.2116/analsci.18P494] [PMID: 30584183]
[21]
Ma, S.; Xu, Z.; Ren, J. Analysis of neurochemicals by capillary electrophoresis in athletes’ urine and a pilot study of their changes responding to sport fatigue. Anal. Methods, 2019, 11(20), 2712-2719.
[http://dx.doi.org/10.1039/C9AY00457B]
[22]
Umaapathy, R.; Ghoreishaian, S.M.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing stratergiesfor the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 6-89.
[23]
Umaapathy, R.; Raju, C.V.; Ghoreishaian, S.M.; Rani, G.M.; Kumar, K.; Mi-Hwa, O.H.; Park, J.P.; Huh, Y.S. Recent advances in the use of graphite carbon nitride- based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[24]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[25]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E.S.; Jeon, T.J.; Kang, S.M.; Oh, M.H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446, 214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[26]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[27]
Shahikumara, J.K.; Kumaraswamy, B.E.; Sharma, S.C. A simple sensing approach of the determination of dopamine by poly(yellow PX4R) pencil graphite electrode. Chem. Data. Coll., 2020, 27, 100366.
[28]
Pradhan, S.; Das, R.; Biswas, S.; Das, D.K.; Bhar, R.; Bandyopadhyay, R.; Pramanik, P. Chemical synthesis of nanoparticles of nickel telluride and cobalt telluride and its electrochemical applications for determination of uric acid and adenine. Electrochim. Acta, 2017, 238, 185-193.
[http://dx.doi.org/10.1016/j.electacta.2017.04.023]
[29]
Chetankumar, K.; Kumara Swamy, B.E. Electrochemically nitric acid pre-treated glassy carbon electrode sensor for catechol and hydroquinone: A voltammetric study. Sensors International, 2020, 1, 100001.
[http://dx.doi.org/10.1016/j.sintl.2020.100001]
[30]
Shankara, S.S.; Swamy, B.E.K. Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: A voltammetric study. Int. J. Electrochem. Sci., 2014, 9, 1321-1339.
[31]
Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified gassy carbon electrode. Sens. Bio-sense. Res., 2017, 130, 17-27.
[32]
Manjunatha, K.G.; Swamy, B.E.K.; Madhuchandra, H.D.; Vishnumurthy, K.A. Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline. Chemical Data Collections, 2021, 31, 100604.
[http://dx.doi.org/10.1016/j.cdc.2020.100604]
[33]
Bakhsh, R.J.; Reza, O.; Mehdi, B. A selective sensor based on a glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyano ferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid. Anal. Methods, 2011, 11, 2367-2373.
[34]
Tertiș, M.; Cernat, A.; Lacatiș, D.; Florea, A.; Bogdan, D.; Suciu,M.; Săndulescu, R.; Cristea, C. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem. Commun., 2017, 75, 43-47.
[http://dx.doi.org/10.1016/j.elecom.2016.12.015]
[35]
Hernandez, A.B.; De la Ros, J.G.; Pimentel, Y.M.; Becerra-Hernández, A.; Galindo-de-la-Rosa, J.; Martínez-Pimentel, Y.; Ledesma-García, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Aguilar-Elguezabal, A.; Álvarez, A.; Chávez-Ramírez, A.U.; Vallejo-Becerra, V. Novel biomaterial based on monoamine oxidase-A and multi-walled carbon nanotubes for serotonin detection. Biochem. Eng. J., 2019, 149, 107240.
[http://dx.doi.org/10.1016/j.bej.2019.107240]
[36]
Li, Y.; Ali, M.A.; Chen, S.M.; Yang, S.Y.; Lou, B.S.; Al-Hemaid, F.M.A. Poly(basic red 9) doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors. Colloids Surf. B Biointerfaces, 2014, 118, 133-139.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.004] [PMID: 24815930]
[37]
Matuschek, L.; Gobel, G.; Lisdat, F. Electrochemical detection of serotonin in the presence of 5-hydroxyindoleacetic acid and ascorbic acid by 3D-ITO electrodes. Electrochem. Commun., 2017, 8, 145-149.
[38]
Mazloum-Ardakani, M.; Khoshroo, A. High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J. Electroanal. Chem., 2014, 717-718, 17-23.
[http://dx.doi.org/10.1016/j.jelechem.2013.12.034]
[39]
banu, R.; Kumara Swamy, B.E.; Ebenso, E. A glassy carbon electrode modulated with Poly (Naphthol green B) for simultaneous electroanalysis of serotonin and Epinephrine in presence of l-tryptophan. Inorg. Chem. Commun., 2022, 145, 110013.
[http://dx.doi.org/10.1016/j.inoche.2022.110013]
[40]
Ren, W.; Luo, H.Q.; Li, N.B. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens. Bioelectron., 2006, 21(7), 1086-1092.
[http://dx.doi.org/10.1016/j.bios.2005.04.002] [PMID: 15871920]
[41]
Aslanoglu, M.; Kutluay, A.; Karabulut, S.; Abbasoglu, S. Voltammetric determination of adrenaline using a poly(1-methylpyrrole) modified glassy carbon electrode. J. Chin. Chem. Soc., 2008, 55(4), 794-800.
[http://dx.doi.org/10.1002/jccs.200800119]
[42]
Da Silva, L.V.; Dos Santos, N.D.; De Almeida, A.K.A.; Di, D.; Dos Santos, E.R.; Santos, A.C.F.; França, M.C.; Da Paz Lima, D.J.P.; Lima, R.; Goulart, M.O.F. A new electrochemical sensor based on oxidized capsaicin/multiwalled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids. J. Electroanal. Chem., 2020, 881, 114919.
[http://dx.doi.org/10.1016/j.jelechem.2020.114919]
[43]
Wei, X.; Wang, F.; Yin, Y.; Liu, Q.; Zou, L.; Ye, B. Selective detection of neurotransmitter serotonin by a gold nanoparticle-modified glassy carbon electrode. Analyst, 2010, 135(9), 2286-2290.
[http://dx.doi.org/10.1039/c0an00256a] [PMID: 20596570]
[44]
Ghica, M.E.; Brett, C.M.A. Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes. Anal. Lett., 2013, 46(9), 1379-1393.
[http://dx.doi.org/10.1080/00032719.2012.762584]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy